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Overview

In one of his final papers Bowen introduced a method for describing
the Hausdorff Dimension of certain dynamically defined sets
(Quasi-Circles).

The method was subsequently developed by Ruelle to describe the
Hausdorff Dimension of hyperbolic Julia sets and, more generally,
conformal repellors. This has now become a standard technique.

Eventually I want to discuss how this method can be useful in
rigorous numerical estimates (joint work with O.Jenkinson).

Question

Why should we be interested in numerically computing dimension?

This may be a matter of taste. However, the most interesting aspect
is the mathematical method of getting good bounds on the error.

However, before all this I will mention two connections Rufus Bowen had
with Warwick.
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Warwick Connection I

Bowen was at Warwick University, U.K., in 1969-70.

There was a tree planted in his memory nearby.

This tree had to be moved twice, because of building work and ultimately
the tree had to be replaced by a newer/healthier one.
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Warwick Connection II

The notebook of Rufus Bowen listing 157 problems has been in Warwick
during recent years.

I brought it with me on my flight from the UK last Friday.
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Aside: A tale of two notebooks

There is an interesting parallel with another famous notebook.

The Bowen notebook was brought
to the UK by Peter Walters in 1978.
For the next 39 years this notebook
was in Peter’s house in Kenilworth
(5,256 miles from Berkeley and 3
miles from Warwick University)

After Ramanujan’s death in 1920,
his ”lost” notebook was sent from
Madras to Hardy, in England, who
passed it to Watson. For the next
42 years this notebook stayed in his
house in Leamington Spa (8,299
miles from Madras and 7 miles from
Warwick University)
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Dimension of sets

The Bowen dimension formula deals with the dimension of certain sets
X ⊂ RD .

In all our examples the Hausdorff Dimension will be the same as the Box
Dimension, so we can cheat and recall its (simpler) definition instead.

For ε > 0 we let N(ε) be the smallest number of D-dimensional ε-boxes
needed to cover X .

X

Definition

We define the dimension by: dim(X ) = lim supε→0
logN(ε)
log(1/ε)
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Quasi-Circles: A simple example

Question

What was Bowen’s quasi-circle result about?

Consider four touching circles in the plane

chosen such that there is a
circle K passing through the 4 points of contact. The inversions
γi : Ĉ→ Ĉ defined by

γi (z) =
r2i (z − ci )

|z − ci |2
+ ci , for i = 1, 2, 3, 4,

map the inside of Ci to the outside, and vica versa.
Trivial Observation: K is fixed by the transformations, i.e., γiK = K .
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Quasi-Circles

If the four contact points don’t lie on a circle then there is no longer a
circle fixed under the corresponding 4 transformations Ri : Ĉ→ Ĉ
(i = 1, 2, 3, 4)

however there is still a quasi-circle K (topological circle)

K

Claim

When K isn’t a circle, then it has Hausdorff Dimension dimH(K ) > 1.
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The Bowen paper on Quasi-Circles

The Bowen paper dealt with a similar problem for Quasi-Fuchsian groups.
Let Γ0 < PSL(2,C) be a discrete group of Möbius transformations of Ĉ

which preserve a circle K0 (i.e., a Fuchsian group).

For a nearby discrete group Γ there is still a quasi-circle K fixed by each
γ ∈ Γ.

Theorem (Bowen, 1979)

If Γ0 is cocompact then either

1 K is still a genuine circle, or

2 K has Hausdorff Dimension > 1.
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Bowen Paper

This paper was published posthumously in 1979 and is his 4th most cited
publication.

These include generalizations to

more general groups (Bishop and Jones) and

higher dimensions (C.-B. Yue).

But perhaps the reason for its influence is that Bowen’s original idea has
proved useful in a multitude of similar settings. Let us consider a
particularly simple one.
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A simple application: Iterated Function Schemes

Consider an iterated function scheme given by T1,T2 : [0, 1]→ [0, 1]

where
1 Each Ti is a Cω contraction.
2 The images are disjoint (i.e., T1[0, 1] ∩ T2[0, 1] = ∅).

0 1

0 1

The limit set Λ is the Cantor set of limit points

Λ =

{
lim

n→+∞
Ti1Ti2 · · ·Tin(x0) : i1, i2, · · · {1, 2}

}
for any x0 ∈ [0, 1].
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Example 1: Middle third Cantor set

Let us begin with a trivial example.
Consider the contractions T1,T2 : [0, 1]→ [0, 1] defined by

T1(x) =
x

3
and T2(x) =

x

3
+

1

3

The limit set Λ is the usual middle third Cantor set, i.e.,

Λ =

{ ∞∑
n=1

jn
3n

: j1, j2, j3, · · · ∈ {0, 2}

}
.

We might describe Λ to be “linear Cantor set” since T1,T2 are affine
maps.

It is easy to see from the definitions that dim(Λ) = log 2
log 3 .
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Example 2 (after I.J.Good): E2

Consider the Cantor set associated to those points 0 < x < 1 whose
continued fraction expansions contain only the digits 1 and 2,

i.e.,

E2 := Λ = {[a1, a2, a3, · · · ] : a1, a2, a3, · · · ∈ {1, 2}} .

This corresponds to the limit set for T1,T2 : [0, 1]→ [0, 1] where

T1(x) =
1

1 + x
and T2(x) =

1

2 + x
.

We might describe Λ to be “nonlinear Cantor set”.

Unfortunately there is no explicit closed form expression for dim(E2), and
so we have to resort to calculating its value numerically,

Question

How accurately can one estimate dim(E2)?
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A Good estimate

The first estimate on this value was in an article by Jack Good published
in the Proceedings of the Cambridge Philosophical Society in 1941:

0.5306 < dim(E2) < 0.5320

This was in work from Good’s thesis, under the supervision of Hardy and
Besicovitch. It was awarded the annual “Smith’s prize” for research
students at Cambridge (established in 1769).
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Aside: Good’s war

During the Second World War Jack Good worked at Bletchley Park,
breaking the german enigma codes.

Good featured as a character in the 2014 movie about the life of Alan
Turing, as the guy in glasses who solves the recruitment puzzle at the
same time as Kiera Knightley.
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Aside: Good’s film career

Moreover, Jack Good had a more direct connection with the film industry.
He worked with Stanley Kubrick as an advisor on the movie 2001: A
space odyssey

A photograph of Jack Good on the set of the movie.
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A pressure function

We can try to get better estimates on dim(Λ) using the Bowen approach.

To define the pressure function we denote:

For n ≥ 1, let i = (i1, · · · , in) ∈ {1, 2}n and |i | = n; and

Let xi = Ti (xi ) be the fixed point for

Ti = Ti1 ◦ · · · ◦ Tin : [0, 1]→ [0, 1].

Definition

We can define a pressure function P : R→ R by

P(t) = lim
n→+∞

1

n

∑
|i|=n

|(Ti )
′(xi )|t

where t ∈ R.
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Pressure and dimension

This pressure function P : R→ R is analytic and convex.

P(t)

t

The connection with the dimension is given by:

Theorem (Bowen, Ruelle)

The dimension of the limit set is the zero t = dim(Λ): P(t) = 0.
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Bowen’s original formulation

The original statement in Bowen’s paper is rather modestly presented as
“Lemma 10”:

Returning to the main theme of this lecture:

Question

How can we use the Bowen dimension formula as a computational tool?

The first point is that we don’t want to use the definition of the pressure
given before, but an alternative formulation ... in terms of transfer
operators.
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The transfer operator feels the pressure

For simplicity, we again restrict to iterated function schemes.

Let B = C 0([0, 1]) be the Banach space of continuous functions (with
the usual supremum norm).

Let Lt : B → B be the transfer operator(s) defined by

Lt f (x) = |T ′1(x)|t f (T1x) + |T ′2(x)|t f (T2x), where f ∈ B,

for t ≥ 0.

Lemma (Ruelle Operator Theorem)

Lt has largest eigenvalue eP(t).

Thus the Bowen dimension formula can be reinterpreted as:

Corollary

t = dim(Λ) corresponds to 1 being the largest eigenvalue for Lt
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Transfer operator approach to calculating dimension

The standard application of the Bowen dimension formula for computing
the dimension dim(Λ) of the limit set has four steps led to better
estimates:

1 Approximate each operator Lt by a (large) N × N matrix L(N)
t ;

2 Find the maximal eigenvalue λ
(N)
t for L(N)

t ;

3 Solve for t = tN : λ
(N)
t = 1;

4 Then tN → dim(X ) as N → +∞.

Example 2 revisited: This method (essentially) has been used by several
authors to estimate dim(E2), the non-linear Cantor set of numbers whose
continued fraction expansion only used the digits 1 and 2...
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Estimates dim(E2)

Using the dimension formula and faster computers/more memory (to

choose n larger in the approximation of Lt by L(N)
t ):

Bumby (1985) showed that
dimH(E2) = 0.531 . . .

Hensley (1989) showed that
dimH(E2) = 0.531280 . . .

Falk and Nussbaum (2016) showed that
dimH(E2) = 0.53128050 . . .

Where the estimates are presented to the number of places they are
known to be accurate.

Question

How can we further improve on these estimates?

We would like employ the basic Bowen dimension formula using an extra
ingredient ... zeta functions.
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Zeta functions

We can define a zeta function of two variables (z ∈ C and t ∈ R)
formally defined by

ζ(z , t) := exp

− ∞∑
n=1

zn

n

∑
|i|=n

|(Ti )
′(xi )|t

1− (Ti )′(xi )

 .

Given t > 0 this converges for |z | sufficiently small, but, in fact, has an
analytic extension, and thus makes sense, for all t ∈ R and z ∈ C (as we
will see later ...).

Moreover, setting z = 1 the Bowen dimension formula can be
reinterpreted in terms of the function t 7→ ζ(1, t) (where we set z = 1).

Lemma (Bowen Formula, version II)

t = dimH(Λ) satisfies ζ(1, t) = 0.
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Zeta function approach to calculating dimension

Recall that ζ : C×R→ C and the dimension of Λ is given by the solution

t = dim(Λ) : ζ(1, t) = 0.

We use the zeta function to calculate the dimension dim(Λ) as follows:

1 For each t approximate z 7→ ζ(z , t) by a polynomial z 7→ ζN(z , t);

2 Set z = 1 and consider t 7→ ζN(z , 1);

3 Solve for tN = t: ζN(1, t) = 0;

4 Then tN → dim(Λ) as N → +∞.

Question

Is this any better than the previous approach using transfer operators?

Let us illustrate this (again) with dim(E2), the Cantor set of numbers
whose continued fraction expansion only used the digits 1 and 2.
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A zeta function estimate on dim(E2)

Recall that of the best estimate for dimH(E2) was by Falk and Nussbaum
(2016) who showed that

dimH(Λ) = 0.53128050 . . .

Question

What is the corresponding estimate using zeta functions?

Theorem (Jenkinson+P. (2016))

We can estimate
dimH(E2) = 0.531280506277205141624468647368

471785493059109018398779888397
80392752953564383134591810957
01811852398 · · ·

Where the estimate in the theorem is presented to the number of places
they are known to be accurate.
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My co-author

Oliver Jenkinson, Queen Mary - University of London.

(The photograph was taken in Italy, rather than the East End of London.)
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Estimates using zeta functions

Let us write the series expansion

ζ(z , t) = 1 +
∞∑
n=1

an(t)zn = 1 +
N∑

n=1

an(t)zn︸ ︷︷ ︸
=:ζN (z,t)

+
∞∑

n=N+1

an(t)zn︸ ︷︷ ︸
=:εN (z,t)

for some N ≥ 1.

In particular, we take for the approximating polynomial

ζN(z , t) = 1 +
N∑

n=1

an(t)zn

and choose N:

1 sufficiently large that (with z = 1, 0 ≤ t ≤ 1) the error εN is small;
but

2 sufficiently small that the terms an(t), n = 1, 2, · · · ,N can be
calculated in a reasonable time.
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Choosing N

We can choose N as large as our computer (and our own patience)
allows.

N = 25: Takes a week to compute ζ25;

N = 33: Takes a year to compute ζ33;

N = 69: Takes at least “age of the universe” to compute ζ69.

We choose N = 25 (one week being the limit of my patience) then we
need accurate (and small) bounds on ε25 .
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Bounds on the error εN : Pure Mathematics

Step 1: We need to let the operator Lt act on a smaller space
H ⊂ C ([0, 1]) of functions.

Choose z0 ∈ R and r > 0 such that

D = {z ∈ C : |z − z0| < r} ⊃ [0, 1] and T1D,T2D ⊂ D.

T2(D)
T1(D)

0 1
D z0

r

Let f : D → C be holomorphic and ‖f ‖2 = supρ<r

∫ 1

0
|f (z0 + ρe2πit)|2dt.

Then H = {f : ‖f ‖ < +∞} is a Hardy Hilbert space.
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Bounds on εN

Step 2. We define approximation numbers for Lt :

sm = sm(Lt) := sup{‖Lt−K‖ : K : H → H has rank ≤ m−1} (m ≥ 1)

We can then bound the coefficients an (n > N = 25) of 7→ ζ(z , t) by

|an| ≤
∑

m1<···<mn

sm1sm2 · · · smn

Step 3. Finally, using Cauchy-Schwarz inequality we can bound

sm ≤

( ∞∑
k=m−1

‖(qk)‖2
) 1

2

where qk =
(z − z0)k

rk
∈ H.

We can numerically estimate ‖L(qk)‖ for k ≤ 600, say.

We can trivially bound ‖L(qk)‖ for k > 600, say.

Combining these bounds (creatively) gives the results.
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Aside: Good’s formula

We recall another mathematical contribution of I. J. Good (published in
1990) which applies more widely.

“A very rough guide to the maximum length that a paper should have is
given by the formula 109px/2 words where

0 ≤ x ≤ 1 is the importance of the topic, and

a partly-baked idea has a “bakedness” of 0 ≤ p ≤ 1.”

(For calibration we recall that “half-baked idea” (p = 1
2 ) means poorly

developed; foolish; unlikely to work).

Our article is about 20 pages (or perhaps 6,000 words). Thus even if the
idea was fully developed (bakedness p = 1) it would need to have an
importance factor of 0.83 baked to satisfy this formula!
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A final comment on Rufus Bowen

I never had the good fortune to meet Bowen, but like so many people my
work was greatly influenced by his.

I will finish with an eloquent quote from a more senior participant than
myself who collaborated with Rufus Bowen:

“The Greek and Roman gods, supposedly, resented those mortals
endowed with superlative gifts and happiness, and punished them. The
life and achievements of Rufus Bowen (1947-1978) remind us of this
belief of the ancients. When Rufus died unexpectedly, at age thirty-one,
from a brain hemorrhage, he was a very happy and successful man. He
had great charm, that he did not misuse, and superlative mathematical
talent. His mathematical legacy is important, and will not be forgotten,
but one wonders what he would have achieved if he had lived longer.”

- David Ruelle, Preface to the re-edition of “Equilibrium states and the
ergodic theory of Anosov diffeormorphisms”
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Finally

Thank you for your attention.
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