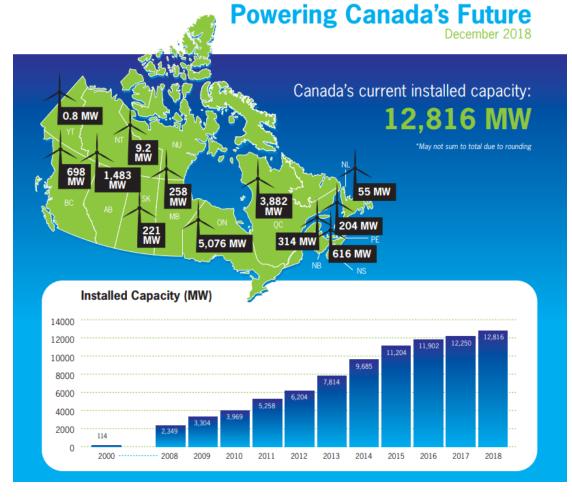
Wind Resource Engineering PIMS 2019 UBC, Vancouver

\\SD

Matthew.Breakey@wsp.com



Whirl-wind tour: A branch of Engineering in 20-minutes

- 1. Economics of Wind
- 2. What is Wind Resource Engineering
 - Finding a place to start (Scouting)
 - Measuring the atmosphere (Meteorological Campaign)
 - Vertical wind speed profile (Shear)
 - Measure-Correlate-Predict (MCP)
 - Wind Flow Modelling
 - Layout Optimization
 - Name Plate Capacity Optimization
- 3. Market Integration

Introduction: Market Overview

- How much wind in Canada?
 - 648.4 TWh -> 4.7% total
 - Power vs. Energy
- Where are new projects being built?

https://canwea.ca/wp-content/uploads/2019/02/powering-canadas-future-web.pdf

Introduction: Electricity Markets

How feasible in wind as an energy source?

- Where are the opportunities?
 - Replacing coal
 - requires a partner for grid stability.
 - Cheap source of supplemental energy.
- What are the economics?
 - Trends in Electricity Rates
 \$140/MWh => \$37/MWh
 - Compared to Competition
 - Solar vs Wind vs Run of River
 - Market Integration
 - Quality of Power
 - Are subsidies required?

Alberta REP

Round	Name Plate Capacity	Rate (\$/MWh)
REP 1 (2018)	595.6 MW	\$37.00
REP 2 (2019)	362.9 MW	\$38.69
REP 3 (2019)	400.8 MW	\$40.14
Total	1359.3 MW	\$38.38

https://www.aeso.ca/market/renewable-electricity-program/rep-results/ https://www.nrcan.gc.ca/energy/facts/electricity/20068

\\SD

What is Wind Resource Engineering?

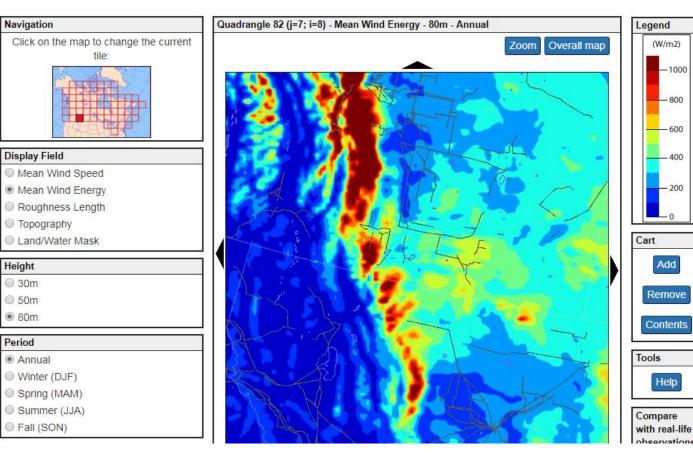
How much energy will a wind farm deliver to the grid?

- **1. Scouting** => Where to start
- 2. Designing a Wind Farm
 - **Design data collection strategy** (Meteorological Masts/Remote Sensing)
 - Assess wind resource (**Shear, MCP, Wind Flow Modelling**)
 - Optimization of layout and Name Plate Capacity (NPC)
 - Evaluate turbine technologies, hub height, cold weather packages, deicing systems, etc.
 - Climate Suitability
- 3. Financing
 - Estimate Energy
 - Minimizing uncertainty => uncertainty determines lending rate
- 4. Post-construction true-up
 - Based on SCADA data (10-minute) and invoices (monthly).
 - Power performance testing

Scouting

Where best to place a wind farm?

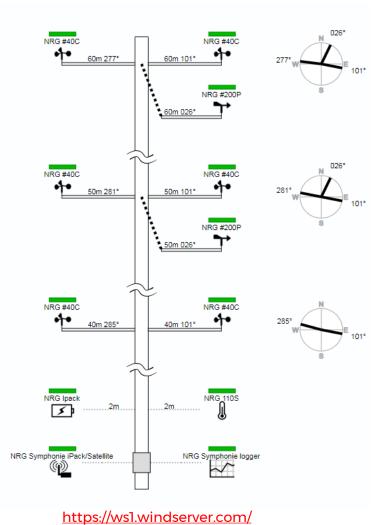
Height


○ 30m

50m

80m

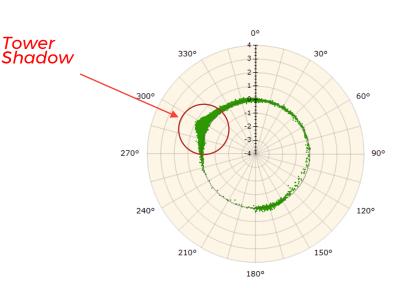
Period


- Transmission (-) 7.
- 2. Constraints (+)
- 3. Politics (-)
- 4. Climate Suitability
 - Gust
 - Fatigue (TI)
 - Corrosion
 - Earth quakes
- 5. Economics (+)
 - Better turbines
 - Better analysis
 - Cheaper financing

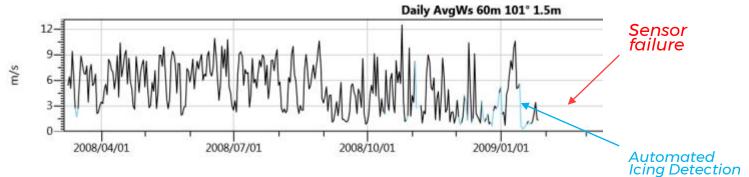
http://www.windatlas.ca/maps-en.php

Design Measurement Campaign

How to measure on-site wind speeds?



- Where to place towers?
 - Where are wind flow models poor?
- What instruments?
 - Wind speed => how many heights?
 - Wind direction
 - Temperature
 - Differential temperature?
 - Barometric Pressure
 - Relative humidity
- How tall a tower?
- Remote sensing?
- How long should the measurement campaign be?

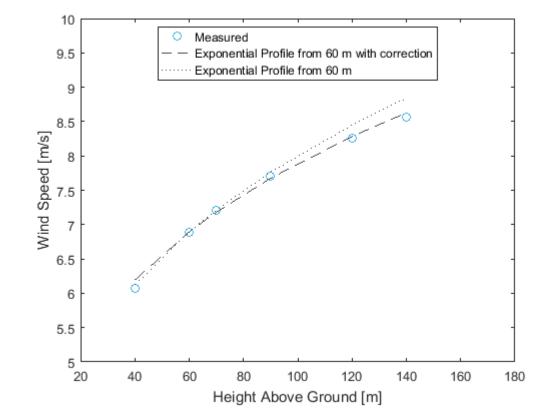

Measuring the Weather

How to quality control measurements?

- Quality control
 - Sensor health
 - Icing detection
 - Set-up errors
- Common problems
 - Flow distortion => short booms
 - Sensor Drag => sensor wear
 - Timestamp off-set
 - Missed icing

Sensor A – Sensor B

https://wsl.windserver.com/

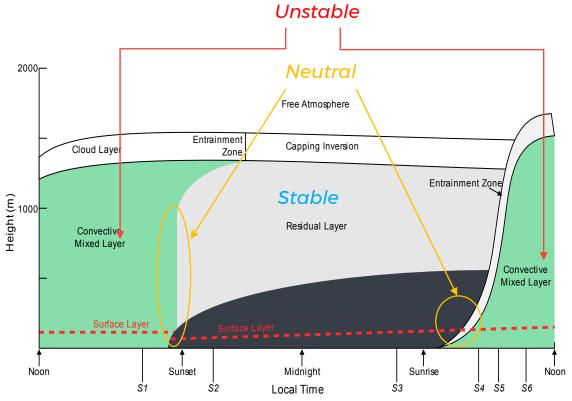

Shearing: Profile

What is the vertical wind speed profile of the atmosphere?

- 1. Assume profile
 - Exponential or Power Law:
 - $\frac{u}{u_r} = \left(\frac{z}{z_r}\right)^{\alpha}$
 - Log Law:

$$u_z = rac{u_*}{\kappa} \left[\ln \! \left(rac{z-d}{z_0}
ight) + \psi(z,z_0,L)
ight]$$

- Measure multiple heights, fit profile and extrapolate.
- 2. Remote Sensing
 - Actually measure profile
 - Expensive => short-term
 - Seasonality

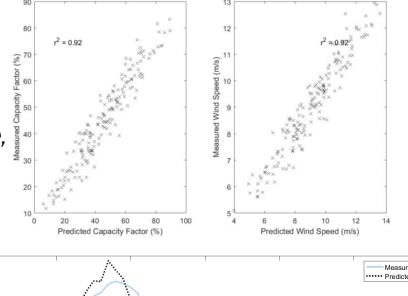


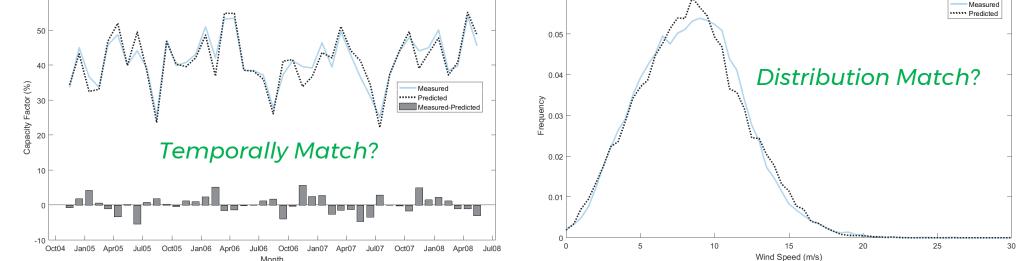
۱۱SD

Shearing: Stability

How does the vertical profile change over-time?

- 1. How does stability change the profile?
 - Stable vs neutral vs unstable
 - Seasonal profile, diurnal profile, directional profile.
 - Stability is terrain dependent
- 2. Need a better model
 - Reduced uncertainty, reduced financing costs
 - Shorter masts relative to hub height
- 3. Economics
 - The taller a tower, the more expensive
 - Turbines have increased in height, old campaigns are no longer suitable

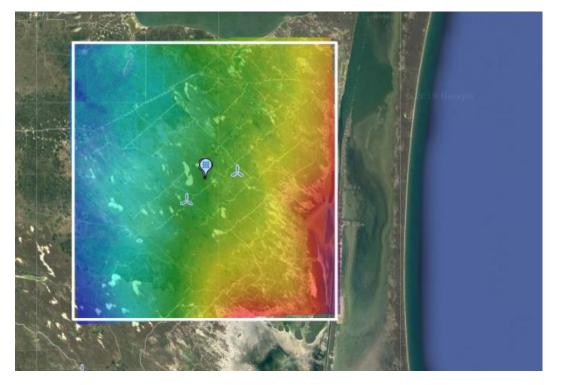



http://ars.sciencedirect.com/content/image/1-s2.0-S0360128504000371gr4.jpg.See also: http://www.archaeocosmology.org/eng/tropospherelayers.htm, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18862904

Measure, Correlate, Predict (MCP)

How to correct short-term measurements to the long-term?

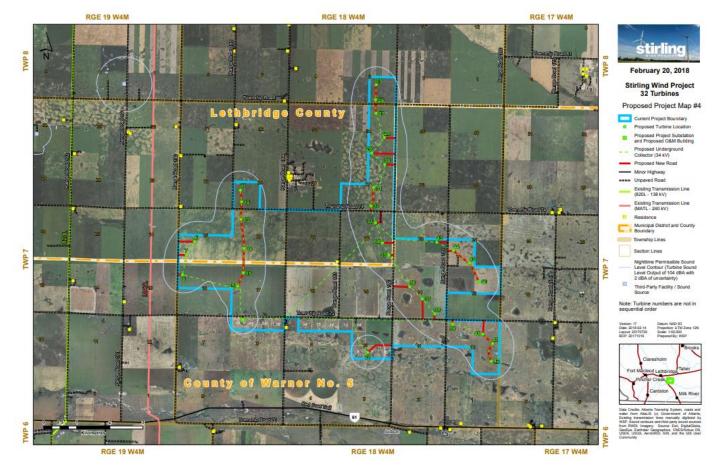
- 1. Suitable long-term reference: Environment Canada, ERA5 or MERRA2
- 2. Strong correlation -> representative
- 3. Long-term correct: temperature, pressure, relative humidity, wind speed, wind direction, stability?



Global Meso-Scale Models

How to spatially and temporally model the atmosphere?

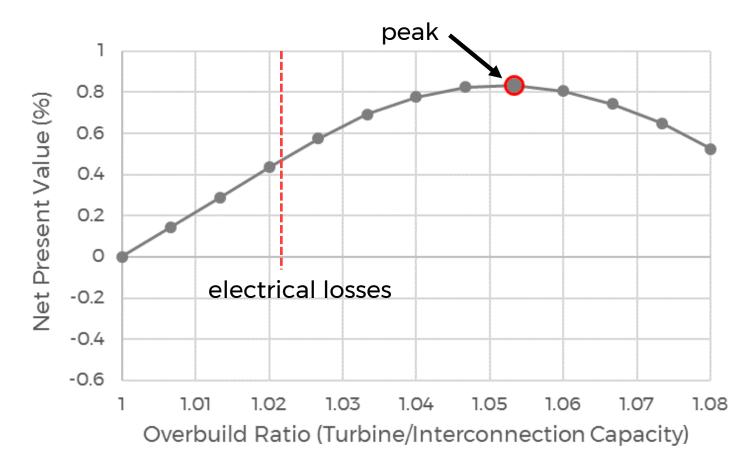
- 1. Micro-scale (<10 km)
 - Examples: CFD, WAsP
 - Accounts for: terrain & roughness
 - Weather phenomena must be measured
- 2. Meso-scale (10-1000 km)
 - Examples: ERA5, Vortex
 - Accounts for: geostrophic winds, thunderstorms, land-sea breezes, squall lines, etc.
 - Accurate over a much larger distances.
- 3. Climatic vs Timeseries
 - Correlation of losses
 - Correlation of air density
 - Correlation with prices


Vortex: http://interface.vortexfdc.com/

\\SD

Layout Optimization

Where should turbines go and what type of turbine should be used?

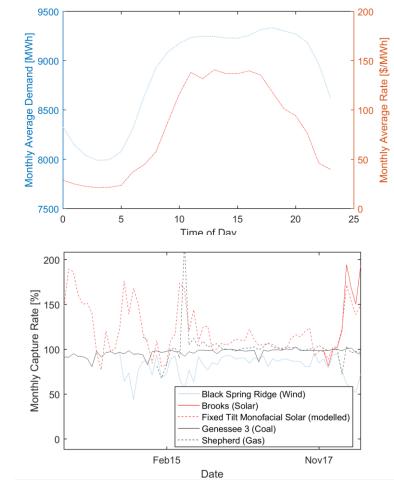

- 1. Turbine Selection
 - Climate Suitability (survivability)
 - Sound Output
 - Maximum Energy
- 2. Placement
 - Constraints
 - Inter-connection costs
 - Resource (Energy)
 - Wake losses
 - Icing losses (elevation dependent)
- 3. Optimizer
 - Inter-related considerations: Sound, wake, energy
 - Discontinuous constraints add hard edges.
 - Mixed mode: Different power curves

Stirling Wind Project: <u>http://stirlingwind.com</u> <u>Open House Posters: http://stirlingwind.com/wp-content/uploads/2016/12/Stirling-Wind-Project-</u> October-Open-House-Boards.pdf

13

Case Study: Impact of Over-build

- Assumptions


- CAPEX: \$1.6M/MW^[1]
- 2.2% Electrical Losses (peak)
- 47 \$/MWh offtake
- 44.4% Net Capacity Factor
- Peak return at 1.053 overbuild
 - (e.g. 158/150 turbines)
 - Curtailment of 0.31%
 - NPV +0.8% over base case

[1] NREL: 2018 Annual Technology Baseline (Case 3), <u>www.atb.nrel.gov</u> Slide from: Errol Halberg, « Maximizing Project Economics Through Project Capacity Overbuild » AWEA Wind Resource & Project Energy Assessment Conference 2018

Energy Markets: Wind Integration

How to spatially and temporally model the atmosphere?

- 1. Market demand fluctuates
 - Typically low at night
 - High during day/evening
- 2. In AESO market, price fluctuates from negative to \$999/MWh
 - Pro-cyclist would be paid \$0.02/hour, \$0.30/hour at maximum rate
- 3. Wind tends to produce at low demand
 - Storage: battery, hydro or load shifting
- 4. Hydrocarbons match load closely
- 5. Solar tends to produce at high demand

Final Notes:

- Wind is economically competitive, even considering intermittency.
- Wind power is an established industry, but still relatively young.
- There are many areas that the science of WRA can improve.

Questions

wsp.com

\\S])