Asymptotic Model Reduction

Why Mathematicians Have An Important Role in Electrochemistry

lain Moyles

PIMS Workshop on Mathematical Sciences and Clean Energy Applications

Acadamh Ríoga na hÉireann Royal Irish Academy

May 23, 2019

lain Moyles

Asymptotic Model Reduction

Introduction

- Lithium-ion batteries power many of today's electronic devices
- Expected to play a key role in emerging technologies
- Advantages include long lifetime, high energy density, low self-discharge rates
- Unfortunately have been at the center of several controversies

lain Moyles

What is an LiB?

- A battery is composed of two electrodes and an electrolyte
- Positive electrode (cathode on discharge)
- Separator non-conductive region filled with electrolyte
- Negative electrode (anode on discharge)

What is an LiB?

Electrodes:

ILi
$$\xrightarrow{\text{charge}}$$
 I + Li⁺ + e⁻

Electrolyte:

 ${\rm LiA} \rightleftharpoons {\rm Li}^+ + {\rm A}^-$

Modelling Strategies

Two types of models are typically used:

- Equivalent circuit models (fast but not robust)
- Detailed electrochemical models (robust but not fast)

Can we use best of both worlds? Yes, asymptotic reduction!

 Exploit small parameters to extract dominant terms and reduce equation complexity

Data

Model Approach

We use a volume averaging approach

Conserve mass, charge and factor in electrochemistry

What is an LIB?

Figure: c concentration; Φ electric potential; i current density; i_{app} discharge current; ΔV voltage drop across cell

Model Equations

$$\begin{split} &\frac{\partial}{\partial t}(\phi_{a,i}c_{a,i}) = \nabla \cdot (\phi_{a,i}D_{a,i}\nabla c_{a,i}) + \frac{1}{F}\nabla \cdot (\phi_{a,i}\mathbf{i}_{a,i}), \\ &\mathbf{i}_{a,i} = -\sigma_{a,i}\nabla\Phi_{a,i}, \\ &\nabla \cdot (\phi_{a,i}\mathbf{i}_{a,i}) = -a_{i}\left(\bar{g}_{i} + C_{\Gamma,i}\frac{\partial}{\partial t}(\Phi_{a,i} - \Phi_{e,i})\right), \\ &\frac{\partial}{\partial t}(\phi_{e,i}c_{L,i}) = \nabla \cdot (\phi_{e,i}D_{L,i}\nabla c_{L,i} + \phi_{e,i}\mu_{L}Fc_{L,i}\nabla\Phi_{e,i}) + \frac{1}{F}\nabla \cdot (\phi_{e,i}\mathbf{i}_{e,i}), \\ &\mathbf{i}_{e,i} = F(\mathbf{N}_{L,i} - \mathbf{N}_{A,i}), \\ &\nabla \cdot (\phi_{e,i}\mathbf{i}_{e,i}) = a_{i}\left(\bar{g}_{i} + C_{\Gamma,i}\frac{\partial}{\partial t}(\Phi_{s} - \Phi_{e})\right), \\ &\frac{\partial}{\partial t}(\phi_{e,s}c_{L,s}) = \nabla \cdot (\phi_{e,s}D_{L,s}\nabla c_{L,s} + \phi_{e,s}\mu_{L}Fc_{L,s}\nabla\Phi_{e,s}), \\ &\mathbf{i}_{e,s} = F(\mathbf{N}_{L,s} - \mathbf{N}_{A,s}), \\ &\nabla \cdot (\phi_{e,s}\mathbf{i}_{e,s}) = 0. \end{split}$$

lain Moyles

Asymptotic Model Reduction

Reaction Kinetics

Chemical reaction
$$r = k_{a,i}c_{a,i} - k_{L,i}c_{L,i}\left(\frac{c_{a,i}^{\max} - c_{a,i}}{c_{a,i}^{\max}}\right)$$

Butler-Volmer:

$$\begin{split} \bar{g}_{\mathbf{i}} = & j_{0,\mathbf{i}}(c_{a,\mathbf{i}}, c_{L,\mathbf{i}}) \left(\exp\left[\frac{(1-\beta_{\mathbf{i}})F}{RT}\eta_{\mathbf{i}}\right] - \exp\left[\frac{-\beta_{\mathbf{i}}F}{RT}\eta_{\mathbf{i}}\right] \right), \\ \eta_{\mathbf{i}} = & \Phi_{a,\mathbf{i}} - \Phi_{e,\mathbf{i}} - \frac{RT_{a}}{F}U_{\mathbf{i}}, \end{split}$$

• $j_{0,i}$ - exchange current density

Reduction Approach

Non-dimensionalise

- Several dimensionless numbers appear
 - $L/H \ll 1$: problem can be reduced to one dimension
 - $D_{s,i}/D_L \ll 1$: solid concentration spatially uniform
 - $(i_{\rm app} LF)/(RT_a\sigma_{\rm i}) \ll 1$: electric potentials spatially uniform
- Some small numbers are important
 - Capacitance C_i
 - \blacksquare Concentration gradients $\gamma = \Delta c/c_{L0}$
- \blacksquare Liquid problem reaches an $\mathcal{O}(1)$ steady state in $\mathcal{O}(1)$ time

Composite Reduced Model

$$c_{a,\mathbf{n}} = c_{a,\mathbf{n}}^0 - \frac{\int_0^t i_{\mathrm{app}}(\tau) \,\mathrm{d}\tau}{F\phi_{a,\mathbf{n}}(L - X_n)}, \qquad c_{a,\mathbf{p}} = c_{a,\mathbf{p}}^0 + \frac{\int_0^t i_{\mathrm{app}}(\tau) \,\mathrm{d}\tau}{F\phi_{a,\mathbf{p}}X_p}$$

Single ODE for potential in each electrode

$$\begin{split} & C_{\mathbf{n}} \frac{\mathrm{d}\Phi_{a,\mathbf{n}}}{\mathrm{d}t} + \bar{g}_{\mathbf{n}}(\Phi_{a,\mathbf{n}}, c_{a,\mathbf{n}}) = \frac{i_{\mathrm{app}}}{a_{n}(L - X_{n})}, \quad \Phi_{a,\mathbf{n}}(0) = U_{n}(c_{a,\mathbf{n}}^{0}/c_{a,\mathbf{n}}^{\mathrm{max}}), \\ & C_{p} \frac{\mathrm{d}\Phi_{a,\mathbf{p}}}{\mathrm{d}t} + \bar{g}_{\mathbf{p}}(\Phi_{a,\mathbf{p}}, c_{a,\mathbf{p}}) = -\frac{i_{\mathrm{app}}}{a_{p}X_{p}}, \quad \Phi_{a,\mathbf{p}}(0) = U_{p}(c_{a,\mathbf{p}}^{0}/c_{a,\mathbf{p}}^{\mathrm{max}}) \end{split}$$

Electrode- "Data"

Summary of asymptotic regimes

Asymptotic analysis reveals three key regimes of battery operation:

- **1** $t \ll 1$: Formation of double charging layers due to instantaneous application of current to cell
- **2** t = O(1): Onset of (de)lithiation of electrodes and diffusive transport through separator
- **3** $t \gg 1$: Electrode saturation and depletion

lain Moyles Asymptotic Model Reduction

Open Circuit Potential

$$\begin{split} C_n \frac{\mathrm{d}\Phi_{a,\mathbf{n}}}{\mathrm{d}t} + \bar{g}_{\mathbf{n}}(\Phi_{a,\mathbf{n}},c_{a,\mathbf{n}}) &= \frac{i_{\mathrm{app}}}{a_n(L-X_n)}, \quad \Phi_{a,\mathbf{n}}(0) = U_n(c_{a,\mathbf{n}}^0/c_{a,\mathbf{n}}^{\mathrm{max}}), \\ C_p \frac{\mathrm{d}\Phi_{a,\mathbf{p}}}{\mathrm{d}t} + \bar{g}_{\mathbf{p}}(\Phi_{a,\mathbf{p}},c_{a,\mathbf{p}}) &= -\frac{i_{\mathrm{app}}}{a_pX_p}, \quad \Phi_{a,\mathbf{p}}(0) = U_p(c_{a,\mathbf{p}}^0/c_{a,\mathbf{p}}^{\mathrm{max}}) \end{split}$$

Open Circuit Potential

Cell Voltage-Li et al.

Cell Voltage-Safari and Delacourt

Non-Galvanostatic Discharge

Non-Galvanostatic Discharge

Non-Galvanostatic Discharge

Summary

- Mathematics can be used to extract important features from model
- Simpler and faster model derived
- Can also provide insight when model fails
 - May hint that the microscale is playing an important role

Future Work

- Add temperature
- Investigate breakdown of volume average approach

Questions?