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Curves on Fano varieties

Definition
A smooth projective variety X is called a Fano variety if −KX is ample.

As discussed last time, each Fano variety will contain “lots” of rational curves.

We are interested in classifying the irreducible components of Mor(P1,X) for
a Fano variety X :

1 What are the components of Mor(P1,X)α?
2 What are their dimensions?

In this lecture we will work over the ground field C unless otherwise specified.
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Curves on Fano varieties

There are many examples of Fano varieties for which the irreducible
components of Mor(P1,X) have been completely classified. These include:

Most Fano hypersurfaces (Harris-Roth-Starr, Beheshti-Kumar,
Riedl-Yang, Browning-Vishe)
Homogeneous varieties (Thomson, Kim-Pandharipande)
Del Pezzo surfaces (Testa)
Toric varieties (Bourqui)
Many Fano threefolds (Beheshti-Lehmann-Riedl-Tanimoto)

Most of these examples share an interesting feature: for any numerical class
α ∈ N1(X)Z there is at most one component of Mor(P1,X)α parametrizing
free curves. (However there are also examples where this nice property does
not hold.)
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Curves on Fano varieties

For example, the following result describes the rational curves on general Fano
hypersurfaces of index ≥ 3.

Theorem (Riedl-Yang)

Let X ⊂ Pn be a general hypersurface of dimension ≥ 3 and degree ≤ n − 2.
For every positive integer e, the space Mor(P1,X)e parametrizing degree e
curves is irreducible. In particular, this component generically parametrizes
free curves and thus has the expected dimension.

The hypotheses of the theorem are crucial.

Example (Starr)

Let X be a cubic threefold. For every degree e ≥ 3 the space Mor(P1,X)e has
two components. One component generically parametrizes free curves and has
the expected dimension e + 3. The other component parametrizes multiple
covers of the lines on X and has dimension 2e + 2.
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Curves on Fano varieties

Next we consider (not necessarily Fano) smooth projective toric varieties X .
Any rational curve which intersects the dense torus will deform in a
dominant family.
Any rational curve which does not intersect the dense torus will be
contained in a boundary component.

Since curves of the second type can be analyzed by induction on dimension, it
suffices to focus our attention on curves of the first type.

Theorem (Bourqui)

Let X be a smooth projective toric variety. Suppose α ∈ N1(X)Z satisfies
Di · α ≥ dim(X) + 1 for every boundary divisor Di on X. Then Mor(P1,X)α is
irreducible and generically parametrizes free curves.
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Manin’s Conjecture

We will study the classification of rational curves by appealing to an analogy
with a conjecture from arithmetic geometry. Manin’s Conjecture for a Fano
variety over a number field predicts the behavior of the rational points on X .
Our goal is to translate Manin’s Conjecture into a similar conjecture for
rational curves on complex Fano varieties.

Mori proved that a Fano variety over C carries many rational curves due to
the negativity of KX . Manin’s Conjecture quantifies this prediction: the
“amount” of negativity of KX predicts the “amount” of rational curves.

7



Introduction

Manin’s
Conjecture

Fujita
invariant

Exceptional
sets

Structure of
free curves

Manin’s Conjecture

We will make the translation from number theory to complex geometry via the
function field of an Fq-curve.

Suppose that K is the function field of a 1-dimensional integral Noetherian
scheme Z . Given a projective K -variety X , an integral model of X is a flat
morphism π : X → Z whose generic fiber is X . Using the valuative criteria for
properness, we obtain a bijection between rational points X(K) and sections
of π.

Q Fq(t) C(t)
π : X → Spec(Z) π : X → P1

Fq π : X → P1
C

count rational
points of bounded
height on Fano

variety XQ

count sections
of bounded

degree of Fano
fibration π

“count” sections
of bounded

degree of Fano
fibration π
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Manin’s Conjecture

How might we hope to solve Manin’s Conjecture for a Fano fibration
π : X → P1

Fq?

Step 1: Classify all irreducible components of the parameter space of sections
Sec(X/P1

Fq ).

Step 2: For each irreducible component M ⊂ Sec(X/P1
Fq ), count the

Fq-points on M.

In general we expect that #M(Fq) ≈ qdim(M). The error terms are controlled
by the étale homology groups of M. In fact, one way to count rational points
on M is to compute the étale homology groups and then to apply the
Grothendieck-Lefschetz trace formula:

#M(Fq) =
∑

i

(−1)iTr(F n∗,H i
c(Xet ,Q`)).
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Manin’s Conjecture

We will formulate Geometric Manin’s Conjecture by trying to carry out the
same two steps over C.

Step 1: Classify all irreducible components of the parameter space of sections
Sec(X/P1

C).

Step 2: Prove that the homology groups (or motive) of the irreducible
components M ⊂ Sec(X/P1

C) “stabilize” as the degree increases.
(Ellenberg-Venkatesh)

For simplicity, we will focus on the case where X ∼= X × P1 for a complex
Fano variety X . In this case, the parameter space of sections Sec(X/P1) is
exactly the same as the moduli space Mor(P1,X).

10



Introduction

Manin’s
Conjecture

Fujita
invariant

Exceptional
sets

Structure of
free curves

Manin’s Conjecture

In this lecture we will focus on Step 1: classifying components of Mor(P1,X)
via the framework of Manin’s Conjecture.

While Step 2 is also important, there are fewer examples for which this
program has been carried out. The motivating conjecture is:

Conjecture (Cohen-Jones-Segal)

Let X be a smooth Fano variety over C. Fix a general point p and let
Mα,p ⊂ Mor(P1,X)α denote the sublocus parametrizing morphisms f such
that f (∞) = p. As the degree of α increases, the homology of Mα,p stabilizes
to the homology of the space of based continuous maps Map∗(S2,XC).

Known cases: Pn (Segal), toric varieties (Guest), homogeneous varieties
(many authors), low degree hypersurfaces (Browning-Sawin, Starr-Tian).
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Fujita invariant

The key input into Manin’s Conjecture is the Fujita invariant, which we will
now define. Recall that N1(X)Z denotes the numerical classes of Cartier
divisors on X . We define N1(X)R := N1(X)Z ⊗ R.

Definition
The pseudo-effective cone of divisors Eff1(X) is the closure of the cone in
N1(X)R generated by all effective Cartier divisors.

One should think of Eff1(X) as the “homological shadow” of the codimension
1 subvarieties of X . When X is a Fano variety Eff1(X) is a pointed polyhedral
cone in the finite-dimensional vector space N1(X)R.
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Fujita invariant

Definition
Let X be a smooth projective variety and let L be a Cartier divisor on X . We
define the Fujita invariant a(X , L) as

a(X , L) = inf{t ∈ R |KX + tL ∈ Eff1(X)}

or a(X , L) =∞ if no such t exists.

When X is singular, we choose a resolution of singularities φ : X ′ → X and
define a(X , L) = a(X ′, φ∗L).

The Fujita invariant measures “how negative” KX is with respect to the
divisor L. In practice KX will be an antiample divisor and L will be an ample
divisor so that the Fujita invariant is positive.
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Example
For a Fano variety X we have a(X ,−KX ) = 1.

Example
If H is the hyperplane class on Pn then a(X ,H) = n + 1.
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Exceptional sets

Let X be a smooth Fano variety over a number field K . Fix an ample divisor L
and choose an associated height function. Let N(X ,B) denote the number of
K -points on X whose height is ≤ B. Then Manin’s Conjecture predicts that

N(X ,B) ∼B→∞ cBa(X ,L)(logB)b(X ,L)−1

where c denotes Peyre’s constant and b(X , L) is an invariant related to the
Picard rank of X .

However, in order to obtain this expected growth rate, one might need to
discount the rational points on special subvarieties Y ⊂ X where the rational
points grow too quickly. The subset of points we must remove is called the
“exceptional set”.
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Exceptional sets

We can break Manin’s Conjecture over a number field into two subproblems:

Subproblem 1: Identify the exceptional set
Subproblem 2: Bound the growth of the remaining points

Lehmann-Sengupta-Tanimoto propose a conjectural definition of the
exceptional set using the Fujita invariant. Suppose that f : Y → X is a
generically finite map such that a(Y , f ∗L) > a(X , L). Then the expected
growth rate on Y is larger than the expected growth rate on X . Thus
f (Y (K)) should be included in the exceptional set. We conjecture that the
exceptional set consists of all the rational points of this type.

(We sometimes also need to discount the points for morphisms f : Y → X
satisfying a(Y , f ∗L) = a(X , L).)
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Exceptional sets

For Fano varieties X , we will always use the natural polarization L = −KX .
When classifying irreducible components of Mor(P1,X) we should also divide
into two subproblems.

Subproblem 1: Identify the exceptional set
Let us say that a family of rational curves on X is “pathological” if it is “too
large” in some way. We expect the existence of pathological families of
rational curves on a Fano variety X to be controlled by the Fujita invariant.

Subproblem 2: Bound the growth of remaining curves
We would like to find some systematic structure for the remaining families of
rational curves on X . Ideally this structure would allow us to use induction to
classify the components parametrizing large degree rational curves.
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For a Fano variety X there are several ways in which a family of rational
curves can be “pathological”. These include:

Possibility 1: M is a component of Mor(P1,X) which has larger than the
expected dimension.

Possibility 2: for a numerical class α ∈ N1(X)Z there are “too many”
irreducible components of Mor(P1,X)α. We hope that there is a universal
upper bound on the number of components of Mor(P1,X)α, but in
pathological situations this hope can fail.

Remember, we hope that both types of pathologies can be “explained” by the
presence of a morphism f : Y → X such that a(Y ,−f ∗KX ) ≥ a(X ,−KX ).
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It turns out that the Fujita invariant controls the expected dimension of
components of Mor(P1,X).

Theorem (Lehmann-Tanimoto)

Let X be a Fano variety. Suppose that M is a component of Mor(P1,X) that
does not generically parametrize free curves. (In particular this includes all
components with larger than expected dimension.) Then the curves
parametrized by M sweep out a closed subvariety Y ⊂ X such that
a(Y ,−KX ) > a(X ,−KX ).

A result of Hacon-Jiang shows that the union of the subvarieties Y ⊂ X with
larger a-invariant is a proper closed subset of X . It is sometimes possible to
compute this set explicitly using techniques from the Minimal Model Program.
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The Fujita invariant also controls the fibers of the evaluation map.

Theorem (Lehmann-Tanimoto)

Let X be a Fano variety. Suppose that M is a component of Mor(P1,X) such
that the evaluation map for the universal family over M does not have
connected fibers. Then this evaluation map factors rationally through a
generically finite morphism f : Y → X of degree ≥ 2 such that
a(Y ,−f ∗KX ) = a(X ,−KX ).

As we will see later it is useful to include such maps in the exceptional set.
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Conjecturally the Fujita invariant also controls the existence of numerical
classes with “too many” components of Mor(P1,X). We will demonstrate this
with an example.

Example (Le Rudulier’s example)

Let X = Hilb2(P2). There is a degree 2 rational map

φ : P2 × P2 99K X

which is not defined along the diagonal. We let W denote the blow-up of
P2 × P2 along the diagonal and denote by f : W → X the induced morphism.

Since Pic(P2 × P2) ∼= Z2, a numerical class of curves on this variety is
determined by two integers (a, b). Note that Mor(P1,P2 × P2)(a,b) is
non-empty and irreducible whenever a, b > 0. We denote this irreducible
component by Na,b.
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Example
By composing with φ, each component Na,b yields a sublocus
φ∗Na,b ⊂ Mor(P1,X). In fact, it turns out that φ∗Na,b is dense in an
irreducible component of Mor(P1,X).

However, φ∗Na,b and φ∗Nc,d represent curves with the same numerical class
whenever a + b = c + d . Thus, the number of components of Mor(P1,X)α
will grow linearly as we increase the degree of α.

One can show that a(W ,−f ∗KX ) = a(X ,−KX ). Thus the presence of “too
many components” of rational curves on X is explained by the existence of
the map f : W → X which preserves the Fujita invariant. As predicted by
Lehmann-Sengupta-Tanimoto, the contributions of W should be included in
the exceptional set.
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Structure of free curves

We next turn to the families of rational curves which are not in the
exceptional set. The key conjecture is:

Conjecture
Let X be a Fano variety. For any “sufficiently positive” curve class α, the
number of components of Mor(P1,X)α which are not contained in the
exceptional set is exactly |Br(X)|.

This conjecture is related to a heuristic of Batryrev for Manin’s Conjecture
over the function field of an Fq-curve.

We have seen that every non-exceptional family of rational curves generically
parametrizes free curves. In order to analyze this conjecture, we will identify
some “inductive structure” for free rational curves.
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Theorem
Let X be a smooth projective variety. Suppose f1 : P1 → X and f2 : P1 → X
are free curves whose images intersect at a point. Let f ′ : Z → X denote the
morphism whose domain Z is the union of two copies of P1 meeting at a
single node and such that the restriction of f ′ to the two components of Z is
f1 and f2.

Then there is a family of free curves gt : P1 → X parametrized by an open
subset T ◦ of a curve T and a point 0 ∈ T\T ◦ such that the limit of gt as
t 7→ 0 is the morphism f ′ : Z → X.

We refer to the construction of f ′ from f1 and f2 as “gluing” and the
construction of gt from f ′ as “smoothing”. Thus, the “gluing and smoothing”
operation allows us to construct new free curves from old ones.
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26 Carolina Araujo and János Kollár

Fig. 2. Deforming the union of 2 free rational curves

Indeed, by taking E = (f1 ∨ f2)∗TX0 in exercise 18, we see that if both
f1 and f2 are free, then H1

(
C, (f1 ∨ f2)∗TX0

)
= 0, and hence D1 ∪ D2

can be deformed into a rational curve. We actually have more than that:
by taking E = (f1 ∨ f2)∗TX0(−Q), where Q is any point in C1 \ C2, we
see that H1

(
C, (f1 ∨ f2)∗TX0(−Q)

)
= 0. By the Semicontinuity Theorem,

H1
(
P1, f∗

r TX(−1)
)

= 0 for nearby deformations fr : P1 → X. Hence:

The union of two free rational curves with nonempty intersection
can be deformed into a free rational curve.

Exercise 18. Let C = ∪n
i=0Ci be a reduced projective curve of genus zero

(i.e., with h1(C,OC) = 0) and E a vector bundle on C. Assume that

1. H1
(
Ci, E|Ci

(−1)
)

= 0 for i = 1, . . . , n, and

2. H1
(
C0, E|C0

)
= 0.

Then H1(C, E) = 0.

Application 19 (Real Varieties). Let X be a smooth variety defined over
R, and assume that XC contains free rational curves (defined over C). We
investigate the existence of free rational curves (defined over R) on X = XR.

Assume there exists a point P ∈ X(R) and a free rational curve C ⊂ XC
passing through P . If C is defined over R, we are done. Otherwise, let C̄
be its conjugate curve. Then C̄ is also a free rational curve, and their union
is defined over R.

Picture from Araujo and Kollár, “Rational curves on varieties”
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Suppose that M1,M2 are components of Mor(P1,X) which generically
parametrize free curves and such that the evaluation maps for the universal
families have connected fibers. Then for any two free curves parametrized by
M1 and M2 the result of “gluing and smoothing” lies in the same component
M̃ of Mor(P1,X). In other words:

Observation
The non-pathological components of Mor(P1,X) form a commutative monoid
under the “gluing-and-smoothing” action.

One way to analyze the structure of free curves is to understand the properties
of this monoid. Is it finitely generated? What is its rank? To answer these
questions, the key question is: given a component M̃, what are the possible
ways of combining lower-degree components to get M̃?
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Stable maps

Using Bend-and-Break, one can show that a free curve with large degree
deforms to a map with a reducible domain. However, as we discussed earlier
Bend-and-Break does not give us much information about the resulting broken
curve. The following conjecture predicts that we can “reverse” the gluing and
smoothing operation.

Conjecture (Movable Bend-and-Break)

Let X be a Fano variety. There is some constant Q = Q(X) such that for any
component M of Mor(P1,X) that generically parametrizes free curves of
anticanonical degree ≥ Q(X) the curves parametrized by M deform to a map
f : Z → X such that Z has two components and the restriction of f to each
component is a free curve.

In the case of Fano hypersurfaces (Riedl-Yang) and Fano threefolds
(Beheshti-Lehmann-Riedl-Tanimoto) this conjecture has been verified and is a
crucial part of the classification theory.
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