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Entropy of Stationary Processes

For a stationary process Y = {Y;}, defined by joint probability
distribution p, the entropy of Y is:

H(Y) = lim H,(Y),

n—oo

where

H,(Y)=H(Yo|Y_1,Y o, ,Y_n) = > —p(y°,) log p(yoly—,).

v

Known as “entropy rate” in info. theory and “measure-theoretic
entropy” in ergodic theory.



Entropy of Markov chains

Let Y be a stationary (finite-state, first-order) Markov chain defined
by probability transition matrix A:

A(i,§) = p(yr = Jjlyo = 7).
and stationary vector p(yy = ¢). Then,

H(Y) = — Zp(yo = 1)A(1, j) log A(4, 7).

Higher-order Markov chains can be recoded to first-order Markov
chains.



Hidden Markov Processes (HMP)

Defn: A Hidden Markov Process Is a stationary process which is
a continuous factor of a Markov chain.

Equivalent Defn: A Hidden Markov Process Z ={Z;}is a
stationary process of the form Z; = ®(Y;), where Y = {Y;} isa
Markov chain and @ is a function on the Markov states.

Proof. Recode to 1-block factor map by enlarging state space.
Problem: compute entropy of HMP’s.

Motivation:
e HMP’s are tractable models of many phenomena.

e — Entropy measures compressibility=! of Y.

— Computation of entropy is a first step to compute the
Shannon capacity of an input-restricted noisy channel.
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Note: HMP’s are typically not Markov (of any order).

Example 1:

Let Y be Markov chain on {1, 2, 3} with probability transition matrix:

0 2/3 1/3 |
A=1|1/3 2/3 0
2/3 0 1/3

Let Z = ®(Y) be the HMP, where ®(1) = a and ®(2) = ®(3) = b,
e.g., 1222133121213312221 is mapped to:
abbbabbabababbabbba.



One computes, using the stationary vector [2/7,4/7,1/7]:
plzo=blz_1=bz_o="0b,...2_, =b,z_j_1 =b) =
a weighted average of 2/3 and 1/3 with relative weights:
(4/7)(2/3)F and (1/7)(1/3)*. And
p(zo =blz_1 =b,z_o=0b,...2_p =b,2_4_1 = a) =

a weighted average of 2/3 and 1/3 with relative weights:
(2/7)(2/3)" and (2/7)(1/3)".

e This HMP cannot be realized as an equal entropy factor of any
Markov chain (Marcus-Petersen-Williams (1984)).

e This is In contrast to computation of topological entropy of sofic
shift as an entropy-preserving factor of an SFT
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Example 2:

Z(e) is the output process obtained when passing a stationary
binary Markov chain X through a binary symmetric channel
(BSC(¢)):

Zn(e) =X, @ E,(¢),
where & denotes binary addition, X,, denotes the binary input,

E, (¢) denotes the i.i.d. binary noise with p(0) =1 — ¢ and
pe(1l) = ¢, and Z,(¢) denotes the corrupted output.

Let

Too 701
I =

T1i0 711

be the probability transition matrix for X.



Then Y (e) = {(X,, En(g))} is jointly Markov with

y | (0,0 (01 (10 (L1
(0 0) 7T00(1 — 8) TooE 7'('01(1 — 5) To1E
A(g) — (0 1) 7T00(1 — 8) To0E 7T01(1 — 6) To1E
(1 0) 7T10(1 — 8) T10E 7T11(1 — 8) T11€&
(1 1) 7T10(1 — 8) T10E 7'('11(1 — 5) T11€ 1
Z(e) = ®(Y(¢)) is an HMP, where
®((0,0)) = ®((1,1)) = 0 and
®((0,1)) = 2((1,0)) =




History:

H(Z) expressed as an integral of a simple function with respect
to a complicated measure on a simplex (Blackwell (1957))

general upper and lower bounds on H(Z) (Birch, (1962))

Karl Petersen gets interested; MPW paper and plots of
estimated entropies and capacities (1981)

For Markov chain input over BSC(¢e), exact computation of
leading terms of asymptotics of entropy as noise parameters or
Markov transition probabilities tend to extremes.

— Jacquet-Seroussi-Szpankowski (2004, 2006)
— Ordentlich-Weissmann (2004, 2005)

— Zuk et. al (2004, 2006)

— Peres-Quas (2007)



Decomposition of A
M set of Markov states
A: set of hidden Markov symboils.
So,$: M — A.

Fora € A, let A, denote the matrix defined by:

Nali,j) = A(i,j) for j with ®(j) = a
Aq(i,7) = 0 otherwise .
For Example 1.:
[ 0 0 0 [0 2/3 1/3
Ag=1|1/3 0 0 [Ay=]|0 2/3 0
| 2/3 0 0 0 0 1/3
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Dynamics

Let W denote unit simplex in R™MI. For each symbol a € A, define

fo : W — W by:
wA,
fa(w) o ’U]Aa].
Define

Then, {z;} satisfies the iteration

Ly — fZi (x’i—l)a

11

(1)

(2)



A
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Defn: (Black Hole: ) For every a € A,
e A, has rank one —and —

e every column of A, is either strictly positive or all zero.

Note: For a Black Hole, each f, maps entire simplex to single point.

Theorem 1. Let A(e) be family of stochastic matrices and ¢ a function on
states. Let Z(e) denote resulting family of HMP’s.
IF

e (A(0),®) is a Black Hole —and —

e A(e) is analytically parameterized around ¢ = 0,
THEN

e H(Z(¢)) is analytic around ¢ = 0.

i H(Z<5))(N)|e=0 = Hy(n+1)/2] (Z<5))(N)|€:0
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Example 1 Revisited

0 2/3 1/3 |

1/3 2/3
2/3 0

with ®(1) = a and ®(2) = ¢(3) = b,

0 O
Aa: 1/3 0
2/3 0

(A, ®) is Not a Black Hole.

0
0 | Ay =
0
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Example 2 Revisited

y (0,00 (0,1 (1,0  (1,1) | .y | (0,0) (0,1) (1,0) (1,1) |
(0,0) | woo(1 — &) mooe mo1(l —g) mo1€ (0,0) T00 0 o1 0
= (0,1) | moo(1 —€e) mooe mo1(l —€) mo1€ A(0) = (0,1) T00 0 o1 0
(1,0) | w0(1l —e) mi0e m1(l—g) m116€ (1,0) T10 0 T11 0
| (1,1) | mio(1 —€) mioe w11 (l—€) @i | | (1,1) T10 0 T11 0

((0,0)) = d((1,1)) = 0; ((0,1)) = B((1,0)) = 1

y | (0,00 (0,1) (1,0) (1,1) | [y | (0,00 (0,1) (1,0) (1,1) ]
(0,0) | moo 0 0 0 (0,0) 0 0 701 0
(0) = (0,1) | moo 0 0 0 A1(0) = | (0,1) 0 0 701 0
(1,0) | 710 0 0 0 (1,0) 0 0 T11 0
| (1,1) | o 0 0 0 | (1,1) 0 0 T11 0

If IT > 0, then (A(0), @) Is a Black Hole.
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Rough Idea of Proof: Stabilization of Derivatives

Recall (1):

and the iteration (2):

xi—lAzi
5137;_1Azi 1

r; =

= g(w;i—1,A,,)

Since at e =0, A,, has rank one, g must be constant as a function
of ;1. So,ate =0,

xi—lAzi — p(yi—l — )AZ@
xi—lAZil p(yi—l — )AZ@]-

p(ys = |20 ) = i = =p(yi = -|z1)-  (3)
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Taking the derivative of g with respect to ¢, we have:

dg dg
z; = F— (im1, Az;) Ty + aTZi(SL’z'—hAzi) AL

Since at ¢ = 0, g Is constant as a function of x;,_, we have at ¢ = 0:

d(constant vector
N ) _ g

0xi—1

0xi—1

It then follows from (3) that

P (yi = 12" o)e=0 = @} |e=0 = D' (vi = |2} _1)|c=0-
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Generalization
e Weak Black Hole: For every a, A, has rank O or 1.

e A(e) is normally parameterized by e (¢ > 0) if
1. each entry of A(g) is an analytic function around ¢ = 0,

2. for sufficiently small € > 0, A(e) is irreducible.
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Theorem 2. Let A(e) be family of stochastic matrices and ® a
function on states. Let Z(¢) denote resulting family of HMP’s.
IF

e (A(0), ) is a Weak Black Hole —and —
e A(e) is normally parameterized

THEN there are sequences f;, g; such that

o for k > 0,
k ' k-+1 '
H(Z(e))=H(Z(0))+ ) fie? +> gje’ loge + O(e")
j=1 j=1

e f;and g, depend only on Hg;6(Z(e))

19
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Example 2 Re-Revisited

Y (0,0) (0,1) (1,0) (1,1) | [y (0,0) (0,1) (1,0) (1,1) |
(0,0) | moo(1 —€¢) mooe mo1(l —g) mo1€ (0,0) T00 0 To1 0
= | (0,1) | moo(1 —¢) mooe mo1(l—¢€) mo1e | A0)= 1| (0,1) | moo 0 To1 0
(1,0) | m10(1l —e) mioe w1 (l—g) mi16€ (1,0) T10 0 T11 0
| (1,1) | mi0(1 —€) wioe w11 (l—€) w1 | | (1,1) | o 0 T11 0
y | (00 (0.1) (1,0 (1,1) | [y | (0,00 (0,1) (1,0) (1,1)
(0,0) | moo 0 0 0 (0,0) 0 0 701 0
(0) =] (0,1) | moo 0 0 0 A1(0) =] (0,1) 0 0 701 0
(1,0) | w10 0 0 0 (1,0) 0 0 11 0
| (1,1) | 70 0 0 0 | (1,1) 0 0 11 0

e (A(0),®) Is a Weak Black Hole (without any assumptions on
transition matrix II)

e If IT is irreducible, then A(e) is a normal parameterization.

20



Example 3: Binary Erasure Channel

Inputs are either transmitted faithfully or erased with probability «.

Y (0,0)  (0,1)  (1,0)  (1,1)
(0,0) | moo(1 —¢) mooe mo1(1l —€) mo1€
Ae) = | (0,1) | moo(1 —¢) mooe mor(l—¢€) more
(1,0) | mo(1 —e) w0 m1(l —g) 1€
] (1,1) | mo(l —¢) moe m1(l —g) 1€ |
Z(e) = ®(Y(e)) is an HMP where:
$(0,0) = 0,
¢(1,0) =1,
®(0,1) =d(1,1) =7
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Thus,

7T00(1 —5) 0O 0 O 0 O 7'('01(1 —5) 0
1—¢) 0 0 O 0 0 1—¢) O
A, — moo(1 —¢€) A, = mo1(1 —¢€)
7T10(1—€) 0O 0 O 0 O 711(1—5) 0
i 7T10(1—€) 0O 0 O | i 0 O 711(1—5) 0 1
| 0 To0E 0 To1E |
0 e 0 €
Ay = 00 o1
0 T10E 0 T11€
| 0 T10E 0 T11€ i

e (A(0),®) Is a Weak Black Hole (without any assumptions on
transition matrix II).

e If IT is irreducible, then A(e) is a normal parameterization.
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Idea of Proof of Theorem 2

(1) Given k, let N = N(k) = 6k + 6. Then for any hidden Markov
sequence z° y,

EITHER: p(z°y) = O(e"?)
OR: for any Markov state y “that matters,” and any 0 < ¢ < 2k + 1,

P (2022 3)|e=0 = P (2022 NY)| =0

(2) It follows that
H(Zo()|Z(e) =) = H(Zo(e)Z(e) N, Yon—1) + O(e" ).

(3) Apply Birch bounds: Let Z be an HMP defined by Markov chain Y
and function ®. Then for all n > 0,

H(Zo|Z=,Y-n-1) < H(Z) < H(Zo|Z7,). (5)

(In fact, upper and lower bounds agree and stabilize for n > N(k).)
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Proof of Birch bounds
e Upper bound: monotonicity.

e Lower bound: fix n;

H(Z)= lim H(Zy|Z_})> lim H(Zo|Z_}, Y"1 =

m—00 m—00

lim H(Zo|Z-:,Y_ 1) = H(Zo|ZZ},Y_p_1).

m— 00
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More on proof of Theorem 2

Let V' > 0 be a vector indexed by Markov states M.

Define:
o
pv(zZ)=VA, A, 1
o
0
_ pPviz_,
py (o)) = PV 2=n)
pv (22,
Examples:

e If V is the stationary vector, then py- (2", ) = p(z° ) and

pv(z0l225) = plz0l225).

e If V =p(y)x,, then py(2°,) = p(yz?,,) and

pv(20|22)) = p(20|2Z1Y).
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Let V =V (e) > 0 analytically parameterized by ¢ and not
identically O.

Write:

Define: ord(py(2~,,)) as smallest j such that b(V); # 0
Lemma: If ord(py (2Z,,)), ord(py(22,)) < k, then

a(V); =a(V);, foral0<j<n-—4k—1

26



Proof: by induction; use rank < 1 condition to build up more and
more j such that this equality holds.

Say k=0,n = 1.

v - 1y pvleaizo)  VAs Bl VAL,
2 (Ve =pvleolsma) = B TN = VALY T VAL 1t

J=0

By assumption that k£ = 0, we have V(0)A,_,(0)1 # 0. Thus,

)
)

V(A (0
W=V or 1
Similarly, )
i VOAL©

V(0)A.,(0)1
1

But since A, _,(0) has rank 1, these two expressions are equal.
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Explicit formula in special case

Let X be a Markov chain of order m (recode to first order Markov
chain in order to fit our framework).

Let A(X) denote set of words of positive probability for X.

Let Z(e) be the output of X passed through BSC (¢). Then for
H(Z(¢)), g1 depends only on X and

g1 =g1(X) =— Z d(wv)

wEA(X),wo g A(X),|w|=2m,|v|=1

where

mn
i1 _
— E px(u_y, u_ju_;+1)
j=1
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Asymptotics of Input-Restricted Noisy Channel Capacity

Consider a binary irreducible Shift of Finite Type S. For BSC(¢)
with input sequences restricted to .S, capacity is defined:

C(S,¢e) = sup H(Z(e)) — H(e),
stationary x supported on s

where Z(¢) is the output process corresponding to X and H (¢) is
the binary entropy function.

Theorem 3. (JSS, HM (2006))
C(S,e) = H(S) + (91(Xmaz) + D)elog(e) + O(e),

where H(S) is the topological entropy of S, X4, IS the maximum
entropy process associated with .S, and ¢, is as in Theorem 2.

Current work: higher order asymptotics and other channels.
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Example: Let X be a first order input Markov chain supported on S =
Golden Mean Shift (i.e., 11 is forbidden), transmitted over BSC(e) with
corresponding output HMP Z(¢). Theorem 2 yields:

H(Z(e))=H(X)+ (Wml(j—o;o_l 2)> elog(e) + O(e).

(originally due to Ordentlich-Weissman (2005))

The maximum entropy Markov chain is defined by the transition matrix:
/X 1/X°
1 0

H(S) = H(Xmaz) = log A,

where ) is the golden mean. Thus, in this case mo; = 1/\?, and from
Theorem 3, we obtain:

and

2\ + 2
4N+ 3

C(S,¢) = log A + ( ) elog(e) + O(e).
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Dear Karl,

1. Thanks for all the wonderful mathematics:
past, present and future.

2. HAPPY BIRTHDAY

3. | will save the embarrassing stories for
Friday night.

Best wishes - Brian
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