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Overview

Classical entropy theory is concerned with systems that evolve in time.

Time is usually represented by either Z,N,R or R>0 but more general
groups such as Zd ,Rd can be and have been considered.

What happens if we replace the acting group with a free group
F2 = 〈a,b〉?
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The Ornstein-Weiss Example

Theorem ( Ornstein-Weiss, 1987)
If F = 〈a,b〉 is the rank 2 free group then the full 2-shift over F factors
onto the full 4-shift over F.

Define φ : (Z/2Z)F → (Z/2Z× Z/2Z)F by

φ(x)(g) =
(

x(g) + x(ga), x(g) + x(gb)
)
.

This is surjective, shift-equivariant, 2-1, continuous and a
homomorphism of compact abelian groups!

(Ornstein-Weiss, 1987): Is the full 2-shift over F isomorphic to the full
4-shift?
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The Ornstein-Weiss map
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Factors between Bernoulli shifts

A Bernoulli shift over a countable group Γ is an action of the form
Γy(K Γ, κΓ) where K is a Borel space, κ is a probability measure on K
and ΓyK Γ by

(gx)f = xg−1f for g, f ∈ Γ, x ∈ K Γ.

Theorem (B., 2017)
If Γ is any non-amenable group then every Bernoulli shift over G
factors onto every Bernoulli shift over G.
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Topological entropy ala Rufus Bowen

Let T : X → X be a homeomorphism of a compact metrizable space
X .

The topological entropy of (X ,T ) is the exponential growth rate of
the number of length n partial orbits that can be distinguished at scale
ε (and then send ε↘ 0).
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Topological entropy ala Rufus Bowen

Let ρ be a metric on X .

A length-n partial orbit is an n-tuple of the form
x = (x ,Tx ,T 2x , . . . ,T n−1x).

The ρ∞-distance on length-n partial orbits is

ρ∞(x , y) = max
0≤i≤n−1

ρ(T ix ,T iy).

Let covε(n, ρ∞) be the minimum cardinality of a collection C of length-n
partial orbits that is (ρ∞, ε)-covering in the sense that every length-n
partial orbit is (ρ∞, ε)-close to some partial orbit in C.

h(X ,T ) := sup
ε>0

lim sup
n→∞

n−1 log covε(n, ρ∞)
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Main Results

1 If (X ,T ) embeds into (Y ,S) then h(X ,T ) ≤ h(Y ,S).

2 In particular, entropy is a topological conjugacy invariant.

3 (Topological entropy was defined earlier in a different way by
Adler, Konheim and McAndrew in 1965).
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A partial orbit
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Pseudo-orbits

Consider softening the notion of partial orbit.

An (n, δ)-pseudo orbit is a tuple x = (x1, . . . , xn) ∈ X n such that

1
n

n−1∑
i=1

ρ(Txi , xi+1) < δ.

Note: we are using an `1 metric instead of an `∞ metric.
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A pseudo-orbit
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Entropy via pseudo-orbits

Let covε(n, δ, ρ∞) be the minimum cardinality of a collection C of
(n, δ)-pseudo orbits that is (ρ∞, ε)-covering in the sense that every
(n, δ)-pseudo orbit is (ρ∞, ε)-close to something in C.

Theorem

h(X ,T ) = sup
ε>0

inf
δ>0

lim sup
n→∞

n−1 log covε(n, δ, ρ∞)
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Periodic orbits

A periodic orbit with period n is a tuple (x ,Tx , . . . ,T n−1x) such that
T nx = x (up to cyclic reordering).
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A periodic orbit
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Entropy via periodic orbits?

The exponential rate of growth of the number of periodic points that
can be distinguished at scale ε (and then send ε↘ 0) is a lower bound
for entropy.

But in general, it is not equal to entropy.
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How to compute entropy

partial orbits

tt **
pseudo orbits

**

periodic orbits

tt
pseudo periodic orbits
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Pseudo periodic orbits

An (n, δ)-pseudo periodic orbit is a tuple x = (x1, . . . , xn) ∈ X n (up to
cyclic order) such that

1
n

n∑
i=1

ρ(Txi , xi+1) < δ

(indices mod n).
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Pseudo periodic orbits
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Entropy via pseudo periodic orbits

Let covper
ε (n, δ, ρ∞) be the minimum cardinality of a collection C of

(n, δ)-pseudo periodic orbits that is (ρ∞, ε)-covering in the sense that
every (n, δ)-pseudo periodic orbit is (ρ∞, ε)-close to something in C.

Theorem

h(X ,T ) = sup
ε>0

inf
δ>0

lim sup
n→∞

n−1 log covper
ε (n, δ, ρ∞)

(pseudo periodic orbits are also called microstates)
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A first step towards sofic entropy

Let Γ be a countable group, ΓyX an action by homeomorphisms.

Preliminary definition : an pseudo periodic orbit consists of an action
ΓyσV on a finite set and a map φ : V → X that is approximately
equivariant in the following `1-sense:

|V |−1
∑
v∈V

ρ
(
φ
(
σ(g)v

)
,gφ(v)

)
< δ ∀g ∈ F

where F ⊂ Γ is finite.

More precisely, this is a (σ, δ,F )-pseudo periodic orbit .
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A first step towards sofic entropy

Let Σ = {ΓyσnVn} be a sequence of actions on finite sets.

Preliminary definition : the sofic entropy of ΓyX with respect to Σ is

hΣ(ΓyX ) := sup
ε>0

inf
δ>0,FbΓ

lim sup
n→∞

|Vn|−1 log covper
ε (σn, δ,F , ρ∞)

where covper
ε (σn, δ,F , ρ∞) is the minimum cardinality of a collection C

of (σn, δ,F )-pseudo periodic orbits that is (ρ∞, ε)-covering in the
sense that every (σn, δ,F )-pseudo periodic orbit is (ρ∞, ε)-close to
something in C.
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Main Results (Kerr-Li, 2010)

1 If ΓyX embeds into ΓyY then hΣ(ΓyX ) ≤ hΣ(ΓyY ).

2 In particular, Σ-entropy is a topological conjugacy invariant.

3 hΣ(ΓyK Γ) = log |K |.
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A boring example

Suppose Vn is a single point for all n.

Then hΣ(ΓyX ) = log # (fixed points).

This isn’t what is usually meant by entropy.

To fix this, require that the actions ΓyσnVn witness Γ in the sense that:
for all g ∈ Γ \ {1Γ},

|Vn|−1#{v ∈ Vn : σn(g)v 6= v} → 1 as n→∞.

With this assumption, Σ is said to be a sofic approximation to Γ.
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A curious example

Let F2 = 〈a,b〉y{0,1} so that each of a,b act nontrivially.

Any action F2yσV on a finite set V determines a graph G = (V ,E)
where

E = {(v , σ(a)v), (v , σ(b)v) : v ∈ V}.

If the graphs corresponding to the actions in Σ = {ΓyVn} are bi-partite
then

hΣ(F2y{0,1}) = 0.

If they are far from bi-partite (e.g. if σ ∈ Hom(F2, sym(V )) is uniformly
random) then there are no pseudo periodic orbits and

hΣ(F2y{0,1}) = −∞.

Lewis Bowen (UT Austin) Entropy theory in the nonamenable setting 24 / 36



What is this good for?

Gottschalk’s Surjunctivity Conjecture (1973): Let k be a finite set and
Φ : kΓ → kΓ a continuous shift-equivariant injective map. Then Φ is
surjective.

Theorem (Gromov, 1999)
If Γ is sofic then the conjecture is true.

Proof by Kerr-Li, 2010.
hΣ(ΓykΓ) = log |k |.
hΣ(ΓyΦ(kΓ)) = log |k |.
The sofic entropy of any proper subshift of kΓ is < log |k |.
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Partial actions

We don’t actually need ΓyσnVn to be actions.

Instead we require {σn : Γ→ sym(Vn)} to be a sequence of maps (not
necessarily homomorphisms!) such that

∀g,h ∈ Γ, |Vn|−1#{v ∈ Vn : σn(gh)v = σn(g)σn(h)v} → 1 as n→∞

∀g ∈ Γ \ {1Γ}, |Vn|−1#{v ∈ Vn : σn(g)v 6= v} → 1 as n→∞.

Such a sequence is a sofic approximation and Γ is sofic it has one.

Definition due to Gromov (1999), named and made accessible by
Weiss (2000).
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An action of Z2
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A partial action of Z2
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Sofic groups

Amenable groups are sofic.

Residually finite groups are sofic. Hence all linear groups are
sofic.

The class of sofic groups is closed under: subgroups, direct limits,
inverse limits, direct products, extensions by amenable groups,
free products with amenable amalgamation, wreathe products.
(Elek-Szabo, Dykema-Kerr-Pichot, Paunescu, Hayes-Sale)

If G is sofic then G satisfies Gottshalk’s surjunctivity conjecture,
Connes embedding conjecture, the Determinant conjecture,
Kaplansky’s direct finiteness conjecture. (Gromov 1999, Weiss
2000, Elek-Szabo 2005)

Open: Is every countable group sofic?
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Measure entropy ala Kerr-Li

Let Γy(X , µ) be an action by homeomorphisms and µ an invariant
probability measure.

The measure sofic entropy of Γy(X , µ) is the exponential growth
rate of the number of approximately equidistributed periodic orbits that
can be distinguished at scale ε (and then send ε↘ 0).
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Measure entropy ala Kerr-Li

The empirical distribution of a map φ : V → X is the probability
measure

Pφ :=
1
|V |

∑
v∈V

δφ(v) ∈ Prob(X ).

If O ⊂ Prob(X ) is an open neighborhood of µ then a
(σ, δ,F ,O)-pseudo periodic orbit is a map φ : V → X such that φ is a
(σ, δ,F )-pseudo periodic orbit and Pφ ∈ O.
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Measure entropy ala Kerr-Li

Let covε(σ, δ,F ,O, ρ∞) be the minimum cardinality of a collection C of
(σ, δ,F ,O)-pseudo periodic orbits that (ρ∞, ε)-cover the set of all
(σ, δ,F ,O)-pseudo periodic orbits.

hΣ(Γy(X , µ)) := sup
ε>0

inf
δ,F ,O

lim sup
n→∞

|Vn|−1 log covε(σn, δ,F ,O, ρ∞).
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Main Results

1 (Variational Principle, Kerr-Li) hΣ(ΓyX ) = supµ hΣ(Γy(X , µ)).

2 (B., Kerr-Li) Measure sofic entropy is a measure conjugacy
invariant.

3 If (K , κ) is any probability space and ΓyKZ is the shift action
(gx)h = xg−1h then

hΣ(Γy(K , κ)Γ) = H(κ) :=
∑
k∈K

−κ({k}) logκ({k}).

4 This is the Bernoulli shift over Z with base (K , κ) .

5 So the 2-shift over F2 is not isomorphic to the 4-shift over F2!
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Classification of Bernoulli shifts
Conjecture: Assume |Γ| =∞. Then

Γy(K , κ)Γ ∼= Γy(L, λ)Γ ⇔ H(κ) = H(λ).

⇒
Γ = Z (Kolmogorov, 1958)
Γ amenable groups (folklore or Kieffer?, 1970s)
Γ sofic (B., Kerr-Li, 2010)

⇐
Γ = Z (Ornstein, 1970)
Γ amenable (Ornstein-Weiss, 1980)
Z ≤ Γ (Stepin, 1975)
∀Γ, |K | > 2 and |L| > 2 (B. 2012)
∀Γ (Seward, 2017)

Lewis Bowen (UT Austin) Entropy theory in the nonamenable setting 34 / 36



Classification of Bernoulli shifts
Conjecture: Assume |Γ| =∞. Then

Γy(K , κ)Γ ∼= Γy(L, λ)Γ ⇔ H(κ) = H(λ).

⇒
Γ = Z (Kolmogorov, 1958)
Γ amenable groups (folklore or Kieffer?, 1970s)
Γ sofic (B., Kerr-Li, 2010)

⇐
Γ = Z (Ornstein, 1970)
Γ amenable (Ornstein-Weiss, 1980)
Z ≤ Γ (Stepin, 1975)
∀Γ, |K | > 2 and |L| > 2 (B. 2012)
∀Γ (Seward, 2017)

Lewis Bowen (UT Austin) Entropy theory in the nonamenable setting 34 / 36



Classification of Bernoulli shifts
Conjecture: Assume |Γ| =∞. Then

Γy(K , κ)Γ ∼= Γy(L, λ)Γ ⇔ H(κ) = H(λ).

⇒
Γ = Z (Kolmogorov, 1958)
Γ amenable groups (folklore or Kieffer?, 1970s)
Γ sofic (B., Kerr-Li, 2010)

⇐
Γ = Z (Ornstein, 1970)
Γ amenable (Ornstein-Weiss, 1980)
Z ≤ Γ (Stepin, 1975)
∀Γ, |K | > 2 and |L| > 2 (B. 2012)
∀Γ (Seward, 2017)

Lewis Bowen (UT Austin) Entropy theory in the nonamenable setting 34 / 36



Further topics
Markov chains over free groups (B. 2010) : a variant of sofic
entropy theory via random permutations yields exact computations
and structural results although a classification remains elusive.

Algebraic dynamics : there is an explicit formula for the sofic
entropy of principal algebraic actions and many nice structural
results due to Ben Hayes (based in part on earlier work of D. Kerr,
H. Li, B., Deninger-Schmidt, Deninger, Lind-Schmidt-Ward, Rufus
Bowen, Yuzvinskii...).

Rokhlin entropy is an upper bound for sofic entropy. Brandon
Seward has used it to prove generalizations of Krieger’s generator
theorem and Sinai’s Factor Theorem for all countable groups.

Weak Pinsker Conjecture: Tim Austin recently posted a solution
for actions of amenable groups. I have a counterexample in the
case of free group actions based on sofic entropy theory and
probabilistic combinatorics via constraint satisfaction problems.
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Algebraic Dynamics

Theorem (Ben Hayes)
Consider an action of a sofic group Γ on a compact group X by
automorphisms.

1 Under mild hypotheses, the topological sofic entropy and measure
sofic entropy agree.

2 For any f ∈ ZΓ such that left convolution with f is injective as an
operator on `2(Γ), the sofic entropy of Γy ̂(Z/fZ) is log det+ |f |.

3 Under mild hypothesis, the (outer) sofic Pinsker factor is algebraic.

earlier work due to: Rufus Bowen, B., Deninger, Kerr, Li, Lind,
Schmidt, Ward, Yuzvinskii, . . .
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