Representation stability and asymptotic stability of factorization statistics

Rita Jiménez Rolland

Instituto de Matemáticas, UNAM-Oaxaca

University of British Columbia Vancouver, Canada June 12, 2019

Arithmetic

factorization statistics of $\mathcal{Y}_n(q) = \mathcal{Y}_n(\overline{\mathbb{F}}_q)^{\mathsf{Fr}_q}$

factorization statistics of polynomials over \mathbb{F}_q

'factorization' statistics of *Fr_q*-stable maximal tori in algebraic groups

asypmtotic stability of polynomial factorization statistics

Topology

$$\mathcal{W}_n \curvearrowright H^*(\mathcal{X}_n; \mathbb{C})$$

cohomology of hyperplane complements

cohomology of flag varieties

representation/multiplicity stability

Hyperplane complements of type \mathcal{W}_n

Type A_{n-1}	Symmetric group $S_n \curvearrowright \{1, \ldots, n\}$	Permutation matrices $n \times n$
Type B _n ∕C _n	Hyperocthahedral group $B_n \curvearrowright \{\pm 1, \dots, \pm n\}$	Signed permutation matrices $n \times n$

 $\mathcal{W}_n \curvearrowright \mathbb{R}^n$ by (signed) permutation matrices

 $\mathcal{X}_n = \mathcal{M}_{\mathcal{W}_n}(\mathbb{C}) := \mathbb{C}^n \setminus \text{complexified reflection hyperplanes}$

 $\mathcal{W}_n \curvearrowright \mathcal{M}_{\mathcal{W}_n}(\mathbb{C})$ freely

Hyperplane complements and polynomials

\mathcal{W}_{n}	Sn	B _n
$\mathcal{M}_{\mathcal{W}_{N}}(\mathbb{C})$	$\mathbb{C}^n \setminus \{z_i - z_j = 0\}$ $\mathcal{M}_{S_n}(\mathbb{C}) = PConf_n(\mathbb{C})$	$\mathbb{C}^nackslash\{z_i\pm z_j=0, z_i=0\}\ \mathcal{M}_{\mathcal{B}_n}(\mathbb{C})$
$(\mathcal{M}_{\mathcal{W}_{\mathbf{n}}}/\mathcal{W}_{\mathbf{n}})(\mathbb{C})\ \mathcal{Y}_{\mathcal{W}_{n}}(\mathbb{C})$	$ \{ \{ Z_1, \dots, Z_n \} : Z_i \in \mathbb{C} \} $ $ \mathcal{Y}_{S_n}(\mathbb{C}) = \operatorname{Conf}_n(\mathbb{C}) $	$\left\{ \{ \pm z_1, \dots, \pm z_n \} : z_i \in \mathbb{C}^\times \right\}$ $\mathcal{Y}_{\mathcal{B}_n}(\mathbb{C})$
Space of polynomials	$\left\{(x-Z_1)\cdots(x-Z_n): Z_i\neq Z_j\right\}$	$\{(x-z_1^2)\cdots(x-z_n^2): z_i^2\neq z_j^2, \\ z_i\neq 0\}$

Hyperplane complements and polynomials

 $\mathcal{Y}_{\mathcal{S}_n}$ and $\mathcal{Y}_{\mathcal{B}_n}$ are algebraic varieties defined over $\mathbb Z$

 $\mathcal{P}oly_n(\mathbb{K}) := \{ f \in \mathbb{K}[x] : f \text{ is monic of degree } n \} \text{ for a field } \mathbb{K}$

 $\mathcal{Y}_{\mathcal{W}_n}(\mathbb{K}) =$ the \mathbb{K} -points of $\mathcal{Y}_{\mathcal{W}_n}$

 $\mathcal{Y}_{S_n}(\mathbb{K}) = \{ f \in \mathcal{P}oly_n(\mathbb{K}) \text{ with no repeated roots } \}$ $\mathcal{Y}_{B_n}(\mathbb{K}) = \{ f \in \mathcal{P}oly_n(\mathbb{K}) \text{ with no repeated roots and } f(0) \neq 0 \}$

$$\mathbb{K} = \mathbb{F}_q, \overline{\mathbb{F}}_q$$
 v.s. $\mathbb{K} = \mathbb{C}$

 $\mathcal{Y}_n(q) := \mathcal{Y}_{\mathcal{W}_n}(\mathbb{F}_q)$

Factorization type

 $f \in \mathcal{P}oly_n(\mathbb{F}_q) \xrightarrow{\sim} factorization type of f$ $\lambda_f \vdash n$ degrees of irreducible factors of f(x)

$$\begin{array}{rcl} x^{3}(x^{2}+1) \in \mathcal{P}\textit{oly}_{5}(\mathbb{F}_{3}) & \leadsto & (1^{3} \ 2^{1}) \vdash 5 \\ (x+1)(x-1)(x^{3}-x+1) \in \mathcal{P}\textit{oly}_{5}(\mathbb{F}_{3}) & \leadsto & (1^{2} \ 3^{1}) \vdash 5 \end{array}$$

Remarks:

•
$$\operatorname{Fr}_q \curvearrowright \mathcal{Y}_{\mathcal{W}_n}(\overline{\mathbb{F}}_q)$$
 and $\mathcal{Y}_{\mathcal{W}_n}(\mathbb{F}_q) = \left(\mathcal{Y}_{\mathcal{W}_n}(\overline{\mathbb{F}}_q)\right)^{\operatorname{Fr}_q}$

• factorization types given are given by Fr_q -orbits: Type A: $\operatorname{Fr}_q \curvearrowright \{x \in \overline{\mathbb{F}}_q : f(x) = 0\} \rightsquigarrow \lambda_f$ Type B/C: $\operatorname{Fr}_q \curvearrowright \{x \in \overline{\mathbb{F}}_q : f(x^2) = 0\} \rightsquigarrow (\lambda_f^+, \lambda_f^-)$

$$(x^2 - 1) = (x - 1)(x + 1) \in \mathcal{Y}_{S_2}(\mathbb{F}_3) \quad \rightsquigarrow \quad (1^2) \vdash 2$$

 $(x^2 - 1) = (x - 1)(x + 1) \in \mathcal{Y}_{B_2}(\mathbb{F}_3) \quad \rightsquigarrow \quad (1^1, 1^1) \text{ double partition of } 2$

Factorization statistics for $\mathcal{P}oly_n(\mathbb{F}_q)$ and $\mathcal{Y}_{\mathcal{W}_n}(\mathbb{F}_q)$

A factorization statistic

 $P : \mathcal{P}oly_n(\mathbb{F}_q) \to \mathbb{Q} \text{ s.t. } P(f) \text{ only depends on } \lambda_f$

- R(f) = # roots of f in \mathbb{F}_q
- X_k(f) = n_k(λ_f) = # degree-k irreducible factors of f over 𝔽_q

 $X_1(g) = R(g) = 3$ for $g = x(x^2 - 1)(x^2 + 1) \in \mathcal{Y}_{S_5}(\mathbb{F}_3) \subset \mathcal{P}oly_5(\mathbb{F}_3)$

• For $f \in \mathcal{Y}_{B_n}(\mathbb{F}_q)$ $X_k^+(f) = n_k(\lambda_f^+) = \# \text{ degree-}k \text{ QR irred factors of } f \text{ over } \mathbb{F}_q$ $X_k^-(f) = n_k(\lambda_f^-) = \# \text{ degree-}k \text{ NQR irred factors of } f \text{ over } \mathbb{F}_q$ $X_1^+(f) = 1 \text{ and } X_1^-(f) = 1 \text{ for } f = (x - 1)(x + 1) \in \mathcal{Y}_{B2}(\mathbb{F}_3)$

We focus on *polynomial* factorization statistics:

$$P \in \mathbb{Q}[X_1, X_2, \ldots]$$
 or $P \in \mathbb{Q}[X_1^+, X_1^-, X_2^+, X_2^- \ldots]$
 $P : \bigsqcup_{n \ge 1} \mathcal{W}_n \longrightarrow \mathbb{Q}$ character polynomial

Factorization statistics and hyperplane complements

Theorem (Twisted Grothendieck–Lefschetz trace formula)

Let P be a factorization statistic defined over $\mathcal{Y}_n(q)$

$$\frac{1}{q^n}\sum_{f\in\mathcal{Y}_n(q)}P(f)=\sum_{k\geq 0}(-1)^k\frac{\langle P,\psi_n^k\rangle_{\mathcal{W}_n}}{q^k}$$

Arithmetic: $P : \mathcal{Y}_n(q) \to \mathbb{Q}$ factorization statistic for $\mathcal{Y}_n(q) = \mathcal{Y}_{\mathcal{W}_n}(\overline{\mathbb{F}}_q)^{\mathsf{Fr}_q} \subset \mathcal{P}\textit{oly}_n(\mathbb{F}_q)$ **Topology:** $\mathcal{W}_n \curvearrowright H^*(\mathcal{M}_{\mathcal{W}_n}(\mathbb{C}); \mathbb{C})$ ψ_n^k is the \mathcal{W}_n -character of $H^k(\mathcal{M}_{\mathcal{W}_n}(\mathbb{C}); \mathbb{C})$ $\langle \cdot, \cdot \rangle_{\mathcal{W}_n}$ the standard inner product of \mathcal{W}_n -class functions

 Follows from results of Grothendieck, Artin, Lehrer and Kim Type A: Church–Ellenberg–Farb (2014)
 Type B/C: J.R.–Wilson, Casto, Matei (2017)

Factorization statistics and hyperplane complements

Example: counting polynomials

$$P(\sigma) = 1 \text{ for all } \sigma \in \mathcal{W}_n$$

$$\frac{1}{q^n} \sum_{f \in \mathcal{W}_n(\mathbb{F}_q)} 1 = \sum_{k=0}^n (-1)^k q^{-k} \dim_{\mathbb{C}} H^k(\mathcal{Y}_{\mathcal{W}_n}(\mathbb{C}); \mathbb{C})$$

$$|\mathcal{Y}_{\mathcal{W}_n}(\mathbb{F}_q)| = q^n P_{\mathcal{Y}_{\mathcal{W}_n}(\mathbb{C})}(-q^{-1})$$

Arithmetic:

Topology:

$$H^{k}(\operatorname{Conf}_{n}(\mathbb{C})) = \begin{cases} \mathbb{Q} & k = 0\\ \mathbb{Q} & k = 1\\ 0 & k \ge 2 \end{cases}$$

(Arnol'd, F.Cohen)

$$H^{k}(\mathcal{Y}_{\mathcal{B}_{n}}(\mathbb{C})) = \begin{cases} \mathbb{Q} & k = 0\\ \mathbb{Q}^{2} & 0 < k < n\\ \mathbb{Q} & k = n\\ 0 & k > 2 \end{cases}$$
(Brieskorn, Lehrer)

 $|\text{Conf}_n(\mathbb{F}_q)| = q^n - q^{n-1}$

$$|\mathcal{Y}_{\mathcal{B}_n}(\mathbb{F}_q)| = q^n - 2q^{n-1} + 2q^{n-2} - \dots$$

Unrestricted factorization statistics

Theorem (Hyde 2017)

Let P be a factorization statistic defined over $\mathcal{P}oly_n(\mathbb{F}_q)$

$$\frac{1}{q^n}\sum_{f\in\mathcal{P}\textit{oly}_n(\mathbb{F}_q)}P(f)=\sum_{k\geq 0}\frac{\langle P,\phi_n^k\rangle_{\mathcal{S}_n}}{q^k}$$

Arithmetic: P is a factorization statistics for $\mathcal{P}oly_n(\mathbb{F}_q)$ Topology: ϕ_n^k is the S_n -character of $H^{2k}(\mathsf{PConf}_n(\mathbb{R}^3);\mathbb{C})$

- His proof uses a splitting measure interpretation.
- Same approach recovers type A formula for *Y*_{S_n}(F_q). Bonus: gives an efficient, direct way to compute the characters ψ^k_n and φ^k_n.

Questions:

- Can this approach be used to recover the type B/C formula for $\mathcal{Y}_{B_n}(\mathbb{F}_q)$?

- **(Hyde)** Is there a geometric interpretation of the connection between factorization statistics on $\mathcal{P}oly_n(\mathbb{F}_q)$ and the cohomology of $\mathrm{PConf}_n(\mathbb{R}^3)$?

Statistics for Fr_q-stable maximal tori and flag varieties

Theorem (Lehrer)

Let P be a factorization statistic defined over $\mathcal{Y}_n(q)$

$$\frac{1}{|\mathcal{Y}_n(q)|}\sum_{T\in\mathcal{Y}_n(q)}P(T)=\sum_{k\geq 0}(-1)^k\frac{\langle P,\psi_n^k\rangle_{\mathcal{W}_n}}{q^k}$$

Arithmetic: *P* is a 'factorization' statistic for $\mathcal{Y}_n(q) = \{ \mathsf{Fr}_q \text{-stable maximal tori in } \mathbf{G}_n(\overline{\mathbb{F}}_q) \}$

Topology: $\mathcal{W}_n \curvearrowright H^*(\mathcal{F}\mathbf{G}_n; \mathbb{C})$ ψ_n^k is the \mathcal{W}_n -character of $H^{2k}(\mathcal{F}\mathbf{G}_n; \mathbb{C})$ $\langle \cdot, \cdot \rangle_{\mathcal{W}_n}$ the standard inner product of \mathcal{W}_n -class functions

• (Steinberg):
$$|\mathcal{Y}_n(q)| = q^{n^2 - n}$$
 if $\mathbf{G}_n = \mathrm{GL}_n$
 $|\mathcal{Y}_n(q)| = q^{2n^2}$ if $\mathbf{G}_n = \mathrm{Sp}_{2n}$ (or $\mathbf{G}_n = \mathrm{SO}_{2n+1}$)

 Can be obtain from a Twisted Grothendieck–Lefschetz trace formula (CEF 2014)

Type A: Church–Ellenberg–Farb (2014)

Type B/C: J.R.-Wilson, Casto, Matei (2017)

Families of algebraic groups

Algebraic groups	Gn	Weyl group \mathcal{W}_n	Туре
general linear groups	GL _n	\mathcal{S}_n (symmetric group)	A
special orthogonal groups	SO _{2n+1}	B_n (hyperoctahedral group)	В
symplectic groups	Sp _{2n}	B_n (hyperoctahedral group)	С

 \mathbf{G}_n is defined over a field $\mathbb{K} = \mathbb{F}_q$, $\overline{\mathbb{F}}_q$, \mathbb{C}

 $\mathbf{G}_n(\mathbb{K}) = \mathbb{K}$ -points of the algebraic group

Fr_q-stable maximal tori in $\mathbf{G}_n(\overline{\mathbb{F}}_q)$

T torus in $G_n(\mathbb{K})$: subgroup \mathbb{K} -isom. to a product of $GL_1(\mathbb{K})$ **T** maximal torus: if T' is a torus and $T \subseteq T'$, then T = T'

When $\mathbb{K} = \overline{\mathbb{F}}_q$

T *Fr*_{*q*}**-stable**: *T* is stable under the *Frobenius action*:

$$\mathit{Fr}_q: \mathbf{G}_n(\overline{\mathbb{F}}_q)
ightarrow \mathbf{G}_n(\overline{\mathbb{F}}_q) \quad ext{given by} \quad (x_{i,j}) \mapsto (x_{i,j}^q)$$

Examples:

$$\begin{split} T_{0} &= \left\{ diag\{\lambda_{1}, \dots, \lambda_{n}\} : \lambda_{i} \in \overline{\mathbb{F}}_{q}^{\times} \right\} \subseteq \mathsf{GL}_{n}(\overline{\mathbb{F}}_{q}) \\ T_{0} &= \left\{ diag\{1, \lambda_{1}, \dots, \lambda_{n}, \lambda_{1}^{-1}, \dots, \lambda_{n}^{-1}\} : \lambda_{i} \in \overline{\mathbb{F}}_{q}^{\times} \right\} \subseteq \mathsf{SO}_{2n+1}(\overline{\mathbb{F}}_{q}) \\ T_{0} &= \left\{ diag\{\lambda_{1}, \dots, \lambda_{n}, \lambda_{1}^{-1}, \dots, \lambda_{n}^{-1}\} : \lambda_{i} \in \overline{\mathbb{F}}_{q}^{\times} \right\} \subseteq \mathsf{Sp}_{2n}(\overline{\mathbb{F}}_{q}) \end{split}$$

 $\mathcal{Y}_n(q) := \left\{ \mathcal{T} \leq \mathbf{G}_n(\overline{\mathbb{F}}_q) : \ T \text{ is a } \mathit{Fr}_q \text{-stable maximal torus}
ight\}$

'Factorization' statistics for Frq-stable maximal tori

$$T \in \mathcal{Y}_n(q) \rightsquigarrow w_T \in \mathcal{W}_n \rightsquigarrow$$
 'factorization type' of T :
 $\lambda_T \vdash n \text{ or } (\lambda_T^+, \lambda_T^-)$
'Factorization' statistic: $P : \mathcal{Y}_n(q) \longrightarrow \mathbb{Q}$

Туре А	$X_r(T) = n_r(\lambda_T) = #$ of <i>r</i> -dimensional Fr_q -stable subtori of <i>T</i> irreducible over \mathbb{F}_q
Type B/C	$X_r(T) = n_r(\lambda_T^+) = #$ of <i>r</i> -dimensional <i>Fr</i> _q -stable subtori of <i>T</i> irreducible over \mathbb{F}_q that split over \mathbb{F}_{q^r}
	$Y_r(T) = n_r(\lambda_T^-) = #$ of <i>r</i> -dimensional Fr_q -stable subtori of T irreducible over \mathbb{F}_q that do not split over \mathbb{F}_{q^r}

A **split** Fr_q -stable maximal torus: $T_0 = \left\{ \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1^{-1} \end{bmatrix} \middle| \lambda_1 \in \overline{\mathbb{F}}_{\rho}^{\times} \right\}$ $T_0 \rightsquigarrow (1)(\overline{1}) \in B_1$ $X_1(T_0) = 1; Y_1(T_0) = 0$ For $\epsilon \in \mathbb{F}_q^{\times}$ not a square in \mathbb{F}_q a **non-split** torus $T_{\epsilon} = \left\{ \begin{bmatrix} x & y \\ \epsilon y & x \end{bmatrix} \mid x, y \in \overline{\mathbb{F}}_p, \ x^2 - \epsilon y^2 = 1 \right\}$ $T_0 \rightsquigarrow (1 \ \overline{1}) \in B_1$ $X_1(T_{\epsilon}) = 0; \ Y_1(T_{\epsilon}) = 1.$

Flag varieties

${\sf G}_(\mathbb{C})$	Generalized flag variety $X_n = \mathcal{F}\mathbf{G}_n$	$H^{2*}(\mathcal{F} G_n;\mathbb{C})\cong R^*_n \text{ (Borel)}$
$\operatorname{GL}_n(\mathbb{C})$	Complete flags in \mathbb{C}^n $\{0 \subseteq V_1 \subseteq \ldots \subseteq V_n = \mathbb{C}^n : \dim V_m = m\}$	$S_n \curvearrowright \mathbb{C}[x_1, \dots, x_n]/I_{S_n}$ $I_{S_n} = \langle S_n$ -invariant polynomials $ angle$
$SO_{2n+1}(\mathbb{C})$	Complete flags in \mathbb{C}^{2n+1} equal to their orthogonal complements	$B_n \curvearrowright \mathbb{C}[x_1, \dots, x_n]/I_{B_n}$ $I_{B_n} = \langle B_n$ -invariant polynomials $ angle$
$\operatorname{Sp}_{2n}(\mathbb{C})$	Complete flags in \mathbb{C}^{2n} equal to their symplectic complements	$B_n \curvearrowright \mathbb{C}[x_1, \dots, x_n]/I_{B_n}$ $I_{B_n} = \langle B_n$ -invariant polynomials $ angle$

Multiplicity stability: $n \rightarrow \infty$

Sequence of W_n -representations satisfies *multiplicity stability*:

the decomposition into irreducibles "stabilizes" for n large

$$H^{1}(\mathcal{M}_{S_{4}}(\mathbb{C});\mathbb{C}) = V(\underline{\qquad}) \oplus V(\underline{\qquad}) \oplus V(\underline{\qquad})$$

$$H^{1}(\mathcal{M}_{S_{5}}(\mathbb{C});\mathbb{C}) = V(\underline{\qquad}) \oplus V(\underline{\qquad}) \oplus V(\underline{\qquad})$$

$$H^{1}(\mathcal{M}_{S_{6}}(\mathbb{C});\mathbb{C}) = V(\underline{\qquad}) \oplus V(\underline{\qquad}) \oplus V(\underline{\qquad})$$

$$\vdots$$

$$H^{1}(\mathcal{M}_{S_{n}}(\mathbb{C});\mathbb{C}) = V(\underline{\qquad}) \oplus V(\underline{\qquad})$$

$\mathsf{FI}_{\mathcal{W}}\text{-modules}$

Category $Fl_{\mathcal{W}}$: Obj: $\mathbf{n} = \{1, \overline{1}, ..., n, \overline{n}\}$; Morph: End_{$Fl_{\mathcal{W}}$} (\mathbf{n}) = $\mathcal{W}_n \& I : \mathbf{n} \hookrightarrow \mathbf{n} + \mathbf{1}$ **Fl**_{\mathcal{W}}-module (over *R*): functor from Fl_{\mathcal{W}} to *R*-modules

 $\begin{array}{l} \mathbf{n} \mapsto H^{1}(\mathcal{M}_{\mathcal{W}_{n}}(\mathbb{C});\mathbb{C}) \supset \{\alpha_{ij} : \alpha_{ij} = \alpha_{ji}, i \neq j, i, j \in [n]\} \curvearrowleft \mathcal{W}_{n} \\ \text{generated by } \alpha_{12} \in H^{1}(\mathcal{M}_{\mathcal{W}_{2}}(\mathbb{C});\mathbb{C}) \text{ (Fl}_{\mathcal{W}}\text{-deg 2)} \end{array}$

 $FI_{\mathcal{W}}$ -algebras:

$$\begin{split} \mathbf{n} &\mapsto H^*(\mathcal{M}_{\mathcal{W}_n}(\mathbb{C});\mathbb{C}) \\ & \text{generated (as } \mathsf{Fl}_{\mathcal{W}}\text{-algebra) by } H^1(\mathcal{M}_{\mathcal{W}_n}(\mathbb{C});\mathbb{C}) \text{ (Fl}_{\mathcal{W}}\text{-deg 2)} \\ \mathbf{n} &\mapsto \mathbb{K}[x_1, x_2, \dots, x_n] \curvearrowleft \mathcal{W}_n \\ & \text{generated (as } \mathsf{Fl}_{\mathcal{W}}\text{-algebra) by } \mathbb{K}[x_1]_{(1)} \text{ (Fl}_{\mathcal{W}}\text{-deg 1)} \end{split}$$

Representation stability and $\mathsf{FI}_{\mathcal{W}}\text{-modules}$

 $[\mathsf{CEF}, \mathsf{Wilson}] \text{ } \textbf{Repstability} = \mathsf{f.g. } \mathsf{FI}_{\mathcal{W}} \text{-module} \Longrightarrow \mathsf{multiplicity} \text{ stability}$

Theorem (Church–Farb–Ellenberg, Wilson)

The sequences of \mathcal{W}_n -representations

- $\left\{ H^k(\mathcal{M}_{\mathcal{W}_n}(\mathbb{C});\mathbb{C}) \right\}_n$
- $\left\{ H^k(\mathcal{F}\mathbf{G}_n(\mathbb{C});\mathbb{C}) \right\}_n$

are finitely generated $FI_{\mathcal{W}}$ -modules.

Key consequences: Let $\psi_n^k = W_n$ -character of $H^k(\mathcal{M}_{W_n}(\mathbb{C}); \mathbb{C})$ or $H^{2k}(\mathcal{F}\mathbf{G}_n(\mathbb{C}); \mathbb{C})$

- Then ψ_n^k are given by a unique character polynomial for n >> k.
- For every character polynomial P

$$\langle P, \psi_n^k \rangle_{\mathcal{W}_n}$$
 is constant for $n >> k$

Representation stability \Rightarrow asymptotic stability

Theorem

Let P a polynomial factorization statistic, then

$$C(n,q)\sum_{f\in\mathcal{Y}_n(q)}P(f)=\sum_{k=0}^n(-1)^kq^{n-k}\langle P,\psi_n^k\rangle_{\mathcal{W}_n}$$

Theorem (Church–Ellenberg–Farb, J. R.–Wilson, Casto *)

Let P a polynomial factorization statistic, then

$$\lim_{n\to\infty}\frac{\sum_{f\in\mathcal{Y}_n(q)}P(f)}{|\mathcal{Y}_n(q)|}=\sum_{k=0}^{\infty}(-1)^kq^{-k}\lim_{n\to\infty}\left\langle P,\psi_n^k\right\rangle_{\mathcal{W}_n}$$

and the series converges.

Convergence: FI_{W} -degree of generators

Question (J. R.– Wilson) What's the underlying structure of $\{A_n^k \curvearrowleft \mathcal{W}_n\}$ such that for every character polynomial P the formula $\sum_{k=0}^{\infty} (-1)^k q^{-k} \lim_{n \to \infty} \langle P, \chi_{A_n^k} \rangle_{\mathcal{W}_n}$ converges?

• If $A_n^k \subset H_n^k$, where H^* is a FI_W-algebra f.g. in FI_W-deg $\leq 1 \Rightarrow \checkmark$

Ex. Co-invariant algebras \Rightarrow asymptotic for Fr_q -stable maximal tori

• Generators in FI_W -degree two or more \neq convergence:

Theorem (J.R.–Wilson) Let A^* be a graded $Fl_{\mathcal{W}}$ -algebra containing the free symmetric algebra on $\{\alpha_{i,j} : i \neq j\}$. Then the series $\sum_{k=0}^{\infty} (-1)^k q^{-k} \lim_{n \to \infty} \langle 1, \chi_{A_n^k} \rangle_{\mathcal{W}_n}$ does NOT converge.

• Hyperplane arrangements have generators in FI_W -degree two:

to get convergence we consider relations

Computing asymptotics using topology

Table 1

Some statistics for Frobenius-stable maximal tori of $\operatorname{Sp}_{2n}(\overline{\mathbb{F}_q})$ and $\operatorname{SO}_{2n+1}(\overline{\mathbb{F}_q})$.

Fr_q -stable maximal tori statistic for $\operatorname{Sp}_{2n}(\overline{\mathbb{F}_q})$ and $\operatorname{SO}_{2n+1}(\overline{\mathbb{F}_q})$	Hyperoctahedral character	Formula in terms of n	$\begin{array}{l} \text{Limit as} \\ n \to \infty \end{array}$
Total number of Fr_q -stable maximal tori	1	q^{2n^2} (Steinberg)	
Expected number of 1-dimensional Fr_q -stable subtori	$X_1 + Y_1$	$1 + \frac{1}{q^2} + \frac{1}{q^4} + \cdots + \frac{1}{q^{2n-2}}$	$rac{q^2}{(q^2-1)}$
Expected number of split 1-dimensional Fr _g -stable subtori	X_1	$rac{1}{2}\left(1+rac{1}{q}+rac{1}{q^2}+\cdots rac{1}{q^{2n-1}} ight)$	$rac{q}{2(q-1)}$
Expected value of reducible minus irreducible Fr_q -stable 2-dimensional subtori	$\binom{X_1+Y_1}{2} - (X_2+Y_2)$	$\frac{\left(q^4 - \frac{1}{q^{2n}}\right) \left(1 - \frac{1}{q^{2(n-1)}}\right)}{(q^2 - 1)(q^4 - 1)}$	$rac{q^4}{(q^2\!-\!1)(q^4\!-\!1)}$
Expected value of split minus non-split Fr_q -stable 2-dimensional irreducible subtori	$X_2 - Y_2$	$rac{q^2 \left(1-rac{1}{q^{2n}} ight) \left(1-rac{1}{q^{2(n-1)}} ight)}{2(q^4\!-\!1)}$	$rac{q^2}{2(q^4-1)}$

Computing asymptotics using other techniques

Theorem (Fulman – J. R.– Wilson)

(i) (Type A). Let λ be a fixed partition. Let 𝒱_n(q) denote the set of Fr_q-stable maximal tori of GL_n(𝔅_q). Then

$$\lim_{n\to\infty}\frac{1}{q^{n^2-n}}\sum_{T\in\mathcal{Y}_n(q)}\binom{X}{\lambda}(T)=\frac{1}{Z_\lambda}\prod_{r=1}^{|\lambda|}\left(\frac{q^r}{q^r-1}\right)^{n_r(\lambda)}$$

(ii) (Type B/C). Fix partitions μ and λ. Let Y_n(q) denote the set of Fr_q-stable maximal tori of SO_{2n+1}(F_q) or Sp_{2n}(F_q). Then

$$\lim_{n\to\infty}\frac{1}{q^{2n^2}}\sum_{T\in\mathcal{Y}_n(q)}\binom{X}{\mu}\binom{Y}{\lambda}(T)=\frac{1}{\nu_{\mu}\nu_{\lambda}}\prod_{r=1}^{|\mu|}\left(\frac{q^r}{q^r-1}\right)^{n_r(\mu)}\prod_{r=1}^{|\lambda|}\left(\frac{q^r}{q^r+1}\right)^{n_r(\lambda)}.$$

$$\binom{X}{\lambda}(\sigma) := \prod_{r=1}^{|\lambda|} \binom{X_r(\sigma)}{n_r(\lambda)} \text{ for all } \sigma \in S_n \qquad \qquad Z_\lambda = \prod_{r=1}^{|\lambda|} n_r(\lambda)! r^{n_r(\lambda)}$$

Asymptotic statistics \Rightarrow compute stable multiplicities

Corollary (Chen, Fulman - J. R.- Wilson)

Given P a polynomial factorization statistics

$$\beta_i := \lim_{n \to \infty} \langle \boldsymbol{P}, \psi_n^i \rangle_{\mathcal{W}_n} = \lim_{n \to \infty} \dim_{\mathbb{C}} H^i(\mathcal{Y}_n(\mathbb{C}); \boldsymbol{V}_n^{\mathcal{P}})$$

The generating function $\sum_{i=0}^{\infty} \beta_i z^i$ is a rational function.

Example 3.9. (Example: \mathbb{C}^n). Character polynomial:

$$P^{\mathbb{C}^n} = X_1 - Y_1$$
$$= \begin{pmatrix} X \\ \Box \end{pmatrix} - \begin{pmatrix} Y \\ \Box \end{pmatrix}$$

Betti numbers:

Recu

$$\sum_{i=0}^{\infty} \beta_i z^i = \frac{z}{(1-z)(1+z)}$$

= $z + z^3 + z^5 + z^7 + z^9 + \dots + z^{2d+1} + \dots$
rrence: $\beta_d = \beta_{d-2}$ for $d \ge 3$.

Asymptotic statistics \Rightarrow multiplicity stability

Corollary (Chen, Fulman - J. R.- Wilson)

- Obtain a generating function for the characters ψ_n^k
- ψ_n^k are eventually given by character polynomials Q_k
- Recover multiplicity stability:
 - $\langle P, \psi_n^k \rangle_{W_n}$ is constant for n >> k if P is any character polynomial
- Obtain a generating function for those character polynomials Q_k
- Have another proof of Theorem *

Question: Identify other families where asymptotic stability of statistics could be used to compute stable multiplicities or stable characters