STATE OF CHARGE ESTIMATION IN LI-ION BATTERIES

Bhushan Gopaluni

Department of Chemical & Biological Engineering University of British Columbia, Vancouver, Canada

Presented at PIMS Workshop on Mathematical Sciences and Clean Energy Applications University of British Columbia May 23, 2019

Why Batteries?

• Portable

- No moving parts
- High power
- Environmentally friendly
 - no exhaust
 - quiet
 - no vibration
- High efficiency of the order of 90% are more
- Low operating cost & minimal maintenance

Why Batteries?

- Portable
- No moving parts
- High power
- Environmentally friendly
 - no exhaust
 - quiet
 - no vibration
- High efficiency of the order of 90% are more
- Low operating cost & minimal maintenance

Why Batteries?

- Portable
- No moving parts
- High power
- Environmentally friendly
 - no exhaust
 - quiet
 - no vibration
- High efficiency of the order of 90% are more
- Low operating cost & minimal maintenance

Why Batteries?

- Portable
- No moving parts
- High power
- Environmentally friendly
 - no exhaust
 - quiet
 - no vibration
- High efficiency of the order of 90% are more
- Low operating cost & minimal maintenance

2/24

(日) (四) (王) (王) (王)

Why Batteries?

- Portable
- No moving parts
- High power
- Environmentally friendly
 - no exhaust
 - quiet
 - no vibration
- High efficiency of the order of 90% are more
- Low operating cost & minimal maintenance

Why Batteries?

- Portable
- No moving parts
- High power
- Environmentally friendly
 - no exhaust
 - quiet
 - no vibration
- High efficiency of the order of 90% are more
- Low operating cost & minimal maintenance

Why Li-ion Batteries?

• High energy density

- Can provide high current
 - useful in high power tools
 - race cars
- Low maintenance
 - Minimal memory effect
 - Minimal self-discharge
- Environmentally friendly
 - no poisonous metals
 - little harm when disposed
- Aging
- Temperature has to be controlled
- Expensive to manufacture

イロン イヨン イヨン イヨン

- High energy density
- Can provide high current
 - useful in high power tools
 - race cars
- Low maintenance
 - Minimal memory effect
 - Minimal self-discharge
- Environmentally friendly
 - no poisonous metals
 - little harm when disposed
- Aging
- Temperature has to be controlled
- Expensive to manufacture

- High energy density
- Can provide high current
 - useful in high power tools
 - race cars
- Low maintenance
 - Minimal memory effect
 - Minimal self-discharge
- Environmentally friendly
 - no poisonous metals
 - little harm when disposed
- Aging
- Temperature has to be controlled
- Expensive to manufacture

- High energy density
- Can provide high current
 - useful in high power tools
 - race cars
- Low maintenance
 - Minimal memory effect
 - Minimal self-discharge
- Environmentally friendly
 - no poisonous metals
 - little harm when disposed
- Aging
- Temperature has to be controlled
- Expensive to manufacture

Why Li-ion Batteries?

- High energy density
- Can provide high current
 - useful in high power tools
 - race cars
- Low maintenance
 - Minimal memory effect
 - Minimal self-discharge
- Environmentally friendly
 - no poisonous metals
 - little harm when disposed
- Aging
- Temperature has to be controlled
- Expensive to manufacture

(日) (四) (王) (王) (王)

- High energy density
- Can provide high current
 - useful in high power tools
 - race cars
- Low maintenance
 - Minimal memory effect
 - Minimal self-discharge
- Environmentally friendly
 - no poisonous metals
 - little harm when disposed
- Aging
- Temperature has to be controlled
- Expensive to manufacture

- High energy density
- Can provide high current
 - useful in high power tools
 - race cars
- Low maintenance
 - Minimal memory effect
 - Minimal self-discharge
- Environmentally friendly
 - no poisonous metals
 - little harm when disposed
- Aging
- Temperature has to be controlled
- Expensive to manufacture

Li-ion Batteries: Challenges

• Predict battery life under diverse operating conditions High C rate Low C Rate

Cold weather

Hot weather

イロト イロト イヨト イヨト 三日

Li-ion Batteries: Challenges

• Predict battery life under diverse operating conditions

New York Times Tesla S model test drive "Stalled Out on Tesla's Electric Highway", NYT Feb 8, 2013

Quote by New York Times Reporter John Broder

As I crossed into New Jersey some 15 miles later, I noticed that the estimated range was falling faster than miles were accumulating. At 68 miles since recharging, the range had dropped by 85 miles, and a little mental math told me that reaching Milford would be a stretch.

Li-ion Batteries: Challenges

• Predict battery life under diverse operating conditions

New York Times Tesla S model test drive "Stalled Out on Tesla's Electric Highway", NYT Feb 8, 2013

Quote by New York Times Reporter John Broder

I discovered on a recent test drive of the company's high-performance Model S sedan, theory can be trumped by reality, especially when Northeast temperatures plunge.

Li-ion Batteries: Challenges

- Ensure safe operation
 - Danger of explosion at high C rates or at high temperatures

Boeing dreamliner

• Fast charging

5 / 24

< ∃⇒

Battery Management System

(Source: Chaturvedi et al, IEEE CSM, June 2010)

• Good mathematical models needed to meet these challenges

- Physical models are complex
- Limited data

Li-on Battery Models

• Electrical Circuit Models

- Single Particle Model
- Porous Electrode Pseudo Two Dimensional Model (P2D)
- 3D Thermal Model
- P2D Stress-Strain Model
- Population Balance Model
- Molecular Dynamics

- Electrical Circuit Models
- Single Particle Model
- Porous Electrode Pseudo Two Dimensional Model (P2D)
- 3D Thermal Model
- P2D Stress-Strain Model
- Population Balance Model
- Molecular Dynamics

(Source: Chaturvedi et al, IEEE CSM, June 2010)

- Electrical Circuit Models
- Single Particle Model
- Porous Electrode Pseudo Two Dimensional Model (P2D)
- 3D Thermal Model
- P2D Stress-Strain Model
- Population Balance Model
- Molecular Dynamics

(Source: Chaturvedi et al, IEEE CSM, June 2010)

- Electrical Circuit Models
- Single Particle Model
- Porous Electrode Pseudo Two Dimensional Model (P2D)
- 3D Thermal Model
- P2D Stress-Strain Model
- Population Balance Model
- Molecular Dynamics

- Electrical Circuit Models
- Single Particle Model
- Porous Electrode Pseudo Two Dimensional Model (P2D)
- 3D Thermal Model
- P2D Stress-Strain Model
- Population Balance Model
- Molecular Dynamics

- Electrical Circuit Models
- Single Particle Model
- Porous Electrode Pseudo Two Dimensional Model (P2D)
- 3D Thermal Model
- P2D Stress-Strain Model
- Population Balance Model
- Molecular Dynamics

- Electrical Circuit Models
- Single Particle Model
- Porous Electrode Pseudo Two Dimensional Model (P2D)
- 3D Thermal Model
- P2D Stress-Strain Model
- Population Balance Model
- Molecular Dynamics

Li-on Battery Models

- Electrical Circuit Models
- Single Particle Model
- Porous Electrode Pseudo Two Dimensional Model (P2D)
- 3D Thermal Model
- P2D Stress-Strain Model
- Population Balance Model
- Molecular Dynamics

- Electrical Circuit Models
- Single Particle Model
- Porous Electrode Pseudo Two Dimensional Model (P2D)
- 3D Thermal Model
- P2D Stress-Strain Model
- Population Balance Model
- Molecular Dynamics

Pseudo 2D Model

Mass Conservation

$$\begin{array}{l} (\mathrm{M1}) \ \epsilon_i \frac{\partial c_e}{\partial t} = \frac{\partial}{\partial x} \left(D_i \frac{\partial c_e}{\partial x} \right) + a_i (1 - t_+) j_i \\ (\mathrm{M2}) \ \frac{\partial \bar{c}_s}{\partial t} = -3 \frac{j_i}{R_i} \\ (\mathrm{M3}) \ c_s^* - \bar{c}_s = -\frac{R_i}{D_s} \frac{j_i}{5} \end{array}$$

Charge Conservation

$$\begin{array}{l} ({\rm C1}) \ i_e = -\kappa_i \frac{\partial \Phi_e}{\partial x} + \frac{2\kappa_i RT}{F} (1 - t_+) \frac{\partial \ln c_e}{\partial x} \\ ({\rm C2}) \ \frac{\partial i_e}{\partial x} = a_i F j_i \\ ({\rm C3}) \ \frac{\partial \Phi_s}{\partial x} = \frac{i_e - I}{\sigma_i} \end{array}$$

(Source: Chaturvedi et al, IEEE CSM, June 2010)

イロト イロト イヨト イヨト 三日

Pseudo 2D Model

Mass Conservation

$$(M1) \ \epsilon_i \frac{\partial c_e}{\partial t} = \frac{\partial}{\partial x} \left(D_i \frac{\partial c_e}{\partial x} \right) + a_i (1 - t_+) j_i$$

$$(M2) \ \frac{\partial \bar{c}_s}{\partial t} = -3 \frac{j_i}{R_i}$$

$$(M3) \ c_s^* - \bar{c}_s = -\frac{R_i}{D_s} \frac{j_i}{5}$$

Charge Conservation

$$\begin{array}{l} (\mathrm{C1}) \ i_e = -\kappa_i \frac{\partial \Phi_e}{\partial x} + \frac{2\kappa_i RT}{F} (1 - t_+) \frac{\partial \ln c_e}{\partial x} \\ (\mathrm{C2}) \ \frac{\partial i_e}{\partial x} = a_i F j_i \\ (\mathrm{C3}) \ \frac{\partial \Phi_s}{\partial x} = \frac{i_e - I}{\sigma_i} \end{array}$$

(Source: Chaturvedi et al, IEEE CSM, June 2010)

Pseudo 2D Model

Mass Conservation

$$(M1) \ \epsilon_i \frac{\partial c_e}{\partial t} = \frac{\partial}{\partial x} \left(D_i \frac{\partial c_e}{\partial x} \right) + a_i (1 - t_+) j_i$$

$$(M2) \ \frac{\partial \bar{c}_s}{\partial t} = -3 \frac{j_i}{R_i}$$

$$(M3) \ c_s^* - \bar{c}_s = -\frac{R_i}{D_s} \frac{j_i}{5}$$

Charge Conservation

$$\begin{array}{l} (\mathrm{C1}) \ i_e = -\kappa_i \frac{\partial \Phi_e}{\partial x} + \frac{2\kappa_i RT}{F} (1 - t_+) \frac{\partial \ln c_e}{\partial x} \\ (\mathrm{C2}) \ \frac{\partial i_e}{\partial x} = a_i F j_i \\ (\mathrm{C3}) \ \frac{\partial \Phi_s}{\partial x} = \frac{i_e - I}{\sigma_i} \end{array}$$

(Source: Chaturvedi et al, IEEE CSM, June 2010)

Pseudo 2D Model

Mass Conservation

$$(M1) \ \epsilon_i \frac{\partial c_e}{\partial t} = \frac{\partial}{\partial x} \left(D_i \frac{\partial c_e}{\partial x} \right) + a_i (1 - t_+) j_i$$

$$(M2) \ \frac{\partial \overline{c}_s}{\partial t} = -3 \frac{j_i}{R_i}$$

$$(M3) \ c_s^* - \overline{c}_s = -\frac{R_i}{D_s} \frac{j_i}{5}$$

Charge Conservation

$$\begin{array}{l} (\mathrm{C1}) \ i_e = -\kappa_i \frac{\partial \Phi_e}{\partial x} + \frac{2\kappa_i RT}{F} (1 - t_+) \frac{\partial \ln c_e}{\partial x} \\ (\mathrm{C2}) \ \frac{\partial i_e}{\partial x} = a_i F j_i \\ (\mathrm{C3}) \ \frac{\partial \Phi_s}{\partial x} = \frac{i_e - I}{\sigma_i} \end{array}$$

(Source: Chaturvedi et al, IEEE CSM, June 2010)

Pseudo 2D Model

Mass Conservation

$$(M1) \ \epsilon_i \frac{\partial c_e}{\partial t} = \frac{\partial}{\partial x} \left(D_i \frac{\partial c_e}{\partial x} \right) + a_i (1 - t_+) j$$

$$(M2) \ \frac{\partial \bar{c}_s}{\partial t} = -3 \frac{j_i}{R_i}$$

$$(M3) \ c_s^* - \bar{c}_s = -\frac{R_i}{D_s} \frac{j_i}{5}$$

Charge Conservation

$$\begin{array}{l} (\mathrm{C1}) \ i_e = -\kappa_i \frac{\partial \Phi_e}{\partial x} + \frac{2\kappa_i RT}{F} (1 - t_+) \frac{\partial \ln c_e}{\partial x} \\ (\mathrm{C2}) \ \frac{\partial i_e}{\partial x} = a_i F j_i \\ (\mathrm{C3}) \ \frac{\partial \Phi_s}{\partial x} = \frac{i_e - I}{\sigma_i} \end{array}$$

(Source: Chaturvedi et al, IEEE CSM, June 2010)

Pseudo 2D Model

Mass Conservation

$$(M1) \ \epsilon_i \frac{\partial c_e}{\partial t} = \frac{\partial}{\partial x} \left(D_i \frac{\partial c_e}{\partial x} \right) + a_i (1 - t_+) j$$

$$(M2) \ \frac{\partial \bar{c}_s}{\partial t} = -3 \frac{j_i}{R_i}$$

$$(M3) \ c_s^* - \bar{c}_s = -\frac{R_i}{D_s} \frac{j_i}{5}$$

Charge Conservation

$$\begin{array}{l} (\text{C1}) \ i_e = -\kappa_i \frac{\partial \Phi_e}{\partial x} + \frac{2\kappa_i RT}{F} (1 - t_+) \frac{\partial \ln c_e}{\partial x} \\ (\text{C2}) \ \frac{\partial i_e}{\partial x} = a_i F j_i \\ (\text{C3}) \ \frac{\partial \Phi_s}{\partial x} = \frac{i_e - I}{\sigma_i} \end{array}$$

(Source: Chaturvedi et al, IEEE CSM, June 2010)

4 ロ ト 4 回 ト 4 臣 ト 4 臣 ト 臣 の Q (や 8 / 24

Pseudo 2D Model

Mass Conservation

$$(M1) \ \epsilon_i \frac{\partial c_e}{\partial t} = \frac{\partial}{\partial x} \left(D_i \frac{\partial c_e}{\partial x} \right) + a_i (1 - t_+) j$$

$$(M2) \ \frac{\partial \bar{c}_s}{\partial t} = -3 \frac{j_i}{R_i}$$

$$(M3) \ c_s^* - \bar{c}_s = -\frac{R_i}{D_s} \frac{j_i}{5}$$

Charge Conservation

$$\begin{array}{l} (\text{C1}) \ i_e = -\kappa_i \frac{\partial \Phi_e}{\partial x} + \frac{2\kappa_i RT}{F} (1 - t_+) \frac{\partial \ln c_e}{\partial x} \\ (\text{C2}) \ \frac{\partial i_e}{\partial x} = a_i F j_i \\ (\text{C3}) \ \frac{\partial \Phi_s}{\partial x} = \frac{i_e - I}{\sigma_i} \end{array}$$

(Source: Chaturvedi et al, IEEE CSM, June 2010)

イロト イロト イヨト イヨト 三日

Pseudo 2D Model

Mass Conservation

$$(M1) \ \epsilon_i \frac{\partial c_e}{\partial t} = \frac{\partial}{\partial x} \left(D_i \frac{\partial c_e}{\partial x} \right) + a_i (1 - t_+) j$$

$$(M2) \ \frac{\partial \bar{c}_s}{\partial t} = -3 \frac{j_i}{R_i}$$

$$(M3) \ c_s^* - \bar{c}_s = -\frac{R_i}{D_s} \frac{j_i}{5}$$

Charge Conservation

$$\begin{array}{l} (\text{C1}) \ i_e = -\kappa_i \frac{\partial \Phi_e}{\partial x} + \frac{2\kappa_i RT}{F} (1 - t_+) \frac{\partial \ln c_e}{\partial x} \\ (\text{C2}) \ \frac{\partial i_e}{\partial x} = a_i F j_i \\ (\text{C3}) \ \frac{\partial \Phi_s}{\partial x} = \frac{i_e - I}{\sigma_i} \end{array}$$

(Source: Chaturvedi et al, IEEE CSM, June 2010)

イロト イロト イヨト イヨト 三日

Pseudo 2D Model

	Boundary Conditions		
Mass Conservation	$\mathbf{x} = \operatorname{col.}$	$\mathbf{x} = \operatorname{sep./elec.}$	
(M1) $\epsilon_i \frac{\partial c_e}{\partial t} = \frac{\partial}{\partial x} \left(D_i \frac{\partial c_e}{\partial x} \right) + a_i (1 - t_+) j_i$	$\Rightarrow \frac{\partial c_e}{\partial x} = 0$	$-D_p \frac{\partial c_e}{\partial x} = -D_s \frac{\partial c_e}{\partial x}$	
(M2) $\frac{\partial \bar{c}_s}{\partial t} = -3 \frac{j_i}{R_i}$	_	-	
(M3) $c_s^* - \bar{c}_s = -\frac{R_i}{D_s} \frac{j_i}{5}$	-	_	
	Boundary Conditions		
Charge Conservation	$\mathbf{x} = \operatorname{col.}$	$\mathbf{x} = \text{sep./elec.}$	
(C1) $i_e = -\kappa_i \frac{\partial \Phi_e}{\partial x} + \frac{2\kappa_i RT}{F} (1 - t_+) \frac{\partial \ln c_e}{\partial x}$	$\Rightarrow \frac{\partial \Phi_e}{\partial x} = 0$	$\left -\kappa_p \frac{\partial \Phi_e}{\partial x} = -\kappa_s \frac{\partial \Phi_e}{\partial x} \right $	
(C2) $\frac{\partial i_e}{\partial x} = a_i F j_i$	$\Rightarrow i_e = 0$	$i_e = I$	
(C3) $\frac{\partial \Phi_s}{\partial x} = \frac{i_e - I}{\sigma_i}$	-	-	

Thermal Model

Energy Conservation: BCs -
$$\mathbf{x} = \operatorname{col.} \mathbf{x} = \operatorname{sep./elec.}$$

 $\rho_i C_{p,i} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda_i \frac{\partial T}{\partial x} \right) + Q_i \qquad \frac{\partial T}{\partial x} = 0 \qquad -\lambda_{cc} \frac{\partial T}{\partial x} = -\lambda_p \frac{\partial T}{\partial x}$

Butler-Volmer Equation

$$j_i = 2k_i \left[c_e c_s^* (c_i^{max} - c_s^*) \right]^{0.5} \sinh\left(\frac{0.5}{F} RT (\Phi_s - \Phi_e - U_i)\right)$$

- Including the electrodes, separator and collectors there are 19 PDEs.
- PDEs are highly coupled.
- Diffusion, reaction coefficients and other parameters are temperature dependent.
- The PDEs are stiff.

Thermal Model

Energy Conservation: BCs -
$$\mathbf{x} = \operatorname{col.} \mathbf{x} = \operatorname{sep./elec.}$$

 $\rho_i C_{p,i} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda_i \frac{\partial T}{\partial x} \right) + Q_i \qquad \frac{\partial T}{\partial x} = 0 \qquad -\lambda_{cc} \frac{\partial T}{\partial x} = -\lambda_p \frac{\partial T}{\partial x}$

Butler-Volmer Equation

$$j_i = 2k_i \left[c_e c_s^* (c_i^{max} - c_s^*) \right]^{0.5} \sinh\left(\frac{0.5}{F} RT (\Phi_s - \Phi_e - U_i)\right)$$

- Including the electrodes, separator and collectors there are 19 PDEs.
- PDEs are highly coupled.
- Diffusion, reaction coefficients and other parameters are temperature dependent.
- The PDEs are stiff.

Thermal Model

Energy Conservation: BCs -
$$\mathbf{x} = \operatorname{col.} \mathbf{x} = \operatorname{sep./elec.}$$

 $\rho_i C_{p,i} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda_i \frac{\partial T}{\partial x} \right) + Q_i \qquad \frac{\partial T}{\partial x} = 0 \qquad -\lambda_{cc} \frac{\partial T}{\partial x} = -\lambda_p \frac{\partial T}{\partial x}$

Butler-Volmer Equation

$$j_i = 2k_i \left[c_e c_s^* (c_i^{max} - c_s^*) \right]^{0.5} \sinh\left(\frac{0.5}{F} RT (\Phi_s - \Phi_e - U_i)\right)$$

- Including the electrodes, separator and collectors there are 19 PDEs.
- PDEs are highly coupled.
- Diffusion, reaction coefficients and other parameters are temperature dependent.
- The PDEs are stiff.

Thermal Model

Energy Conservation: BCs -
$$\mathbf{x} = \operatorname{col.} \mathbf{x} = \operatorname{sep./elec.}$$

 $\rho_i C_{p,i} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda_i \frac{\partial T}{\partial x} \right) + Q_i \qquad \frac{\partial T}{\partial x} = 0 \qquad -\lambda_{cc} \frac{\partial T}{\partial x} = -\lambda_p \frac{\partial T}{\partial x}$

Butler-Volmer Equation

$$j_i = 2k_i \left[c_e c_s^* (c_i^{max} - c_s^*) \right]^{0.5} \sinh\left(\frac{0.5}{F} RT (\Phi_s - \Phi_e - U_i)\right)$$

- Including the electrodes, separator and collectors there are 19 PDEs.
- PDEs are highly coupled.
- Diffusion, reaction coefficients and other parameters are temperature dependent.
- The PDEs are stiff.

Thermal Model

Energy Conservation: BCs -
$$\mathbf{x} = \operatorname{col.} \mathbf{x} = \operatorname{sep./elec.}$$

 $\rho_i C_{p,i} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda_i \frac{\partial T}{\partial x} \right) + Q_i \qquad \frac{\partial T}{\partial x} = 0 \qquad -\lambda_{cc} \frac{\partial T}{\partial x} = -\lambda_p \frac{\partial T}{\partial x}$

Butler-Volmer Equation

$$j_i = 2k_i \left[c_e c_s^* (c_i^{max} - c_s^*) \right]^{0.5} \sinh\left(\frac{0.5}{F} RT (\Phi_s - \Phi_e - U_i)\right)$$

- Including the electrodes, separator and collectors there are 19 PDEs.
- PDEs are highly coupled.
- Diffusion, reaction coefficients and other parameters are temperature dependent.
- The PDEs are stiff.

Thermal Model

Energy Conservation: BCs -
$$\mathbf{x} = \operatorname{col.} \mathbf{x} = \operatorname{sep./elec.}$$

 $\rho_i C_{p,i} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda_i \frac{\partial T}{\partial x} \right) + Q_i \qquad \frac{\partial T}{\partial x} = 0 \qquad -\lambda_{cc} \frac{\partial T}{\partial x} = -\lambda_p \frac{\partial T}{\partial x}$

Butler-Volmer Equation

$$j_i = 2k_i \left[c_e c_s^* (c_i^{max} - c_s^*) \right]^{0.5} \sinh\left(\frac{0.5}{F} RT (\Phi_s - \Phi_e - U_i)\right)$$

- Some PDEs don't have explicit boundary conditions.
- Model initialization is difficult.
- Stable in a narrow operating region.
- The model has to be solved within a few seconds for real time implementation.

An iterative fast solution

Observations

- Model is linear if flux j_i is known Guess it!
- The PDE for current in the electrolyte has two boundary conditions

$$\frac{\partial i_e}{\partial x} = a_i F j_i$$

Guess the initial value and iterate using a shooting method.

• The PDE for solid potential has no boundary conditions

$$\frac{\partial \Phi_s}{\partial x} = \frac{i_e - I}{\sigma_i}$$

(日) (四) (王) (王) (王) (王)

Guess a boundary condition.

An iterative fast solution

The Algorithm

Advantages

- The system is expressed as a "standard" state-space model.
- Simulating a discharge cycle of 1 hr takes about $2\sim15$ sec.

$$\begin{aligned} \mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}} &= \begin{bmatrix} \mathbf{A}_{\mathbf{c}}(\boldsymbol{\theta}) & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \mathbf{x}_{\mathbf{m}-1}^{\boldsymbol{\ell}} + \begin{bmatrix} \mathbf{B}_{\mathbf{c}}(\boldsymbol{\theta}) \\ \bar{\mathbf{B}}(\boldsymbol{\theta}) \end{bmatrix} \otimes \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{1}} &= \mathbf{A}_{\Phi}(\boldsymbol{\theta})\mathbf{x}_{\mathbf{m}}^{\mathbf{n}} + \mathbf{B}_{\Phi}u_{m}, \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{2}} &= \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}} + \mathbf{B}^{*}(\boldsymbol{\theta})\mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}} &= \mathcal{F}_{\Phi}(\mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, \boldsymbol{\theta}), \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{n}} &= \mathcal{F}_{f}(\mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{2}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}}, \boldsymbol{\theta}) \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{T}} &= \mathbf{A}_{\mathbf{T}}(\boldsymbol{\theta})\mathbf{x}_{\mathbf{m}-1}^{\mathbf{T}} + \mathcal{F}_{T}(\mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{1}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{2}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, \boldsymbol{\theta}), \\ v(m) &= \Phi_{p}(m, 0) - \Phi_{p}(m, N_{n}). \end{aligned}$$

Advantages

- The system is expressed as a "standard" state-space model.
- Simulating a discharge cycle of 1 hr takes about $2\sim15$ sec.

$$\begin{split} \mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}} &= \begin{bmatrix} \mathbf{A}_{\mathbf{c}}(\boldsymbol{\theta}) & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \mathbf{x}_{\mathbf{m}-1}^{\boldsymbol{\ell}} + \begin{bmatrix} \mathbf{B}_{\mathbf{c}}(\boldsymbol{\theta}) \\ \bar{\mathbf{B}}(\boldsymbol{\theta}) \end{bmatrix} \otimes \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, & \text{Linear States} \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{1}} &= \mathbf{A}_{\Phi}(\boldsymbol{\theta}) \mathbf{x}_{\mathbf{m}}^{\mathbf{n}} + \mathbf{B}_{\Phi} u_{m}, \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{2}} &= \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}} + \mathbf{B}^{*}(\boldsymbol{\theta}) \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}} &= \mathcal{F}_{\Phi}(\mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, \boldsymbol{\theta}), \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{n}} &= \mathcal{F}_{f}(\mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{2}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}}, \boldsymbol{\theta}) \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{n}} &= \mathbf{A}_{\mathbf{T}}(\boldsymbol{\theta}) \mathbf{x}_{\mathbf{m}-1}^{\mathbf{T}} + \mathcal{F}_{T}(\mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{1}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{2}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}}, \mathbf{h}), \\ v(m) &= \Phi_{p}(m, 0) - \Phi_{p}(m, N_{n}). \end{split}$$

Advantages

- The system is expressed as a "standard" state-space model.
- Simulating a discharge cycle of 1 hr takes about $2\sim 15$ sec.

$$\begin{split} \mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}} &= \begin{bmatrix} \mathbf{A}_{\mathbf{c}}(\theta) & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \mathbf{x}_{\mathbf{m}-1}^{\boldsymbol{\ell}} + \begin{bmatrix} \mathbf{B}_{\mathbf{c}}(\theta) \\ \bar{\mathbf{B}}(\theta) \end{bmatrix} \otimes \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, & \text{Linear States} \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{1}} &= \mathbf{A}_{\Phi}(\theta) \mathbf{x}_{\mathbf{m}}^{\mathbf{n}} + \mathbf{B}_{\Phi} u_{m}, & \text{Linear Alg. States} \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{2}} &= \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}} + \mathbf{B}^{*}(\theta) \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, & \text{Linear Alg. States} \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}} &= \mathcal{F}_{\Phi}(\mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, \theta), & \text{Nonlinear Alg. States} \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{n}} &= \mathcal{F}_{j}(\mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{2}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}}, \theta) \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{T}} &= \mathbf{A}_{\mathbf{T}}(\theta) \mathbf{x}_{\mathbf{m}-1}^{\mathbf{T}} + \mathcal{F}_{T}(\mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{1}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{2}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}}, \mathbf{m}, \theta), \\ v(m) &= \Phi_{p}(m, 0) - \Phi_{p}(m, N_{n}). \end{split}$$

Advantages

- The system is expressed as a "standard" state-space model.
- Simulating a discharge cycle of 1 hr takes about $2\sim15$ sec.

$$\begin{aligned} \mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}} &= \begin{bmatrix} \mathbf{A}_{\mathbf{c}}(\theta) & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \mathbf{x}_{\mathbf{m}-1}^{\boldsymbol{\ell}} + \begin{bmatrix} \mathbf{B}_{\mathbf{c}}(\theta) \\ \bar{\mathbf{B}}(\theta) \end{bmatrix} \otimes \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, & \text{Linear States} \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{1}} &= \mathbf{A}_{\Phi}(\theta) \mathbf{x}_{\mathbf{m}}^{\mathbf{n}} + \mathbf{B}_{\Phi} u_{m}, & \text{Linear Alg. States} \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{2}} &= \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}} + \mathbf{B}^{*}(\theta) \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, & \text{Linear Alg. States} \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}} &= \mathcal{F}_{\Phi}(\mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, \theta), & \text{Nonlinear Alg. States} \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{n}} &= \mathcal{F}_{j}(\mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{1}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{2}_{2}_{3}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}_{3}}, \theta) & \text{Nonlinear Alg. States} \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{m}} &= \mathbf{A}_{\mathbf{T}}(\theta) \mathbf{x}_{\mathbf{m}-1}^{\mathbf{T}} + \mathcal{F}_{T}(\mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{1}_{3}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{2}_{3}_{3}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{m}_{3}_{3}}, \mathbf{n}, \theta), & \text{Nonlinear States} \\ v(m) &= \Phi_{p}(m, 0) - \Phi_{p}(m, N_{n}). & 11/2 \end{aligned}$$

Advantages

- The system is expressed as a "standard" state-space model.
- Simulating a discharge cycle of 1 hr takes about $2\sim15$ sec.

$$\begin{aligned} \mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}} &= \begin{bmatrix} \mathbf{A}_{\mathbf{c}}(\theta) & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \mathbf{x}_{\mathbf{m}-1}^{\boldsymbol{\ell}} + \begin{bmatrix} \mathbf{B}_{\mathbf{c}}(\theta) \\ \bar{\mathbf{B}}(\theta) \end{bmatrix} \otimes \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, & \text{Linear States} \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{1}} &= \mathbf{A}_{\Phi}(\theta) \mathbf{x}_{\mathbf{m}}^{\mathbf{n}} + \mathbf{B}_{\Phi} u_{m}, & \text{Linear Alg. States} \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{2}} &= \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}} + \mathbf{B}^{*}(\theta) \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, & \text{Linear Alg. States} \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}} &= \mathcal{F}_{\Phi}(\mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, \theta), & \text{Nonlinear Alg. States} \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{n}} &= \mathcal{F}_{j}(\mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{2}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}}, \theta) & \text{Nonlinear Alg. States} \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{m}} &= \mathcal{F}_{j}(\mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{2}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{2}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, \theta), & \text{Nonlinear Alg. States} \\ \mathbf{x}_{\mathbf{m}}^{\mathbf{T}} &= \mathbf{A}_{\mathbf{T}}(\theta) \mathbf{x}_{\mathbf{m}-1}^{\mathbf{T}} + \mathcal{F}_{T}(\mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{1}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{2}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{3}}, \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}, \theta), & \text{Nonlinear States} \\ v(m) &= \Phi_{p}(m, 0) - \Phi_{p}(m, N_{n}). & \text{Measurements} \\ & 11/2^{2} \end{aligned}$$

Uncertainty Characterization

Types of Uncertainty

• Parametric uncertainty

$$p_{\boldsymbol{\theta}}(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta}; \boldsymbol{\theta}, \boldsymbol{\Sigma}_{\boldsymbol{\theta}})$$

• Structural uncertainty

$$\begin{split} \mathbf{X}_{\mathbf{m}}^{\boldsymbol{\ell}} | \mathbf{x}_{\mathbf{m}}^{\boldsymbol{\ell}}(\boldsymbol{\theta}) &\sim \mathcal{N}(\mathbf{0}, \Sigma_{\ell}) \\ \mathbf{X}_{\mathbf{m}}^{\mathbf{a}_{i}} | \mathbf{x}_{\mathbf{m}}^{\mathbf{a}_{i}}(\boldsymbol{\theta}) &\sim \mathcal{N}(\mathbf{0}, \Sigma_{i}) \quad \text{for } i = 1 \text{ to } 3 \\ \mathbf{X}_{\mathbf{m}}^{\mathbf{n}} | \mathbf{x}_{\mathbf{m}}^{\mathbf{n}}(\boldsymbol{\theta}) &\sim \mathcal{N}(\mathbf{0}, \Sigma_{n}), \\ \mathbf{X}_{\mathbf{m}}^{\mathbf{T}} | \mathbf{x}_{\mathbf{m}}^{\mathbf{T}}(\boldsymbol{\theta}) &\sim \mathcal{N}(\mathbf{0}, \Sigma_{T}), \\ V_{m} | v_{m-1} &\sim \mathcal{N}(\mathbf{0}, \Sigma_{v}) \end{split}$$

• Not necessary to assume Gaussian uncertainty - any probabilistic uncertainty fine.

Important Properties of Li-ion Battery

State of Charge (SOC)

A quantitative measure of expendable charge remaining in the battery.

$$\begin{split} \mathcal{S}(t) &= \frac{1}{l_p} \int_0^{l_p} \frac{\bar{c}_s(x,t)}{c_{max}} dx \\ \mathbb{E}\left[\mathcal{S}(m)\right] &\approx \frac{\Delta x}{l_p c_{max}} \sum_{n=1}^{N_p} \int \bar{c}_s(m,n) p_{\bar{c}_s}(\bar{c}_s(m,n)|v_{1:m}) dc_s. \end{split}$$

State of Health (SOH)

A quantitative measure of the battery's ability to store and release energy at high efficiency. No unique measure.

Challenge

How do we estimate State of Charge in presence of uncertainty?

Important Properties of Li-ion Battery

State of Charge (SOC)

A quantitative measure of expendable charge remaining in the battery.

$$\begin{split} \mathcal{S}(t) &= \frac{1}{l_p} \int_0^{l_p} \frac{\bar{c}_s(x,t)}{c_{max}} dx \\ \mathbb{E}\left[\mathcal{S}(m)\right] &\approx \frac{\Delta x}{l_p c_{max}} \sum_{n=1}^{N_p} \int \bar{c}_s(m,n) p_{\bar{c}_s}(\bar{c}_s(m,n)|v_{1:m}) dc_s. \end{split}$$

State of Health (SOH)

A quantitative measure of the battery's ability to store and release energy at high efficiency. No unique measure.

Challenge

How do we estimate State of Charge in presence of uncertainty?

State Estimator!

What is wrong with Standard Particle Filter?

High-Dimensionality and Particle Degeneracy

• The desired target density function is very high-dimensional. Defining the state vector

$$\mathbf{x_m} = \{\mathbf{x_m^\ell}, \mathbf{x_m^{a_1}}, \mathbf{x_m^{a_2}}, \mathbf{x_m^{a_3}}, \mathbf{x_m^n}, \mathbf{x_m^T}\}$$

Target density function is $p_{x_m}(\mathbf{x_m}|v_{1:m})$. For N discretization points in the spatial direction, the dimensionality is 7N.

Computational Complexity

• The model equations have to be solved as many times as the number of particles increasing the computational complexity.

Importance Density

• It is difficult to choose a large dimensional importance density function.

Marginalized and Tethered Particle Filter

Marginalized Particle Filter

- For SOC estimation, only the lower dimensional marginal density $p_{\bar{c}_c}(\bar{c}_s(m,n)|v_{1:m})$ is required.
- Dimensionality can be reduced by partitioning the states and splitting the filter density into a series of marginal density functions,

$$p_{x_m}(\mathbf{x_m}|v_{1:m}) = p_{x_m^{\ell}}(\mathbf{x_m^{\ell}}|v_{1:m}, \mathbf{x_m^n}) p_{x_m^{a_1}}(\mathbf{x_m^{a_1}}|v_{1:m}, \mathbf{x_m^n}) p_{x_m^{a_2}}(\mathbf{x_m^{a_2}}|v_{1:m}, \mathbf{x_m^{\ell}}, \mathbf{x_m^n}) \times p_{x_m^{a_3}}(\mathbf{x_m^{a_3}}|v_{1:m}, \mathbf{x_m^{\ell}}, \mathbf{x_m^n}) p_{x_m^n}(\mathbf{x_m^n}|v_{1:m}).$$

• Some density functions corresponding to PDEs with spatial derivatives only can be further marginalized.

Tethered Particle Filter

- Kalman filter can be used if $\mathbf{x}_{\mathbf{m}}^{\mathbf{n}}$ is "known".
- A 'tether particle' is created by using the average of $\mathbf{x}_{\mathbf{m}}^{\mathbf{n}}$ particles in estimating other marginalized densities.

Marginalized and Tethered Particle Filter

Optimal Estimators			
Density	Optimal Marginal Estimator	Dimension	
		Full	Marginal
(1) $p_{x_{\mathbf{m}}^{\ell}}(\mathbf{x}_{\mathbf{m}}^{\ell} v_{1:m},\mathbf{x}_{\mathbf{m}}^{\mathbf{n}})$	Temporal & Spatial Kalman filter	2N	2
(2) $p_{x_{\mathbf{m}}^{a_1}}^{m}(\mathbf{x_m^{a_1}} v_{1:m}, \mathbf{x_m^{n}})$	Spatial Kalman filter	2N	2
(3) $p_{x_m^{n^2}}^{-m}(\mathbf{x_m^{a_2}} v_{1:m}, \mathbf{x_m^{\ell}}, \mathbf{x_m^{n}})$	Spatial Kalman filter	N	1
(4) $p_{x^{a_3}}^{-m}(\mathbf{x_m^{a_3}} v_{1:m}, \mathbf{x_m^{\ell}}, \mathbf{x_m^{n}})$	Spatial Particle Filter	N	1
(5) $p_{x_m^m}(\mathbf{x_m^n} v_{1:m})$	Spatial Particle Filter	N	1

Some Observations

- Kalman filters can be implemented online very fast.
- One dimensional particle filters are also very fast.
- The marginal filter dimension is independent of fineness of discretization.

State of Charge Estimation - Simulations

Deterministic Model

- Model simulated at constant galvanostatic discharge current of $I = -30 A/m^2$.
- $\bullet\,$ Initial guesses for the solid potential at the collectors are 4.116 V and 0.074 V.
- Initial electrolyte concentration was 1000 mol/L.

State of Charge Estimation - Simulations

Deterministic Model

- Model simulated at constant galvanostatic discharge current of $I = -30 A/m^2$.
- $\bullet\,$ Initial guesses for the solid potential at the collectors are 4.116 V and 0.074 V.
- Initial electrolyte concentration was 1000 mol/L.

State of Charge Estimation - Simulations

Stochastic Model

- Gaussian noise introduced in all the state equations.
- Applied current randomly switched between $-35A/m^2$ and $-25A/m^2$ (RBS).
- 2000 particles used.

State of Charge Estimation - Simulations

Stochastic Model

- Gaussian noise introduced in all the state equations.
- Applied current randomly switched between $-35A/m^2$ and $-25A/m^2$ (RBS).
- 2000 particles used.

Acknowledgements

Prof. Richard Braatz Yiting Tsai

www.apple.com;www.studyvilla.com;www.gettyimages.com;randomwire.com; savagechickens.com;green.autoblog.com;commons.wikimedia.org;www.ecofriend.com; www.motherearthnews.com;w7swall.com;www.techatplay.com;www.geek.com; www.jalopnik.com;Chaturvedi et al IEEE CSM June 2010; www.urel.gov;

> ◆□ → ◆□ → ◆ ■ → ◆ ■ → ○ へ ○ 18 / 24

Single Particle (SPM) Model

Cell Compartments:

- Positive Electrode (p)
- Separator (s)
- Negative Electrode (n)

Phases:

- Solid (s)
- Electrolyte (e)

State Variables:

- Voltage (V)
- Current (I)
- Li^+ Ion Concentration (C)
- State Of Charge (SOC)

Coordinate variables:

- Time (t)
- Radius (r)

Characteristics of SPM:

- Assume spatial variations negligible
- **2** PDEs reduced to ODEs
- Obsistion coordinates (x), (y), (z) eliminated

Single-Particle Model (SPM) in Detail

Approximate Potentials

$$\Phi_s(t) = \frac{2RT}{F} \sinh^{-1} \left(\frac{I(t)}{2al\sqrt{(c_e c^*(t)(c_{max} - c^*))}} \right)$$

Fickian Mass Diffusion of Li⁺

$$\frac{\partial}{\partial t}c_s(x,r,t)=\frac{1}{r^2}\frac{\partial}{\partial r}(D_sr^2\frac{\partial}{\partial r}c_s(x,r,t))$$

Molar Flux of Li^+

$$j_p = -\frac{I}{Fa_p l_p} \qquad j^n = -\frac{I}{Fa_n l_n}$$

Voltage

$$v = \Phi_p - \Phi_n$$

Algorithm for Optimal Charging

Moving Window Approach

Battery Properties:

- Cell Temperature: $[T_p, T_n]^T$
- Li^+ Concentration: $[C_p, C_n]^T$
- State of Charge: $[SOC_p, SOC_n]^T$

Moving Horizon Approach:

- Total charge time $= t_{total}$
- Divide t_{total} into Windows W
- Divide W into N sub-windows: $dW = \frac{W}{N}$

- Time axis: $[0, dW, 2dW, \cdots, NdW]$
- Charge current profile: $[I_1, I_2, \cdots, I_N]$

Results and Analyses

- Charge at $I_{max} = 20 \frac{A}{cm^2}$
- No constraints considered
- Full charge reached at 3000s
- Temp constraint violated at 1000s

Case 2: Static Optimization

- Solve: $\underset{I}{\operatorname{argmax}SOC(x)}$ s.t. constraints are satisfied
- Obtain $I_{opt} = 9.7 \frac{A}{cm^2}$
- Full charge reached at 6000s
- Temp constraint respected
 - ◆□ → ◆□ → ◆ → ◆ → ● ⑦ Q (* 22 / 24

Results and Analyses Cont'd

- Window size: W = 100s and dW = 10s
- $I_{opt} = 20 \frac{A}{cm^2}$ for 1000s, drop to $I_{opt} = 9.3 \frac{A}{cm^2}$ and hold.
- Total charge time reduced to 5000s.
- Reduce window size to W = 20s and dW = 2s: reduce total charge time to 3600s.

Prof. Richard Braatz Yiting Tsai University of British Columbia

www.apple.com;www.studyvilla.com;www.gettyimages.com;randomwire.com; savagechickens.com;green.autoblog.com;commons.wikimedia.org;www.ecofriend.com; www.motherearthnews.com;w7swall.com;www.techatplay.com;www.geek.com; www.jalopnik.com;Chaturvedi et al IEEE CSM June 2010; www.urel.gov;