Problem

Find an "algebraic" characterization of the pseudo orbit tracing property for algebraic actions.

Problem

Find an "algebraic" characterization of the pseudo orbit tracing property for algebraic actions.

Where:

Definition

An action α of a countable group G on a compact metric space (X, d) has the pseudo-orbit tracing property if for every $\epsilon > 0$ there exists $\delta > 0$ and a finite set $S \subset \Gamma$ such that every (S, δ) pseudo-orbit is ϵ -traced by an genuine α -orbit.

Definition

Fix $S \subset \Gamma$ and $\delta > 0$. A pseudo-orbit for a G action α on a compact metric space (X, d) is a Γ -sequence $(x_g)_{g \in \Gamma}$ in X such that $d(\alpha_s(x_g), x_{sg}) < \delta$ for all $s \in S$ and $g \in \Gamma$. We say that a pseudo-orbit $(x_g)_{g \in \Gamma}$ is ϵ -traced (or "shadowed") by the orbit of $x \in X$ if $d(\alpha_g(x), x_g) < \epsilon$ for all $g \in \Gamma$.

Definition

Fix $S \subset \Gamma$ and $\delta > 0$. A pseudo-orbit for a G action α on a compact metric space (X, d) is a Γ -sequence $(x_g)_{g \in \Gamma}$ in X such that $d(\alpha_s(x_g), x_{sg}) < \delta$ for all $s \in S$ and $g \in \Gamma$. We say that a pseudo-orbit $(x_g)_{g \in \Gamma}$ is ϵ -traced (or "shadowed") by the orbit of $x \in X$ if $d(\alpha_g(x), x_g) < \epsilon$ for all $g \in \Gamma$.

Remark

The pseudo-orbit tracing property is sometimes called "shadowing property".

• by an "algebraic action" of a countable group *G* I mean that *G* acts on a compact abeilan group *X* by continuous automorphisms of the group (preserving both the group structure and the topological structure).

- by an "algebraic action" of a countable group *G* I mean that *G* acts on a compact abeilan group *X* by continuous automorphisms of the group (preserving both the group structure and the topological structure).
- The classical example: Automorphisms of $\mathbb{R}^d/\mathbb{Z}^d$.

- by an "algebraic action" of a countable group *G* I mean that *G* acts on a compact abeilan group *X* by continuous automorphisms of the group (preserving both the group structure and the topological structure).
- The classical example: Automorphisms of $\mathbb{R}^d/\mathbb{Z}^d$.
- The action (along with all it's dynamical properties) is uniquely determined by the dual ZG-module.

• Every expansive principle algebraic action has the p.o.t property.

- Every expansive principle algebraic action has the p.o.t property.
- Expansive algebraic Z-actions have have the p.o.t property.

- Every expansive principle algebraic action has the p.o.t property.
- Expansive algebraic Z-actions have have the p.o.t property.
- If an expansive algebraic actions has the p.o.t property, the dual module is finitely presented.

- Every expansive principle algebraic action has the p.o.t property.
- Expansive algebraic Z-actions have have the p.o.t property.
- If an expansive algebraic actions has the p.o.t property, the dual module is finitely presented.
- For expansive algebraic *G*-actions on a totally disconnected (*G*-subshifts) having the p.o.t property is equivalent to having a finitely presented dual.

- Every expansive principle algebraic action has the p.o.t property.
- Expansive algebraic Z-actions have have the p.o.t property.
- If an expansive algebraic actions has the p.o.t property, the dual module is finitely presented.
- For expansive algebraic *G*-actions on a totally disconnected (*G*-subshifts) having the p.o.t property is equivalent to having a finitely presented dual.
- There are examples of expansive algebraic actions with a finitely presented dual that do not have the p.o.t property.

- Every expansive principle algebraic action has the p.o.t property.
- Expansive algebraic Z-actions have have the p.o.t property.
- If an expansive algebraic actions has the p.o.t property, the dual module is finitely presented.
- For expansive algebraic *G*-actions on a totally disconnected (*G*-subshifts) having the p.o.t property is equivalent to having a finitely presented dual.
- There are examples of expansive algebraic actions with a finitely presented dual that do not have the p.o.t property.
- Siddhartha Bhattacharya recently showed an example of an expansive action of a polycyclic group that does not have the p.o.t. property.