# Representation stability and asymptotic stability of factorization statistics 

Rita Jiménez Rolland

Instituto de Matemáticas, UNAM-Oaxaca

University of British Columbia
Vancouver, Canada
June 12, 2019

## Arithmetic

factorization statistics of

$$
\mathcal{Y}_{n}(q)=\mathcal{Y}_{n}\left(\overline{\mathbb{F}}_{q}\right)^{\mathrm{Fr}_{q}}
$$

factorization statistics of polynomials over $\mathbb{F}_{q}$
'factorization' statistics of $\mathrm{Fr}_{q}$-stable maximal tori in algebraic groups
asypmtotic stability
of polynomial factorization statistics

## Topology

$$
\mathcal{W}_{n} \curvearrowright H^{*}\left(\mathcal{X}_{n} ; \mathbb{C}\right)
$$

cohomology of
hyperplane complements
cohomology of
flag varieties
representation/multiplicity
stability

## Hyperplane complements of type $\mathcal{W}_{n}$

| Type | Symmetric group | Permutation <br> $A_{n-1}$ |
| :---: | :---: | :---: |
| $S_{n} \curvearrowright\{1, \ldots, n\}$ | matrices $n \times n$ |  |
| Type | Hyperocthahedral group |  |
| $B_{n} / C_{n}$ | $B_{n} \curvearrowright\{ \pm 1, \ldots, \pm n\}$ | Signed permutation <br> matrices $n \times n$ |

$\mathcal{W}_{n} \curvearrowright \mathbb{R}^{n}$ by (signed) permutation matrices

$$
\mathcal{X}_{n}=\mathcal{M}_{\mathcal{W}_{n}}(\mathbb{C}):=\mathbb{C}^{n} \backslash \text { complexified reflection hyperplanes }
$$

$$
\mathcal{W}_{n} \curvearrowright \mathcal{M}_{\mathcal{W}_{n}}(\mathbb{C}) \text { freely }
$$

## Hyperplane complements and polynomials

| $\mathcal{W}_{n}$ | $S_{n}$ | $B_{n}$ |
| :---: | :---: | :---: |
| $\mathcal{M}_{\mathcal{W}_{\mathrm{n}}}(\mathbb{C})$ | $\begin{gathered} \mathbb{C}^{n} \backslash\left\{z_{i}-z_{j}=0\right\} \\ \mathcal{M}_{S_{n}}(\mathbb{C})=\operatorname{PConf}_{n}(\mathbb{C}) \end{gathered}$ | $\begin{gathered} \mathbb{C}^{n} \backslash\left\{z_{i} \pm z_{j}=0, z_{i}=0\right\} \\ \mathcal{M}_{B_{n}}(\mathbb{C}) \end{gathered}$ |
| $\begin{gathered} \left(\mathcal{M}_{\mathcal{W}_{n}} / \mathcal{W}_{n}\right)(\mathbb{C}) \\ \mathcal{Y}_{\mathcal{W}_{n}}(\mathbb{C}) \end{gathered}$ | $\begin{gathered} \left\{\left\{z_{1}, \ldots, z_{n}\right\}: z_{i} \in \mathbb{C}\right\} \\ \mathcal{Y}_{S_{n}}(\mathbb{C})=\operatorname{Conf}_{n}(\mathbb{C}) \end{gathered}$ | $\left\{\left\{ \pm z_{1}, \ldots, \pm z_{n}\right\}: z_{i} \in \mathbb{C}^{\times}\right\}$ |
| Space of polynomials | $\left\{\left(x-z_{1}\right) \cdots\left(x-z_{n}\right): z_{i} \neq z_{j}\right\}$ | $\begin{gathered} \left\{\left(x-z_{1}^{2}\right) \cdots\left(x-z_{n}^{2}\right): z_{i}^{2} \neq z_{j}^{2}\right. \\ \left.z_{i} \neq 0\right\} \end{gathered}$ |

## Hyperplane complements and polynomials

$\mathcal{Y}_{S_{n}}$ and $\mathcal{Y}_{B_{n}}$ are algebraic varieties defined over $\mathbb{Z}$
$\mathcal{P o l y}_{n}(\mathbb{K}):=\{f \in \mathbb{K}[x]: f$ is monic of degree $n\}$ for a field $\mathbb{K}$
$\mathcal{Y}_{\mathcal{W}_{n}}(\mathbb{K})=$ the $\mathbb{K}$-points of $\mathcal{Y}_{\mathcal{W}_{n}}$

$$
\mathcal{Y}_{S_{n}}(\mathbb{K})=\left\{f \in \mathcal{P} \text { oly } y_{n}(\mathbb{K}) \text { with no repeated roots }\right\}
$$

$\mathcal{Y}_{B_{n}}(\mathbb{K})=\left\{f \in \mathcal{P}\right.$ oly $y_{n}(\mathbb{K})$ with no repeated roots and $\left.f(0) \neq 0\right\}$

$$
\mathbb{K}=\mathbb{F}_{q}, \overline{\mathbb{F}}_{q} \quad \text { v.s. } \quad \mathbb{K}=\mathbb{C}
$$

$$
\mathcal{Y}_{n}(q):=\mathcal{Y}_{\mathcal{W}_{n}}\left(\mathbb{F}_{q}\right)
$$

## Factorization type

$f \in \mathcal{P o l y} y_{n}\left(\mathbb{F}_{q}\right) \rightsquigarrow$ factorization type of $f$
$\lambda_{f} \vdash n$ degrees of irreducible factors of $f(x)$

$$
\begin{aligned}
& x^{3}\left(x^{2}+1\right) \in \operatorname{Poly}_{5}\left(\mathbb{F}_{3}\right) \rightsquigarrow\left(1^{3} 2^{1}\right) \vdash 5 \\
& (x+1)(x-1)\left(x^{3}-x+1\right) \in \operatorname{Poly}_{5}\left(\mathbb{F}_{3}\right) \rightsquigarrow\left(1^{2} 3^{1}\right) \vdash 5
\end{aligned}
$$

Remarks:

- $\operatorname{Fr}_{q} \curvearrowright \mathcal{Y}_{\mathcal{W}_{n}}\left(\overline{\mathbb{F}}_{q}\right)$ and $\mathcal{Y}_{\mathcal{W}_{n}}\left(\mathbb{F}_{q}\right)=\left(\mathcal{Y}_{\mathcal{W}_{n}}\left(\overline{\mathbb{F}}_{q}\right)\right)^{\mathrm{Fr}_{q}}$
- factorization types given are given by $\mathrm{Fr}_{q}$-orbits:

Type A: $\operatorname{Fr}_{q} \curvearrowright\left\{x \in \overline{\mathbb{F}}_{q}: f(x)=0\right\} \rightsquigarrow \lambda_{f}$
Type B/C: $\operatorname{Fr}_{q} \curvearrowright\left\{x \in \overline{\mathbb{F}}_{q}: f\left(x^{2}\right)=0\right\} \rightsquigarrow\left(\lambda_{f}^{+}, \lambda_{f}^{-}\right)$

$$
\begin{aligned}
& \left(x^{2}-1\right)=(x-1)(x+1) \in \mathcal{Y}_{S_{2}}\left(\mathbb{F}_{3}\right) \rightsquigarrow\left(1^{2}\right) \vdash 2 \\
& \left(x^{2}-1\right)=(x-1)(x+1) \in \mathcal{Y}_{B_{2}}\left(\mathbb{F}_{3}\right) \rightsquigarrow\left(1^{1}, 1^{1}\right) \text { double partition of } 2
\end{aligned}
$$

## Factorization statistics for $\mathcal{P}$ oly $y_{n}\left(\mathbb{F}_{q}\right)$ and $\mathcal{Y}_{\mathcal{W}_{n}}\left(\mathbb{F}_{q}\right)$

A factorization statistic $P: \mathcal{P o l y}\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{Q}$ s.t. $P(f)$ only depends on $\lambda_{f}$

- $R(f)=\#$ roots of $f$ in $\mathbb{F}_{q}$
- $X_{k}(f)=n_{k}\left(\lambda_{f}\right)=\#$ degree- $k$ irreducible factors of $f$ over $\mathbb{F}_{q}$

$$
X_{1}(g)=R(g)=3 \text { for } g=x\left(x^{2}-1\right)\left(x^{2}+1\right) \in \mathcal{Y}_{S_{5}}\left(\mathbb{F}_{3}\right) \subset \mathcal{P o l y}_{5}\left(\mathbb{F}_{3}\right)
$$

- For $f \in \mathcal{Y}_{B_{n}}\left(\mathbb{F}_{q}\right)$

$$
\begin{gathered}
X_{k}^{+}(f)=n_{k}\left(\lambda_{f}^{+}\right)=\# \text { degree- } k \text { QR irred factors of } f \text { over } \mathbb{F}_{q} \\
X_{k}^{-}(f)=n_{k}\left(\lambda_{f}^{-}\right)=\# \text { degree- } k \text { NQR irred factors of } f \text { over } \mathbb{F}_{q} \\
X_{1}^{+}(f)=1 \text { and } X_{1}^{-}(f)=1 \text { for } f=(x-1)(x+1) \in \mathcal{Y}_{B 2}\left(\mathbb{F}_{3}\right)
\end{gathered}
$$

We focus on polynomial factorization statistics:

$$
\begin{gathered}
P \in \mathbb{Q}\left[X_{1}, X_{2}, \ldots\right] \text { or } P \in \mathbb{Q}\left[X_{1}^{+}, X_{1}^{-}, X_{2}^{+}, X_{2}^{-} \ldots\right] \\
P: \bigsqcup_{n \geq 1} \mathcal{W}_{n} \longrightarrow \mathbb{Q} \text { character polynomial }
\end{gathered}
$$

## Factorization statistics and hyperplane complements

## Theorem (Twisted Grothendieck-Lefschetz trace formula)

Let $P$ be a factorization statistic defined over $\mathcal{Y}_{n}(q)$

$$
\frac{1}{q^{n}} \sum_{f \in \mathcal{Y}_{n}(q)} P(f)=\sum_{k \geq 0}(-1)^{k} \frac{\left\langle P, \psi_{n}^{k}\right\rangle_{\mathcal{W}_{n}}}{q^{k}}
$$

Arithmetic: $P: \mathcal{Y}_{n}(q) \rightarrow \mathbb{Q}$ factorization statistic for $\mathcal{Y}_{n}(q)=\mathcal{Y}_{\mathcal{W}_{n}}\left(\overline{\mathbb{F}}_{q}\right)^{\mathrm{Fr}_{q}} \subset \mathcal{P o l y} y_{n}\left(\mathbb{F}_{q}\right)$

Topology: $\mathcal{W}_{n} \curvearrowright H^{*}\left(\mathcal{M}_{\mathcal{W}_{n}}(\mathbb{C}) ; \mathbb{C}\right)$
$\psi_{n}^{k}$ is the $\mathcal{W}_{n}$-character of $H^{k}\left(\mathcal{M}_{\mathcal{W}_{n}}(\mathbb{C}) ; \mathbb{C}\right)$
$\langle\cdot, \cdot\rangle_{\mathcal{W}_{n}}$ the standard inner product of
$\mathcal{W}_{n}$-class functions

- Follows from results of Grothendieck, Artin, Lehrer and Kim Type A: Church-Ellenberg-Farb (2014) Type B/C: J.R.-Wilson, Casto, Matei (2017)


## Factorization statistics and hyperplane complements

## Example: counting polynomials

$P(\sigma)=1$ for all $\sigma \in \mathcal{W}_{n}$

$$
\begin{gathered}
\frac{1}{q^{n}} \sum_{f \in \mathcal{W}_{n}\left(\mathbb{F}_{q}\right)} 1=\sum_{k=0}^{n}(-1)^{k} q^{-k} \operatorname{dim}_{\mathbb{C}} H^{k}\left(\mathcal{Y}_{\mathcal{W}_{n}}(\mathbb{C}) ; \mathbb{C}\right) \\
\left|\mathcal{Y}_{\mathcal{W}_{n}}\left(\mathbb{F}_{q}\right)\right|=q^{n} P_{\mathcal{Y}_{w_{n}}(\mathbb{C})}\left(-q^{-1}\right)
\end{gathered}
$$

Arithmetic:
Topology:

$$
\left|\operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)\right|=q^{n}-q^{n-1}
$$

$$
H^{k}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)= \begin{cases}\mathbb{Q} & k=0 \\ \mathbb{Q} & k=1 \\ 0 & k \geq 2\end{cases}
$$

(Arnol'd, F.Cohen)

$$
\begin{aligned}
& H^{k}\left(\mathcal{Y}_{B_{n}}(\mathbb{C})\right)= \begin{cases}\mathbb{Q} & k=0 \\
\mathbb{Q}^{2} & 0<k<n \\
\mathbb{Q} & k=n \\
0 & k>2\end{cases} \\
& \text { (Brieskorn, Lehrer) }
\end{aligned}
$$

## Unrestricted factorization statistics

## Theorem (Hyde 2017)

Let $P$ be a factorization statistic defined over $\mathcal{P o l y} y_{n}\left(\mathbb{F}_{q}\right)$

$$
\frac{1}{q^{n}} \sum_{f \in \mathcal{P O O l y}_{n}\left(\mathbb{F}_{q}\right)} P(f)=\sum_{k \geq 0} \frac{\left\langle P, \phi_{n}^{k}\right\rangle_{\mathcal{S}_{n}}}{q^{k}}
$$

$$
\begin{array}{lr}
\text { Arithmetic: } P \text { is a factorization } & \text { Topology: } \phi_{n}^{k} \text { is the } \mathcal{S}_{n} \text {-character of } \\
\text { statistics for } \mathcal{P o l y} y_{n}\left(\mathbb{F}_{q}\right) & H^{2 k}\left(\operatorname{PConf}_{n}\left(\mathbb{R}^{3}\right) ; \mathbb{C}\right)
\end{array}
$$

- His proof uses a splitting measure interpretation.
- Same approach recovers type A formula for $\mathcal{Y}_{S_{n}}\left(\mathbb{F}_{q}\right)$. Bonus: gives an efficient, direct way to compute the characters $\psi_{n}^{k}$ and $\phi_{n}^{k}$.


## Questions:

- Can this approach be used to recover the type B/C formula for $\mathcal{Y}_{B_{n}}\left(\mathbb{F}_{q}\right)$ ?
- (Hyde) Is there a geometric interpretation of the connection between factorization statistics on $\mathcal{P}$ oly $y_{n}\left(\mathbb{F}_{q}\right)$ and the cohomology of $\operatorname{PConf}_{n}\left(\mathbb{R}^{3}\right)$ ?


## Statistics for $F r_{q}$-stable maximal tori and flag varieties

## Theorem (Lehrer)

Let $P$ be a factorization statistic defined over $\mathcal{Y}_{n}(q)$

$$
\frac{1}{\left|\mathcal{Y}_{n}(q)\right|} \sum_{T \in \mathcal{Y}_{n}(q)} P(T)=\sum_{k \geq 0}(-1)^{k} \frac{\left\langle P, \psi_{n}^{k}\right\rangle_{\mathcal{W}_{n}}}{q^{k}}
$$

Arithmetic: $P$ is a 'factorization' statistic for $\mathcal{Y}_{n}(q)=\left\{\operatorname{Fr}_{q}\right.$-stable maximal tori in $\left.\mathbf{G}_{n}\left(\overline{\mathbb{F}}_{q}\right)\right\}$

Topology: $\mathcal{W}_{n} \curvearrowright H^{*}\left(\mathcal{F} \mathbf{G}_{n} ; \mathbb{C}\right)$ $\psi_{n}^{k}$ is the $\mathcal{W}_{n}$-character of $H^{2 k}\left(\mathcal{F} \mathbf{G}_{n} ; \mathbb{C}\right)$ $\langle\cdot, \cdot\rangle_{\mathcal{W}_{n}}$ the standard inner product of $\mathcal{W}_{n}$-class functions

- (Steinberg): $\left|\mathcal{Y}_{n}(q)\right|=q^{n^{2}-n}$ if $\mathbf{G}_{n}=\mathrm{GL}_{n}$

$$
\left|\mathcal{Y}_{n}(q)\right|=q^{2 n^{2}} \text { if } \mathbf{G}_{n}=\mathrm{Sp}_{2 n}\left(\text { or } \mathbf{G}_{n}=\mathrm{SO}_{2 n+1}\right)
$$

- Can be obtain from a Twisted Grothendieck-Lefschetz trace formula (CEF 2014)
Type A: Church-Ellenberg-Farb (2014)
Type B/C: J.R.-Wilson, Casto, Matei (2017)


## Families of algebraic groups

| Algebraic groups | $\mathbf{G}_{n}$ | Weyl group $\mathcal{W}_{\mathbf{n}}$ | Type |
| :---: | :---: | :---: | :---: |
| general linear groups | $\mathrm{GL}_{n}$ | $S_{n}$ (symmetric group) | $A$ |
| special orthogonal groups | $\mathrm{SO}_{2 n+1}$ | $B_{n}$ (hyperoctahedral group) | $B$ |
| symplectic groups | $\mathrm{Sp}_{2 n}$ | $B_{n}$ (hyperoctahedral group) | $C$ |

$\mathbf{G}_{n}$ is defined over a field $\mathbb{K}=\mathbb{F}_{q}, \overline{\mathbb{F}}_{q}, \mathbb{C}$

$$
\mathbf{G}_{n}(\mathbb{K})=\mathbb{K} \text {-points of the algebraic group }
$$

## $\mathrm{Fr}_{q^{-}}$-stable maximal tori in $\mathbf{G}_{n}\left(\overline{\mathbb{F}}_{q}\right)$

T torus in $\mathbf{G}_{n}(\mathbb{K})$ : subgroup $\mathbb{K}$-isom. to a product of $\mathrm{GL}_{1}(\mathbb{K})$
T maximal torus: if $T^{\prime}$ is a torus and $T \subseteq T^{\prime}$, then $T=T^{\prime}$
When $\mathbb{K}=\overline{\mathbb{F}}_{q}$
$\mathbf{T} F r_{q}$-stable: $T$ is stable under the Frobenius action:

$$
F r_{q}: \mathbf{G}_{n}\left(\overline{\mathbb{F}}_{q}\right) \rightarrow \mathbf{G}_{n}\left(\overline{\mathbb{F}}_{q}\right) \quad \text { given by } \quad\left(x_{i, j}\right) \mapsto\left(x_{i, j}^{q}\right)
$$

## Examples:

$$
\begin{aligned}
& T_{0}=\left\{\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}: \lambda_{i} \in \overline{\mathbb{F}}_{q}^{\times}\right\} \subseteq \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right) \\
& T_{0}=\left\{\operatorname{diag}\left\{1, \lambda_{1}, \ldots, \lambda_{n}, \lambda_{1}^{-1}, \ldots, \lambda_{n}^{-1}\right\}: \lambda_{i} \in \overline{\mathbb{F}}_{q}^{\times}\right\} \subseteq \mathrm{SO}_{2 n+1}\left(\overline{\mathbb{F}}_{q}\right) \\
& T_{0}=\left\{\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}, \lambda_{1}^{-1}, \ldots, \lambda_{n}^{-1}\right\}: \lambda_{i} \in \overline{\mathbb{F}}_{q}^{\times}\right\} \subseteq \mathrm{Sp}_{2 n}\left(\overline{\mathbb{F}}_{q}\right)
\end{aligned}
$$

$$
\mathcal{Y}_{n}(q):=\left\{T \leq \mathbf{G}_{n}\left(\overline{\mathbb{F}}_{q}\right): T \text { is a } F r_{q} \text {-stable maximal torus }\right\}
$$

## 'Factorization' statistics for $\mathrm{Fr}_{q}$-stable maximal tori

$T \in \mathcal{Y}_{n}(q) \rightsquigarrow w_{T} \in \mathcal{W}_{n} \rightsquigarrow$ 'factorization type' of $T$ :

$$
\lambda_{T} \vdash n \text { or }\left(\lambda_{T}^{+}, \lambda_{T}^{-}\right)
$$

'Factorization' statistic: $P: \mathcal{Y}_{n}(q) \longrightarrow \mathbb{Q}$
Type A $\quad X_{r}(T)=n_{r}\left(\lambda_{T}\right)=$ \# of $r$-dimensional $F r_{q}$-stable subtori of $T$ irreducible over $\mathbb{F}_{q}$

Type B/C $\quad X_{r}(T)=n_{r}\left(\lambda_{T}^{+}\right)=$\# of $r$-dimensional $F r_{q}$-stable subtori of $T$ irreducible over $\mathbb{F}_{q}$ that split over $\mathbb{F}_{q^{r}}$
$Y_{r}(T)=n_{r}\left(\lambda_{\bar{T}}^{-}\right)=$\# of $r$-dimensional $F r_{q}$-stable subtori of $T$ irreducible over $\mathbb{F}_{q}$ that do not split over $\mathbb{F}_{q^{r}}$

A split $\mathrm{Fr}_{q}$-stable maximal torus:

$$
\begin{aligned}
& T_{0}=\left\{\left.\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{1}^{-1}
\end{array}\right] \right\rvert\, \lambda_{1} \in \overline{\mathbb{F}}_{p}^{\times}\right\} \\
& T_{0} \rightsquigarrow(1)(\overline{1}) \in B_{1} \\
& X_{1}\left(T_{0}\right)=1 ; Y_{1}\left(T_{0}\right)=0
\end{aligned}
$$

For $\epsilon \in \mathbb{F}_{q}^{\times}$not a square in $\mathbb{F}_{q}$ a non-split torus

$$
\begin{aligned}
& T_{\epsilon}=\left\{\left.\left[\begin{array}{cc}
x & y \\
\epsilon y & x
\end{array}\right] \right\rvert\, x, y \in \overline{\mathbb{F}}_{p}, x^{2}-\epsilon y^{2}=1\right\} \\
& T_{0} \rightsquigarrow(1 \overline{1}) \in B_{1} \\
& X_{1}\left(T_{\epsilon}\right)=0 ; Y_{1}\left(T_{\epsilon}\right)=1 .
\end{aligned}
$$

## Flag varieties

| $\mathbf{G}_{( }(\mathbb{C})$ | Generalized flag variety $\mathcal{X}_{n}=\mathcal{F} \mathbf{G}_{n}$ | $\mathbf{H}^{2 *}\left(\mathcal{F} \mathbf{G}_{\mathbf{n}} ; \mathbb{C}\right) \cong \mathbf{R}_{\mathrm{n}}^{*}($ Borel $)$ |
| :---: | :---: | :---: |
| $\mathrm{GL}_{n}(\mathbb{C})$ | Complete flags in $\mathbb{C}^{n}$ $\left\{0 \subseteq V_{1} \subseteq \ldots \subseteq V_{n}=\mathbb{C}^{n}: \operatorname{dim} V_{m}=m\right\}$ | $\begin{gathered} S_{n} \curvearrowright \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I_{S_{n}} \\ I_{S_{n}}= \\ \left\langle S_{n} \text {-invariant polynomials }\right\rangle \end{gathered}$ |
| $\mathrm{SO}_{2 n+1}(\mathbb{C})$ | Complete flags in $\mathbb{C}^{2 n+1}$ equal to their orthogonal complements | $\begin{gathered} B_{n} \curvearrowright \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I_{B_{n}} \\ I_{B_{n}}= \\ \left\langle B_{n} \text {-invariant polynomials }\right\rangle \end{gathered}$ |
| $\mathrm{Sp}_{2 n}(\mathbb{C})$ | Complete flags in $\mathbb{C}^{2 n}$ equal to their symplectic complements | $\begin{gathered} B_{n} \curvearrowright \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I_{B_{n}} \\ I_{B_{n}}=\left\langle B_{n} \text {-invariant polynomials }\right\rangle \end{gathered}$ |

## Multiplicity stability: $n \rightarrow \infty$

Sequence of $\mathcal{W}_{n}$-representations satisfies multiplicity stability:
the decomposition into irreducibles "stabilizes" for $n$ large

$$
\begin{aligned}
& H^{1}\left(\mathcal{M}_{s_{4}}(\mathbb{C}) ; \mathbb{C}\right)=V(\square \square \square) \oplus V(\square \square) \oplus V(\square) \\
& H^{1}\left(\mathcal{M}_{S_{5}}(\mathbb{C}) ; \mathbb{C}\right)=V(\square \square \square \square) \oplus V(\square \square \square) \oplus V(\square) \\
& H^{1}\left(\mathcal{M}_{S_{6}}(\mathbb{C}) ; \mathbb{C}\right)=V(\square \square \square \square) \oplus V(\square \square \square) \oplus V(\square \square) \\
& H^{1}\left(\mathcal{M}_{S_{n}}(\mathbb{C}) ; \mathbb{C}\right)=V(\square \square \square \cdots \square) \oplus V(\square \square \ldots \square) \oplus V(\square \cdots \square) \text { for } n \geq 4 \\
& \begin{array}{r}
H^{1}\left(\mathcal{M}_{B_{n}}(\mathbb{C}) ; \mathbb{C}\right)=V(\square \square \square \cdots \square, \emptyset)^{\oplus 2} \oplus V\left(\square \cdots \square^{\square}, \emptyset\right)^{\oplus 2} \oplus V(\square \cdots \square, \emptyset)^{\oplus 2} \\
\oplus V(\square \square \square \square \cdots, \square \square)
\end{array}
\end{aligned}
$$

## $\mathrm{Fl}_{\mathcal{W}}$-modules

Category F $\mathcal{W}_{\mathcal{W}}$ : Obj: $\mathbf{n}=\{1, \overline{1}, \ldots, n, \bar{n}\} ;$ Morph: $^{\operatorname{End}_{F / \mathcal{W}}}(\mathbf{n})=\mathcal{W}_{n} \& I: \mathbf{n} \hookrightarrow \mathbf{n}+\mathbf{1}$
$\mathrm{Fl}_{\mathcal{W}}$-module (over $R$ ): functor from $\mathrm{Fl}_{\mathcal{W}}$ to $R$-modules


$$
\begin{gathered}
\mathbf{n} \mapsto H^{1}\left(\mathcal{M}_{\mathcal{W}_{n}}(\mathbb{C}) ; \mathbb{C}\right) \supset\left\{\alpha_{i j}: \alpha_{i j}=\alpha_{j j}, i \neq j, i, j \in[n]\right\} \curvearrowleft \mathcal{W}_{n} \\
\text { generated by } \alpha_{12} \in H^{1}\left(\mathcal{M}_{\mathcal{W}_{2}}(\mathbb{C}) ; \mathbb{C}\right)\left(\mathrm{FI}_{\mathcal{W}}\right. \text {-deg 2) }
\end{gathered}
$$

$\mathrm{Fl}_{\mathcal{W}}$-algebras:

$$
\begin{aligned}
& \mathbf{n} \mapsto H^{*}\left(\mathcal{M}_{\mathcal{N}_{n}}(\mathbb{C}) ; \mathbb{C}\right) \\
& \text { generated (as } \mathrm{Fl}_{\mathcal{W}} \text {-algebra) by } H^{1}\left(\mathcal{M}_{\mathcal{W}_{n}}(\mathbb{C}) ; \mathbb{C}\right)\left(\mathrm{Fl}_{\mathcal{W}}\right. \text {-deg 2) } \\
& \mathbf{n} \mapsto \mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right] \curvearrowleft \mathcal{W}_{n} \\
& \text { generated (as } \mathrm{Fl}_{\mathcal{W}} \text {-algebra) by } \mathbb{K}\left[x_{1}\right]_{(1)}\left(\mathrm{Fl}_{\mathcal{W}} \text {-deg } 1\right)
\end{aligned}
$$

## Representation stability and $\mathrm{FI}_{\mathcal{W}}$-modules

[CEF, Wilson] Repstability $=$ f.g. $\mathrm{Fl}_{\mathcal{W}}$-module $\Longrightarrow$ multiplicity stability

## Theorem (Church-Farb-Ellenberg, Wilson)

The sequences of $\mathcal{W}_{n}$-representations

- $\left\{H^{k}\left(\mathcal{M}_{\mathcal{W}_{n}}(\mathbb{C}) ; \mathbb{C}\right)\right\}_{n}$
- $\left\{H^{k}\left(\mathcal{F} \mathbf{G}_{n}(\mathbb{C}) ; \mathbb{C}\right)\right\}_{n}$
are finitely generated $F L_{\mathcal{W}}$-modules.
Key consequences: Let $\psi_{n}^{k}=\mathcal{W}_{n}$-character of $H^{k}\left(\mathcal{M}_{\mathcal{W}_{n}}(\mathbb{C})\right.$; $\left.\mathbb{C}\right)$ or $H^{2 k}\left(\mathcal{F} \mathbf{G}_{n}(\mathbb{C}) ; \mathbb{C}\right)$
- Then $\psi_{n}^{k}$ are given by a unique character polynomial for $n \gg k$.
- For every character polynomial $P$

$$
\left\langle P, \psi_{n}^{k}\right\rangle_{\mathcal{W}_{n}} \text { is constant for } n \gg k
$$

## Representation stability $\Rightarrow$ asymptotic stability

## Theorem

Let $P$ a polynomial factorization statistic, then

$$
C(n, q) \sum_{f \in \mathcal{Y}_{n}(q)} P(f)=\sum_{k=0}^{n}(-1)^{k} q^{n-k}\left\langle P, \psi_{n}^{k}\right\rangle_{\mathcal{W}_{n}}
$$

## Theorem (Church-Ellenberg-Farb, J. R.-Wilson, Casto * )

Let $P$ a polynomial factorization statistic, then

$$
\lim _{n \rightarrow \infty} \frac{\sum_{f \in \mathcal{Y}_{n}(q)} P(f)}{\left|\mathcal{Y}_{n}(q)\right|}=\sum_{k=0}^{\infty}(-1)^{k} q^{-k} \lim _{n \rightarrow \infty}\left\langle P, \psi_{n}^{k}\right\rangle_{\mathcal{W}_{n}}
$$

and the series converges.

## Convergence: $\mathrm{Fl}_{\mathcal{W}}$-degree of generators

Question (J. R.- Wilson) What's the underlying structure of $\left\{A_{n}^{k} \curvearrowleft \mathcal{W}_{n}\right\}$ such that for every character polynomial $P$ the formula $\sum_{k=0}^{\infty}(-1)^{k} q^{-k} \lim _{n \rightarrow \infty}\left\langle P, \chi_{A_{n}^{k}}\right\rangle_{\mathcal{W}_{n}}$ converges?

- If $A_{n}^{k} \subset H_{n}^{k}$, where $H^{*}$ is a $\mathrm{Fl}_{\mathcal{W}}$-algebra f.g. in $\mathrm{Fl}_{\mathcal{W}}$-deg $\leq 1 \Rightarrow \checkmark$

Ex. Co-invariant algebras $\Rightarrow$ asymptotic for $\mathrm{Fr}_{q}$-stable maximal tori

- Generators in $\mathrm{Fl}_{\mathcal{W}}$-degree two or more $\nRightarrow$ convergence:

Theorem (J.R.-Wilson) Let $A^{*}$ be a graded $\mathrm{FI}_{\mathcal{W}}$-algebra containing the free symmetric algebra on $\left\{\alpha_{i, j}: i \neq j\right\}$. Then the series $\sum_{k=0}^{\infty}(-1)^{k} q^{-k} \lim _{n \rightarrow \infty}\left\langle 1, \chi_{A_{n}^{k}}\right\rangle \mathcal{W}_{n}$ does NOT converge.

- Hyperplane arrangements have generators in $\mathrm{Fl}_{\mathcal{W}}$-degree two: to get convergence we consider relations


## Computing asymptotics using topology

## Table 1

Some statistics for Frobenius-stable maximal tori of $\mathrm{Sp}_{2 n}\left(\overline{\mathbb{F}_{q}}\right)$ and $\mathrm{SO}_{2 n+1}\left(\overline{\mathbb{F}_{q}}\right)$.

| $\mathrm{Fr}_{q}$-stable maximal tori statistic <br> for $\mathrm{Sp}_{2 n}\left(\overline{\mathbb{F}_{q}}\right)$ and $\mathrm{SO}_{2 n+1}\left(\overline{\mathbb{F}_{q}}\right)$ | Hyperoctahedral <br> character | Formula in terms of $n$ | Limit as <br> $n \rightarrow \infty$ |
| :--- | :--- | :--- | :--- |
| Total number of $\mathrm{Fr}_{q}$-stable <br> maximal tori | 1 | $q^{2 n^{2}(\text { Steinberg })}$ |  |
| Expected number of <br> 1 -dimensional $\mathrm{Fr}_{q}$-stable subtori | $X_{1}+Y_{1}$ | $1+\frac{1}{q^{2}}+\frac{1}{q^{4}}+\cdots \frac{1}{q^{2 n-2}}$ | $\frac{q^{2}}{\left(q^{2}-1\right)}$ |
| Expected number of split <br> 1 -dimensional $\mathrm{Fr}_{q}$-stable subtori | $X_{1}$ | $\frac{1}{2}\left(1+\frac{1}{q}+\frac{1}{q^{2}}+\cdots \frac{1}{q^{2 n-1}}\right)$ | $\frac{q}{2(q-1)}$ |
| Expected value of reducible minus <br> irreducible $\mathrm{Fr}_{q}$-stable | $\binom{X_{1}+Y_{1}}{2}-\left(X_{2}+Y_{2}\right)$ | $\frac{\left(q^{4}-\frac{1}{q^{2}}\right)\left(1-\frac{1}{\left.q^{2(n-1)}\right)}\right.}{\left(q^{2}-1\right)\left(q^{4}-1\right)}$ | $\frac{q^{4}}{\left(q^{2}-1\right)\left(q^{4}-1\right)}$ |
| 2-dimensional subtori | $\frac{q^{2}\left(1-\frac{1}{q^{2 n}}\right)\left(1-\frac{1}{2\left(q^{4}-1\right)}\right)}{}$Expected value of split minus <br> non-split $\mathrm{Fr}_{q}$-stable 2-dimensional <br> irreducible subtori | $X_{2}-Y_{2}$ | $\frac{q^{2}}{2\left(q^{4}-1\right)}$ |

## Computing asymptotics using other techniques

## Theorem (Fulman - J. R.- Wilson)

(i) (Type A). Let $\lambda$ be a fixed partition. Let $\mathcal{Y}_{n}(q)$ denote the set of $\mathrm{Fr}_{q}$-stable maximal tori of $G L_{n}\left(\overline{\mathbb{F}}_{q}\right)$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{q^{n^{2}-n}} \sum_{T \in \mathcal{Y}_{n}(q)}\binom{X}{\lambda}(T)=\frac{1}{z_{\lambda}} \prod_{r=1}^{|\lambda|}\left(\frac{q^{r}}{q^{r}-1}\right)^{n_{r}(\lambda)} .
$$

(ii) (Type B/C). Fix partitions $\mu$ and $\lambda$. Let $\mathcal{Y}_{n}(q)$ denote the set of $\mathrm{Fr}_{q}$-stable maximal tori of $\mathrm{SO}_{2 n+1}\left(\overline{\mathbb{F}}_{q}\right)$ or $\mathrm{Sp}_{2 n}\left(\overline{\mathbb{F}}_{q}\right)$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{q^{2 n^{2}}} \sum_{T \in \mathcal{Y}_{n}(q)}\binom{X}{\mu}\binom{Y}{\lambda}(T)=\frac{1}{v_{\mu} v_{\lambda}} \prod_{r=1}^{|\mu|}\left(\frac{q^{r}}{q^{r}-1}\right)^{n_{r}(\mu)} \prod_{r=1}^{|\lambda|}\left(\frac{q^{r}}{q^{r}+1}\right)^{n_{r}(\lambda)} .
$$

$$
\binom{X}{\lambda}(\sigma):=\prod_{r=1}^{|\lambda|}\binom{X_{r}(\sigma)}{n_{r}(\lambda)} \text { for all } \sigma \in S_{n} \quad z_{\lambda}=\prod_{r=1}^{|\lambda|} n_{r}(\lambda)!r^{n_{r}(\lambda)}
$$

## Asymptotic statistics $\Rightarrow$ compute stable multiplicities

## Corollary (Chen, Fulman - J. R.- Wilson)

Given $P$ a polynomial factorization statistics

$$
\beta_{i}:=\lim _{n \rightarrow \infty}\left\langle P, \psi_{n}^{i}\right\rangle_{\mathcal{W}_{n}}=\lim _{n \rightarrow \infty} \operatorname{dim}_{\mathbb{C}} H^{i}\left(\mathcal{Y}_{n}(\mathbb{C}) ; V_{n}^{P}\right)
$$

The generating function $\sum_{i=0}^{\infty} \beta_{i} z^{i}$ is a rational function.
Example 3.9. (Example: $\mathbb{C}^{n}$ ).
Character polynomial:

$$
\begin{aligned}
P^{\mathbb{C}^{n}} & =X_{1}-Y_{1} \\
& =\binom{X}{\square}-\binom{Y}{\square} .
\end{aligned}
$$

Betti numbers:

$$
\begin{aligned}
& \qquad \sum_{i=0}^{\infty} \beta_{i} z^{i}=\frac{z}{(1-z)(1+z)} \\
& =z+z^{3}+z^{5}+z^{7}+z^{9}+\cdots+z^{2 d+1}+\cdots \\
& \text { Recurrence: } \quad \beta_{d}=\beta_{d-2} \quad \text { for } d \geq 3 .
\end{aligned}
$$

## Asymptotic statistics $\Rightarrow$ multiplicity stability

## Corollary (Chen, Fulman - J. R.- Wilson)

- Obtain a generating function for the characters $\psi_{n}^{k}$
- $\psi_{n}^{k}$ are eventually given by character polynomials $Q_{k}$
- Recover multiplicity stability:
$\left\langle P, \psi_{n}^{k}\right\rangle_{\mathcal{W}_{n}}$ is constant for $n \gg k$ if $P$ is any character polynomial
- Obtain a generating function for those character polynomials $Q_{k}$
- Have another proof of Theorem $\star$

Question: Identify other families where asymptotic stability of statistics could be used to compute stable multiplicities or stable characters

