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Introduction I: Motivation

DNA molecules can be packed incredibly
tightly in cell nuclei. For example, human
DNA can be 2 m long but must fit inside a
cell nucleus of diameter 10 µm. Similarly,
bacteriophage DNA is packed into a hard
capsid until it is injected into the host cell.

Head

Collar

Tail

Long Tail 

Fibres
Base Plate

DNA

Protein

2D 3D

Some DNA molecules (like mitochondrial DNA) have a natural ring structure, while
linear DNA can cyclise (the ends stick together) in the nucleus or after being released
from confinement.

The tight packing within a cell or capsid may result in a high level of tangling, with
lots of knots and/or links. Knotting rates of up to 95% have been observed for DNA
released from certain bacteriophages.1

1Arsuaga et al, PNAS 99 (2002), 5373–5377.
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The topology of DNA is important because knots/links have been observed to impede
biological processes like replication.

Moreover, it has also been observed that the knot types of randomly cyclised DNA
from bacteriophages do not appear to be completely randomly distributed.2 In
particular, chiral knots appear more frequently than in random equilateral polygons.

It was suggested that it is the writhe of the DNA within the capsid which induces this
chirality, but the equilateral polygon models used to test this do not incorporate any
excluded volume effects.

Goal: Investigate the thermodynamic and topological properties of a model of tightly
packed polymers which incorporates the excluded volume effect.

2Arsuaga et al, PNAS 102 (2005), 9165–9169.
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Introduction II: Self-avoiding walks & polygons

A self-avoiding walk (SAW) ω on a graph is a sequence (ω0, . . . , ωn) of distinct
vertices with consecutive vertices adjacent on the graph.

When the graph is infinite and has translational symmetry (i.e. a lattice), define SAWs
up to translation.

For a given lattice, cn is the number of SAWs of length n (n edges ⇐⇒ n + 1
vertices).

On Z2, {cn}n≥0 = 1, 4, 12, 36, 100, 284, . . . Known up to n = 79.
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Theorem (Hammersley 1957)

The limit

lim
n→∞

1

n
log cn = κ

exists and is equal to infn≥0
1
n

log cn.

κ is known as the connective constant of the lattice, and µ = eκ is known as the
growth constant.

Corollary

cn = eo(n)µn.
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µ is known exactly only for 2-dimensional honeycomb lattice. For the square Z2 and
cubic Z3 lattices,

µZ2 ≈ 2.63815853031

µZ3 ≈ 4.684039931

Also interested in the geometric properties of SAWs. Various measures of size,
e.g. mean squared end-to-end distance, radius of gyration, etc. are believed to obey a
power law:

〈d2
end-end〉n ∼ const.× n2ν

where ν depends only on dimension. In 2D, expect ν = 3/4, while in 3D
ν ≈ 0.587597.
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Why use SAWs?

3D SAWs do a good job of modelling geometric properties of polymers in a good
solvent (e.g. mean squared end-to-end distance)

SAWs incorporate the excluded volume effect.
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A self-avoiding polygon (SAP) is a simple closed loop on the edges of the lattice:

A SAP of n edges can be associated with a SAW of n − 1 edges by selecting a vertex
and a direction. There are 2n ways to do this.

Let pn be the number of SAPs of length n.

Theorem (Hammersley 1961)

The limit

lim
n→∞

1

n
log pn

exists and is equal to κ, the connective constant of the lattice, where the limit is taken
through even values of n.
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In 3D SAPs can be knotted:

In fact, very long polygons are almost always knotted:

Theorem (Sumners & Whittington 1988)

All except exponentially few sufficiently long SAPs on the cubic lattice are knotted.
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The model: Polygons in lattice tubes

Let TL,M ≡ T be an L×M semi-infinite tube of Z3:

T = {(x , y , z) : x ≥ 0, 0 ≤ y ≤ L, 0 ≤ z ≤ M} .

(Assume L ≥ M.)

Let PT be the set of SAPs confined within T, counted up to translation in the x
direction.

z

x

y

Let pT,n be the number of polygons in PT of length n.
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Theorem (Soteros & Whittington 1989)

The limit

κT = lim
n→∞

1

n
log pT,n

exists.

Note: Unlike in Z2 or Z3, in general SAWs and SAPs in the tube have different growth
rates. We will not consider SAWs in T.
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Compressing/pulling force

To examine polygons which are tightly packed in a small space, we introduce a force.
If π is a polygon in Z3 or T, let s(π) be its span in the x-direction.

To model a force f acting on polygons, we associate a weight of efs(π) with each
polygon. The partition function of polygons of length n in T is then

ZT,n(f ) =
∑
π∈T
|π|=n

efs(π) =
∑
s

pT,n(s)efs

where pT,n(s) is the number of polygons in T of length n and span s.

Theorem (Atapour, Soteros & Whittington 2009)

The free energy

FT(f ) = lim
n→∞

1

n
log ZT,n(f )

exists for all f . It is a continuous, convex function of f , and is almost-everywhere
differentiable.
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Boltzmann distribution

The partition function is the normalising constant for the Boltzmann distribution,
where a polygon π has probability proportional to efs(π).

If f � 0 then polygons with large span (i.e. “stretched”) are favoured, while if f � 0
then polygons with small span (i.e. “compressed”) are favoured.

The expected span of a polygon of length n at a given f (under the Boltzmann
distribution) is

d

df
log ZT,n(f )

so that the expected “span density” (span per unit length) in the limit of long
polygons is

d

df
FT(f ).
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Large forces: f →∞

Interested in the behaviour of the free energy as f → ±∞.

Theorem (NRB, Eng & Soteros 2016)

As f →∞, the free energy FT(f ) is asymptotic to f /2. That is,

lim
f→∞

(FT(f )− f /2) = 0.

Note: This result also holds if polygons in T are replaced by all polygons in Zd .

Lower bound is straightforward: the maximum span for a polygon of length n is
(n − 2)/2, and there is always at least one with this span, so

ZT,n(f ) ≥ ef (n−2)/2 ⇒ FT(f ) ≥ f /2.
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Upper bound (sketch): divide polygons of length n into m pieces of size r = bn/mc
(maybe with leftover piece of length q < r).

If a polygon has span at least t then it has at least 2t edges in the x direction.
Pigeonhole principle ⇒ a minimum number of the m pieces contain only edges in the
x direction. The number of possibilities for the other pieces is bounded above by
counting self-avoiding walks.

Let t = αn. The f →∞ limit of the free energy is connected (in a non-trivial way)
with the limits n→∞, α→ 1/2. As α→ 1/2, the “other” pieces become negligible,
and the only contribution to the upper bound is by polygons with (almost) all x-steps,
whose free energy → f /2.
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Large forces: f → −∞

Things are more complicated here. First, need new definitions.

An s-block of T is the section of any polygon between planes x = k + 1/2 and
x = k + s + 1/2 for some k (with at least one vertex in each plane
x = k + 1, k + 2, . . . , k + s). The length is the total number of occupied vertices.

An s-block is full if it has length Ws, ie. if it occupies every vertex.

Let bT,s be the number of s-blocks in T, and bF
T,s the number of full s-blocks.

Lemma

The following limits exist and are finite:

βT = lim
s→∞

1

s
log bT,s and βF

T = lim
s→∞

1

s
log bF

T,s .
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Theorem (NRB, Eng & Soteros 2016)

The free energy FT(f ) is asymptotic to (f + βF
T)/W as f → −∞, ie.

lim
f→−∞

(FT(f )− f /W ) = βF
T/W .

A lower bound is obtained by showing that any full block can be “completed” into a
polygon (by adding edges on the left and right) without changing the length or span
too much.

The upper bound is similar to the f →∞ case, except instead of dividing the
polygons up into disjoint subwalks, we divide them into disjoint blocks. As f → −∞,
the PHP implies that most must be full.
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Why blocks and not polygons?

The f → −∞ asymptote is written in terms of βF
T, the growth rate for full s-blocks.

Why not a growth rate of “full” polygons?

A polygon in T is Hamiltonian if it has span s and length n = W (s + 1). Equivalently,
it occupies every vertex in a L×M × s box of Z3.

Let pH
T,n be the number of Hamiltonian polygons in T of length n. Note that pH

T,n = 0
if n is not a multiple of W .

Theorem (Eng 2014)

The limit

κH
T = lim

n→∞

1

n
log pH

T,n

(taken through values of n which are multiples of W ) exists and is finite.
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Can split a polygon of span bεnc into a sequence of s-blocks, take ε→ 1/W , and
show that most blocks must be full.

But while every Hamiltonian polygon is comprised of full blocks, many full blocks
cannot form part of a Hamiltonian polygon.

Hamiltonian polygons only exist when n is a multiple of W . For other n, there are
“minimum span” polygons.

But we don’t even know if they have a well-defined growth rate!

Conjecture

The growth rates of Hamiltonian polygons and full s-blocks (counted by length
instead of span) are the same, ie.

κH
T =

βF
T

W
.
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Knots

Theorem (Soteros 1998; Atapour, Soteros & Whittington 2009)

For any L×M tube T with L ≥ 2, M ≥ 1, and for any finite f , the probability of a
random n-step polygon in T (sampled from the Boltzmann distribution) being knotted
approaches 1 as n→∞.

Theorem (Eng 2014)

For any L×M tube T with L ≥ 2, M ≥ 1, the probability of a random n-step
Hamiltonian polygon being knotted approaches 1 as n→∞.

Like the result in Z3, both proofs use a pattern theorem: there are patterns which
guarantee knotting, and which are found in all but exponentially few long polygons.
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Transfer matrices

Define a transfer matrix MT for 1-blocks: MT(i , j) = 1 iff 1-block j can follow 1-block
i in a polygon.

Let ST be the vector with ST(i) = 1 iff i is a 1-block which can start a polygon, and
likewise ET is the vector for 1-blocks which can end polygons. Then

pT,W (s+1) = ST · (MT)s−1 · ET.

Can do likewise for Hamiltonian polygons.

But the transfer matrices cannot be used to characterise all knotted or unknotted
polygons.
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Random sampling via the transfer matrix

The transfer matrices can be used to generate random polygons of a given span, built
up one 1-block at a time. Idea (adapted from [Alm & Janson 1990]):

Choose a starting block b0 uniformly at random, from Nstart available choices.

Choose the next block b1 uniformly at random from the N(b0) which can follow
b0.

If λT is the dominant eigenvalue of MT with corresponding eigenvector ξT, then
for each of b2, b3, . . . , bs−1, choose bi to follow bi−1 with probability

1

λT
×

ξT(bi )

ξT(bi−1)
.

Choose an end block bs uniformly at random from all Nend(bs−1) end blocks
which can follow bs−1.

Most of the ξT factors cancel, so we choose polygon (b0, b1, . . . , bs) with probability

ξT(bs−1)

(λT)s−2NstartN(b0)ξT(b1)Nend(bs−1)
.

To accommodate this, we re-weight each sample by a factor of

N(b0)ξF
T(b1)Nend(bs−1)

ξF
T(bs−1)

.
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(Some) results

Probability of unknot (01) for Hamiltonian polygons in 3× 1 tube (horizontal axis is
span):

By taking the log, we see that

P(01) ∼ exp(−7.14× 10−4s) = exp(−8.93× 10−5n)

In Z3, it has been estimated P(01) ∼ exp(−4.15× 10−6n).
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Probability of unknot (01) for all polygons in 3× 1 tube:

By taking the log, we see that

P(01) ∼ exp(−1.40× 10−4s)
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Probability of trefoil (3±1 ) for Hamiltonian polygons in 3× 1 tube:

By taking P(3±1 )/P(01), we see that

P(3±1 ) ∼ 6.98× 10−4sP(01) ∼ 8.73× 10−5n exp(−4.15× 10−6n).
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This relationship seems to hold for any prime knot type (with different constants).

Further analysis (in progress) appears to confirm the expectation that if knot type K
is the connected sum of k prime knots, then

P(K) ∼ const.× nkP(01).

Similar results also hold for non-Hamiltonian polygons in T. However, the transfer
matrix is much bigger, so it is harder to get good estimates from the data.
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Ongoing work

Determine how knotting probability behaves for larger tube sizes

The “knotted part” of a polygon in T tends to be very small – look at the
distribution of its location/size

Include the force f in the simulations, and examine how knotting probability
etc. changes with force

Examine writhe, twisting, etc. and how they affect knotting

In cases where the transfer matrix is too big to be used, develop new method
(Markov chain?) for sampling Hamiltonian polygons
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arXiv:1604.07465 – NRB, Jeremy Eng and Chris Soteros, Polygons in restricted
geometries subjected to infinite forces. To appear in Journal of Physics A:
Mathematical and Theoretical.

More work in preparation.

Thank you!
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