Asymptotics for

# Entropy of Hidden Markov Processes and <br> Capacity of Input-restricted Noisy Channels 

Guangyue Han<br>Brian Marcus<br>University of Hong Kong University of British Columbia

## Entropy of Stationary Processes

For a stationary process $Y=\left\{Y_{i}\right\}$, defined by joint probability distribution $p$, the entropy of $Y$ is:

$$
H(Y)=\lim _{n \rightarrow \infty} H_{n}(Y)
$$

where

$$
H_{n}(Y)=H\left(Y_{0} \mid Y_{-1}, Y_{-2}, \cdots, Y_{-n}\right)=\sum_{y_{-n}^{0}}-p\left(y_{-n}^{0}\right) \log p\left(y_{0} \mid y_{-n}^{-1}\right) .
$$

Known as "entropy rate" in info. theory and "measure-theoretic entropy" in ergodic theory.

## Entropy of Markov chains

Let $Y$ be a stationary (finite-state, first-order) Markov chain defined by probability transition matrix $\Delta$ :

$$
\Delta(i, j)=p\left(y_{1}=j \mid y_{0}=i\right) .
$$

and stationary vector $p\left(y_{0}=i\right)$. Then,

$$
H(Y)=-\sum_{i, j} p\left(y_{0}=i\right) \Delta(i, j) \log \Delta(i, j) .
$$

Higher-order Markov chains can be recoded to first-order Markov chains.

## Hidden Markov Processes (HMP)

Defn: A Hidden Markov Process is a stationary process which is a continuous factor of a Markov chain.

Equivalent Defn: A Hidden Markov Process $Z=\left\{Z_{i}\right\}$ is a stationary process of the form $Z_{i}=\Phi\left(Y_{i}\right)$, where $Y=\left\{Y_{i}\right\}$ is a Markov chain and $\Phi$ is a function on the Markov states.

Proof: Recode to 1-block factor map by enlarging state space.
Problem: compute entropy of HMP's.
Motivation:

- HMP's are tractable models of many phenomena.
-     - Entropy measures compressibility ${ }^{-1}$ of $Y$.
- Computation of entropy is a first step to compute the Shannon capacity of an input-restricted noisy channel.

Note: HMP's are typically not Markov (of any order).

## Example 1:

Let $Y$ be Markov chain on $\{1,2,3\}$ with probability transition matrix:

$$
\Delta=\left[\begin{array}{ccc}
0 & 2 / 3 & 1 / 3 \\
1 / 3 & 2 / 3 & 0 \\
2 / 3 & 0 & 1 / 3
\end{array}\right] .
$$

Let $Z=\Phi(Y)$ be the HMP, where $\Phi(1)=a$ and $\Phi(2)=\Phi(3)=b$, e.g., 1222133121213312221 is mapped to: abbbabbabababbabbba.

One computes, using the stationary vector $[2 / 7,4 / 7,1 / 7]$ :

$$
p\left(z_{0}=b \mid z_{-1}=b, z_{-2}=b, \ldots z_{-k}=b, z_{-k-1}=b\right)=
$$

a weighted average of $2 / 3$ and $1 / 3$ with relative weights:

$$
\begin{aligned}
& \quad(4 / 7)(2 / 3)^{k} \text { and }(1 / 7)(1 / 3)^{k} . \text { And } \\
& p\left(z_{0}=b \mid z_{-1}=b, z_{-2}=b, \ldots z_{-k}=b, z_{-k-1}=a\right)=
\end{aligned}
$$

a weighted average of $2 / 3$ and $1 / 3$ with relative weights:

$$
(2 / 7)(2 / 3)^{k} \text { and }(2 / 7)(1 / 3)^{k} .
$$

- This HMP cannot be realized as an equal entropy factor of any Markov chain (Marcus-Petersen-Williams (1984)).
- This is in contrast to computation of topological entropy of sofic shift as an entropy-preserving factor of an SFT


## Example 2:

$Z(\varepsilon)$ is the output process obtained when passing a stationary binary Markov chain $X$ through a binary symmetric channel (BSC( $\varepsilon$ )):

$$
Z_{n}(\varepsilon)=X_{n} \oplus E_{n}(\varepsilon),
$$

where $\oplus$ denotes binary addition, $X_{n}$ denotes the binary input, $E_{n}(\varepsilon)$ denotes the i.i.d. binary noise with $p_{E}(0)=1-\varepsilon$ and $p_{E}(1)=\varepsilon$, and $Z_{n}(\varepsilon)$ denotes the corrupted output.

Let

$$
\Pi=\left[\begin{array}{ll}
\pi_{00} & \pi_{01} \\
\pi_{10} & \pi_{11}
\end{array}\right]
$$

be the probability transition matrix for $X$.

Then $Y(\varepsilon)=\left\{\left(X_{n}, E_{n}(\varepsilon)\right)\right\}$ is jointly Markov with

$$
\Delta(\varepsilon)=\left[\begin{array}{c|cccc}
y & (0,0) & (0,1) & (1,0) & (1,1) \\
\hline(0,0) & \pi_{00}(1-\varepsilon) & \pi_{00} \varepsilon & \pi_{01}(1-\varepsilon) & \pi_{01} \varepsilon \\
(0,1) & \pi_{00}(1-\varepsilon) & \pi_{00} \varepsilon & \pi_{01}(1-\varepsilon) & \pi_{01} \varepsilon \\
(1,0) & \pi_{10}(1-\varepsilon) & \pi_{10} \varepsilon & \pi_{11}(1-\varepsilon) & \pi_{11} \varepsilon \\
(1,1) & \pi_{10}(1-\varepsilon) & \pi_{10} \varepsilon & \pi_{11}(1-\varepsilon) & \pi_{11} \varepsilon
\end{array}\right] .
$$

$Z(\varepsilon)=\Phi(Y(\varepsilon))$ is an HMP, where
$\Phi((0,0))=\Phi((1,1))=0$ and
$\Phi((0,1))=\Phi((1,0))=1$

## History:

- $H(Z)$ expressed as an integral of a simple function with respect to a complicated measure on a simplex (Blackwell (1957))
- general upper and lower bounds on $\mathrm{H}(\mathrm{Z})$ (Birch, (1962))
- Karl Petersen gets interested; MPW paper and plots of estimated entropies and capacities (1981)
- For Markov chain input over BSC( $\varepsilon$ ), exact computation of leading terms of asymptotics of entropy as noise parameters or Markov transition probabilities tend to extremes.
- Jacquet-Seroussi-Szpankowski $(2004,2006)$
- Ordentlich-Weissmann $(2004,2005)$
- Zuk et. al $(2004,2006)$
- Peres-Quas (2007)


## Decomposition of $\Delta$

$\mathcal{M}$ : set of Markov states
$\mathcal{A}$ : set of hidden Markov symbols.
So, $\Phi: \mathcal{M} \rightarrow \mathcal{A}$.
For $a \in \mathcal{A}$, let $\Delta_{a}$ denote the matrix defined by:

$$
\begin{aligned}
\Delta_{a}(i, j) & =\Delta(i, j) \text { for } j \text { with } \Phi(j)=a \\
\Delta_{a}(i, j) & =0 \quad \text { otherwise } .
\end{aligned}
$$

For Example 1:

$$
\Delta_{a}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 / 3 & 0 & 0 \\
2 / 3 & 0 & 0
\end{array}\right] \Delta_{b}=\left[\begin{array}{ccc}
0 & 2 / 3 & 1 / 3 \\
0 & 2 / 3 & 0 \\
0 & 0 & 1 / 3
\end{array}\right]
$$

## Dynamics

Let $W$ denote unit simplex in $R^{\mid \mathcal{M |}}$. For each symbol $a \in \mathcal{A}$, define $f_{a}: W \rightarrow W$ by:

$$
f_{a}(w)=\frac{w \Delta_{a}}{w \Delta_{a} 1}
$$

Define

$$
\begin{equation*}
x_{i}=x_{i}\left(z_{-\infty}^{i}\right)=p\left(y_{i}=\cdot \mid z_{-\infty}^{i}\right) . \tag{1}
\end{equation*}
$$

Then, $\left\{x_{i}\right\}$ satisfies the iteration

$$
\begin{equation*}
x_{i}=f_{z_{i}}\left(x_{i-1}\right), \tag{2}
\end{equation*}
$$



Defn: (Black Hole:) For every $a \in \mathcal{A}$,

- $\Delta_{a}$ has rank one - and -
- every column of $\Delta_{a}$ is either strictly positive or all zero.

Note: For a Black Hole, each $f_{a}$ maps entire simplex to single point.
Theorem 1. Let $\Delta(\varepsilon)$ be family of stochastic matrices and $\Phi$ a function on states. Let $Z(\varepsilon)$ denote resulting family of HMP's.
IF

- $(\Delta(0), \Phi)$ is a Black Hole - and -
- $\Delta(\varepsilon)$ is analytically parameterized around $\varepsilon=0$,

THEN

- $H(Z(\varepsilon))$ is analytic around $\varepsilon=0$.
- $\left.H(Z(\varepsilon))^{(N)}\right|_{\varepsilon=0}=\left.H_{\lceil(N+1) / 2\rceil}(Z(\varepsilon))^{(N)}\right|_{\varepsilon=0}$


## Example 1 Revisited

$$
\Delta=\left[\begin{array}{ccc}
0 & 2 / 3 & 1 / 3 \\
1 / 3 & 2 / 3 & 0 \\
2 / 3 & 0 & 1 / 3
\end{array}\right],
$$

with $\Phi(1)=a$ and $\Phi(2)=\Phi(3)=b$,

$$
\Delta_{a}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 / 3 & 0 & 0 \\
2 / 3 & 0 & 0
\end{array}\right] \Delta_{b}=\left[\begin{array}{ccc}
0 & 2 / 3 & 1 / 3 \\
0 & 2 / 3 & 0 \\
0 & 0 & 1 / 3
\end{array}\right]
$$

$(\Delta, \Phi)$ is Not a Black Hole.

## Example 2 Revisited

$\left[\begin{array}{c|cccc}y & (0,0) & (0,1) & (1,0) & (1,1) \\ \hline(0,0) & \pi_{00}(1-\varepsilon) & \pi_{00} \varepsilon & \pi_{01}(1-\varepsilon) & \pi_{01} \varepsilon \\ (0,1) & \pi_{00}(1-\varepsilon) & \pi_{00} \varepsilon & \pi_{01}(1-\varepsilon) & \pi_{01} \varepsilon \\ (1,0) & \pi_{10}(1-\varepsilon) & \pi_{10} \varepsilon & \pi_{11}(1-\varepsilon) & \pi_{11} \varepsilon \\ (1,1) & \pi_{10}(1-\varepsilon) & \pi_{10} \varepsilon & \pi_{11}(1-\varepsilon) & \pi_{11} \varepsilon\end{array}\right] \Delta(0)=\left[\begin{array}{cccccc}y & (0,0) & (0,1) & (1,0) & (1,1) \\ \hline(0,0) & \pi_{00} & 0 & \pi_{01} & 0 \\ (0,1) & \pi_{00} & 0 & \pi_{01} & 0 \\ (1,0) & \pi_{10} & 0 & \pi_{11} & 0 \\ (1,1) & \pi_{10} & 0 & \pi_{11} & 0\end{array}\right]$

$$
\Phi((0,0))=\Phi((1,1))=0 ; \quad \Phi((0,1))=\Phi((1,0))=1
$$

$(0)=\left[\begin{array}{c|cccc}y & (0,0) & (0,1) & (1,0) & (1,1) \\ \hline(0,0) & \pi_{00} & 0 & 0 & 0 \\ (0,1) & \pi_{00} & 0 & 0 & 0 \\ (1,0) & \pi_{10} & 0 & 0 & 0 \\ (1,1) & \pi_{10} & 0 & 0 & 0\end{array}\right] \Delta_{1}(0)=\left[\begin{array}{c|cccc}y & (0,0) & (0,1) & (1,0) & (1,1) \\ \hline(0,0) & 0 & 0 & \pi_{01} & 0 \\ (0,1) & 0 & 0 & \pi_{01} & 0 \\ (1,0) & 0 & 0 & \pi_{11} & 0 \\ (1,1) & 0 & 0 & \pi_{11} & 0\end{array}\right]$

If $\Pi>0$, then $(\Delta(0), \Phi)$ Is a Black Hole.

## Rough Idea of Proof: Stabilization of Derivatives

Recall (1):

$$
x_{i}=x_{i}\left(z_{-\infty}^{i}\right)=p\left(y_{i}=\cdot \mid z_{-\infty}^{i}\right) .
$$

and the iteration (2):

$$
x_{i}=\frac{x_{i-1} \Delta_{z_{i}}}{x_{i-1} \Delta_{z_{i}} \mathbf{1}} \equiv g\left(x_{i-1}, \Delta_{z_{i}}\right)
$$

Since at $\varepsilon=0, \Delta_{z_{i}}$ has rank one, $g$ must be constant as a function of $x_{i-1}$. So, at $\varepsilon=0$,

$$
\begin{equation*}
p\left(y_{i}=\cdot \mid z_{-\infty}^{i}\right)=x_{i}=\frac{x_{i-1} \Delta_{z_{i}}}{x_{i-1} \Delta_{z_{i}} \mathbf{1}}=\frac{p\left(y_{i-1}=\cdot\right) \Delta_{z_{i}}}{p\left(y_{i-1}=\cdot\right) \Delta_{z_{i}} \mathbf{1}}=p\left(y_{i}=\cdot \mid z_{i}\right) . \tag{3}
\end{equation*}
$$

Taking the derivative of $g$ with respect to $\varepsilon$, we have:

$$
x_{i}^{\prime}=\frac{\partial g}{\partial x_{i-1}}\left(x_{i-1}, \Delta_{z_{i}}\right) x_{i-1}^{\prime}+\frac{\partial g}{\partial \Delta_{z_{i}}}\left(x_{i-1}, \Delta_{z_{i}}\right) \Delta_{z_{i}}^{\prime} .
$$

Since at $\varepsilon=0, g$ is constant as a function of $x_{i-1}$, we have at $\varepsilon=0$ :

$$
\frac{\partial g}{\partial x_{i-1}}\left(x_{i-1}, \Delta_{z_{i}}\right)=\frac{\partial(\text { constant vector })}{\partial x_{i-1}}=0
$$

It then follows from (3) that

$$
\left.p^{\prime}\left(y_{i}=\cdot \mid z_{-\infty}^{i}\right)\right|_{\varepsilon=0}=\left.x_{i}^{\prime}\right|_{\varepsilon=0}=\left.p^{\prime}\left(y_{i}=\cdot \mid z_{i-1}^{i}\right)\right|_{\varepsilon=0} .
$$

## Generalization

- Weak Black Hole: For every $a, \Delta_{a}$ has rank 0 or 1 .
- $\Delta(\varepsilon)$ is normally parameterized by $\varepsilon(\varepsilon \geq 0)$ if

1. each entry of $\Delta(\varepsilon)$ is an analytic function around $\varepsilon=0$,
2. for sufficiently small $\varepsilon>0, \Delta(\varepsilon)$ is irreducible.

Theorem 2. Let $\Delta(\varepsilon)$ be family of stochastic matrices and $\Phi$ a function on states. Let $Z(\varepsilon)$ denote resulting family of HMP's.
IF

- $(\Delta(0), \Phi)$ is a Weak Black Hole - and -
- $\Delta(\varepsilon)$ is normally parameterized

THEN there are sequences $f_{j}, g_{j}$ such that

- for $k \geq 0$,

$$
\begin{equation*}
H(Z(\varepsilon))=H(Z(0))+\sum_{j=1}^{k} f_{j} \varepsilon^{j}+\sum_{j=1}^{k+1} g_{j} \varepsilon^{j} \log \varepsilon+O\left(\varepsilon^{k+1}\right) \tag{4}
\end{equation*}
$$

- $f_{j}$ and $g_{j}$ depend only on $H_{6 j+6}(Z(\varepsilon))$


## Example 2 Re-Revisited

$\left[\begin{array}{c|cccc}y & (0,0) & (0,1) & (1,0) & (1,1) \\ \hline(0,0) & \pi_{00}(1-\varepsilon) & \pi_{00} \varepsilon & \pi_{01}(1-\varepsilon) & \pi_{01} \varepsilon \\ (0,1) & \pi_{00}(1-\varepsilon) & \pi_{00} \varepsilon & \pi_{01}(1-\varepsilon) & \pi_{01} \varepsilon \\ (1,0) & \pi_{10}(1-\varepsilon) & \pi_{10} \varepsilon & \pi_{11}(1-\varepsilon) & \pi_{11} \varepsilon \\ (1,1) & \pi_{10}(1-\varepsilon) & \pi_{10} \varepsilon & \pi_{11}(1-\varepsilon) & \pi_{11} \varepsilon\end{array}\right] \Delta(0)=\left[\begin{array}{ccccc}y & (0,0) & (0,1) & (1,0) & (1,1) \\ \hline(0,0) & \pi_{00} & 0 & \pi_{01} & 0 \\ (0,1) & \pi_{00} & 0 & \pi_{01} & 0 \\ (1,0) & \pi_{10} & 0 & \pi_{11} & 0 \\ (1,1) & \pi_{10} & 0 & \pi_{11} & 0\end{array}\right]$
$(0)=\left[\begin{array}{c|cccc}y & (0,0) & (0,1) & (1,0) & (1,1) \\ \hline(0,0) & \pi_{00} & 0 & 0 & 0 \\ (0,1) & \pi_{00} & 0 & 0 & 0 \\ (1,0) & \pi_{10} & 0 & 0 & 0 \\ (1,1) & \pi_{10} & 0 & 0 & 0\end{array}\right] \Delta_{1}(0)=\left[\begin{array}{c|cccc}y & (0,0) & (0,1) & (1,0) & (1,1) \\ \hline(0,0) & 0 & 0 & \pi_{01} & 0 \\ (0,1) & 0 & 0 & \pi_{01} & 0 \\ (1,0) & 0 & 0 & \pi_{11} & 0 \\ (1,1) & 0 & 0 & \pi_{11} & 0\end{array}\right]$

- $(\Delta(0), \Phi)$ Is a Weak Black Hole (without any assumptions on transition matrix П)
- If $\Pi$ is irreducible, then $\Delta(\varepsilon)$ is a normal parameterization.


## Example 3: Binary Erasure Channel

Inputs are either transmitted faithfully or erased with probability $\varepsilon$.

$$
\Delta(\varepsilon)=\left[\begin{array}{c|cccc}
y & (0,0) & (0,1) & (1,0) & (1,1) \\
\hline(0,0) & \pi_{00}(1-\varepsilon) & \pi_{00} \varepsilon & \pi_{01}(1-\varepsilon) & \pi_{01} \varepsilon \\
(0,1) & \pi_{00}(1-\varepsilon) & \pi_{00} \varepsilon & \pi_{01}(1-\varepsilon) & \pi_{01} \varepsilon \\
(1,0) & \pi_{10}(1-\varepsilon) & \pi_{10} \varepsilon & \pi_{11}(1-\varepsilon) & \pi_{11} \varepsilon \\
(1,1) & \pi_{10}(1-\varepsilon) & \pi_{10} \varepsilon & \pi_{11}(1-\varepsilon) & \pi_{11} \varepsilon
\end{array}\right] .
$$

$Z(\varepsilon)=\Phi(Y(\varepsilon))$ is an HMP where:
$\Phi(0,0)=0$,
$\Phi(1,0)=1$,
$\Phi(0,1)=\Phi(1,1)=$ ?

Thus,

$$
\begin{gathered}
\Delta_{0}=\left[\begin{array}{llll}
\pi_{00}(1-\varepsilon) & 0 & 0 & 0 \\
\pi_{00}(1-\varepsilon) & 0 & 0 & 0 \\
\pi_{10}(1-\varepsilon) & 0 & 0 & 0 \\
\pi_{10}(1-\varepsilon) & 0 & 0 & 0
\end{array}\right], \Delta_{1}=\left[\begin{array}{cccc}
0 & 0 & \pi_{01}(1-\varepsilon) & 0 \\
0 & 0 & \pi_{01}(1-\varepsilon) & 0 \\
0 & 0 & \pi_{11}(1-\varepsilon) & 0 \\
0 & 0 & \pi_{11}(1-\varepsilon) & 0
\end{array}\right], \\
\Delta_{?}=\left[\begin{array}{llll}
0 & \pi_{00} \varepsilon & 0 & \pi_{01} \varepsilon \\
0 & \pi_{00} \varepsilon & 0 & \pi_{01} \varepsilon \\
0 & \pi_{10} \varepsilon & 0 & \pi_{11} \varepsilon \\
0 & \pi_{10} \varepsilon & 0 & \pi_{11} \varepsilon
\end{array}\right] .
\end{gathered}
$$

- $(\Delta(0), \Phi)$ Is a Weak Black Hole (without any assumptions on transition matrix $\Pi$ ).
- If $\Pi$ is irreducible, then $\Delta(\varepsilon)$ is a normal parameterization.


## Idea of Proof of Theorem 2

(1) Given $k$, let $N=N(k)=6 k+6$. Then for any hidden Markov sequence $z_{-N}^{0}$,
EITHER: $\quad p\left(z_{-N}^{0}\right)=O\left(\varepsilon^{k+2}\right)$
OR: for any Markov state $y$ "that matters," and any $0 \leq i \leq 2 k+1$,

$$
\left.p^{(i)}\left(z_{0} \mid z_{-N}^{-1}\right)\right|_{\varepsilon=0}=\left.p^{(i)}\left(z_{0} \mid z_{-N}^{-1} y\right)\right|_{\varepsilon=0} .
$$

(2) It follows that

$$
H\left(Z_{0}(\varepsilon) \mid Z(\varepsilon)_{-N}^{-1}\right)=H\left(Z_{0}(\varepsilon) \mid Z(\varepsilon)_{-N}^{-1}, Y_{-N-1}\right)+O\left(\varepsilon^{k+1}\right)
$$

(3) Apply Birch bounds: Let $Z$ be an HMP defined by Markov chain $Y$ and function $\Phi$. Then for all $n \geq 0$,

$$
\begin{equation*}
H\left(Z_{0} \mid Z_{-n}^{-1}, Y_{-n-1}\right) \leq H(Z) \leq H\left(Z_{0} \mid Z_{-n}^{-1}\right) \tag{5}
\end{equation*}
$$

(In fact, upper and lower bounds agree and stabilize for $n \geq N(k)$.)

## Proof of Birch bounds

- Upper bound: monotonicity.
- Lower bound: fix $n$;

$$
H(Z)=\lim _{m \rightarrow \infty} H\left(Z_{0} \mid Z_{-m}^{-1}\right) \geq \lim _{m \rightarrow \infty} H\left(Z_{0} \mid Z_{-n}^{-1}, Y_{-m}^{-n-1}\right)=
$$

$$
\lim _{m \rightarrow \infty} H\left(Z_{0} \mid Z_{-n}^{-1}, Y_{-n-1}\right)=H\left(Z_{0} \mid Z_{-n}^{-1}, Y_{-n-1}\right) .
$$

## More on proof of Theorem 2

Let $V \geq 0$ be a vector indexed by Markov states $\mathcal{M}$.
Define:

$$
\begin{gathered}
p_{V}\left(z_{-n}^{-1}\right)=V \Delta_{z_{-n}} \cdots \Delta_{z_{-1}} \mathbf{1} \\
p_{V}\left(z_{0} \mid z_{-n}^{-1}\right)=\frac{p_{V}\left(z_{-n}^{0}\right)}{p_{V}\left(z_{-n}^{-1}\right)}
\end{gathered}
$$

## Examples:

- If $V$ is the stationary vector, then $p_{V}\left(z_{-n}^{0}\right)=p\left(z_{-n}^{0}\right)$ and $p_{V}\left(z_{0} \mid z_{-n}^{-1}\right)=p\left(z_{0} \mid z_{-n}^{-1}\right)$.
- If $V=p(y) \chi_{y}$, then $p_{V}\left(z_{-n}^{0}\right)=p\left(y z_{-n}^{0}\right)$ and $p_{V}\left(z_{0} \mid z_{-n}^{-1}\right)=p\left(z_{0} \mid z_{-n}^{-1} y\right)$.

Let $V=V(\varepsilon) \geq 0$ analytically parameterized by $\varepsilon$ and not identically 0 .

Write:

$$
\begin{gathered}
p_{V}\left(z_{-n}^{-1}\right)=\sum_{j=0}^{\infty} b(V)_{j} \varepsilon^{j} \\
p_{V}\left(z_{0} \mid z_{-n}^{-1}\right)=\sum_{j=0}^{\infty} a(V)_{j} \varepsilon^{j}
\end{gathered}
$$

Define: $\operatorname{ord}\left(p_{V}\left(z_{-n}^{-1}\right)\right)$ as smallest $j$ such that $b(V)_{j} \neq 0$
Lemma: If $\operatorname{ord}\left(p_{V}\left(z_{-n}^{-1}\right)\right), \quad \operatorname{ord}\left(p_{\hat{V}}\left(z_{-n}^{-1}\right)\right) \leq k$, then

$$
a(V)_{j}=a(\hat{V})_{j}, \quad \text { for all } 0 \leq j \leq n-4 k-1
$$

Proof: by induction; use rank $\leq 1$ condition to build up more and more $j$ such that this equality holds.

Say $k=0, n=1$.
$\sum_{j=0}^{\infty} a(V)_{j} \varepsilon^{j}=p_{V}\left(z_{0} \mid z_{-n}^{-1}\right)=\frac{p_{V}\left(z_{-1} z_{0}\right)}{p_{V}\left(z_{-1}\right)}=\frac{V \Delta_{z_{-1}} \Delta_{z_{0}} \mathbf{1}}{V \Delta_{z_{-1}} 1}=\frac{V \Delta_{z_{-1}}}{V \Delta_{z_{-1}} 1} \Delta_{z_{0}} \mathbf{1}$
By assumption that $k=0$, we have $V(0) \Delta_{z_{-1}}(0) \mathbf{1} \neq \mathbf{0}$. Thus,

$$
a(V)_{0}=\frac{V(0) \Delta_{z_{-1}}(0)}{V(0) \Delta_{z_{-1}}(0) \mathbf{1}} \Delta_{z_{0}}(0) \mathbf{1}
$$

Similarly,

$$
a(\hat{V})_{0}=\frac{\hat{V}(0) \Delta_{z_{-1}}(0)}{\hat{V}(0) \Delta_{z_{-1}}(0) \mathbf{1}} \Delta_{z_{0}}(0) \mathbf{1}
$$

But since $\Delta_{z_{-1}}(0)$ has rank 1, these two expressions are equal.

## Explicit formula in special case

Let $X$ be a Markov chain of order $m$ (recode to first order Markov chain in order to fit our framework).

Let $\mathcal{A}(X)$ denote set of words of positive probability for $X$.
Let $Z(\varepsilon)$ be the output of $X$ passed through BSC $(\varepsilon)$. Then for $H(Z(\varepsilon)), g_{1}$ depends only on $X$ and

$$
g_{1}=g_{1}(X)=-\sum_{w \in \mathcal{A}(X), w v \notin \mathcal{A}(X),|w|=2 m,|v|=1} d(w v)
$$

where

$$
d\left(u_{-n}^{-1}\right)=\sum_{j=1}^{n} p_{X}\left(u_{-n}^{-j-1} \bar{u}_{-j} u_{-j+1}^{-1}\right)
$$

## Asymptotics of Input-Restricted Noisy Channel Capacity

Consider a binary irreducible Shift of Finite Type $S$. For $\operatorname{BSC}(\varepsilon)$ with input sequences restricted to $S$, capacity is defined:

$$
C(S, \varepsilon)=\sup _{\text {stationary } x \text { supported on } S} H(Z(\varepsilon))-H(\varepsilon),
$$

where $Z(\varepsilon)$ is the output process corresponding to $X$ and $H(\varepsilon)$ is the binary entropy function.
Theorem 3. (JSS, HM (2006))

$$
C(S, \varepsilon)=H(S)+\left(g_{1}\left(X_{\max }\right)+1\right) \varepsilon \log (\varepsilon)+O(\varepsilon),
$$

where $H(S)$ is the topological entropy of $\mathcal{S}, X_{\text {max }}$ is the maximum entropy process associated with $S$, and $g_{1}$ is as in Theorem 2.

Current work: higher order asymptotics and other channels.

Example: Let $X$ be a first order input Markov chain supported on $S=$ Golden Mean Shift (i.e., 11 is forbidden), transmitted over BSC $(\varepsilon)$ with corresponding output HMP $Z(\varepsilon)$. Theorem 2 yields:

$$
H(Z(\varepsilon))=H(X)+\left(\frac{\pi_{01}\left(\pi_{01}-2\right)}{1+\pi_{01}}\right) \varepsilon \log (\varepsilon)+O(\varepsilon) .
$$

(originally due to Ordentlich-Weissman (2005))
The maximum entropy Markov chain is defined by the transition matrix:

$$
\left[\begin{array}{cc}
1 / \lambda & 1 / \lambda^{2} \\
1 & 0
\end{array}\right]
$$

and

$$
H(\mathcal{S})=H\left(X_{\max }\right)=\log \lambda,
$$

where $\lambda$ is the golden mean. Thus, in this case $\pi_{01}=1 / \lambda^{2}$, and from Theorem 3, we obtain:

$$
C(S, \varepsilon)=\log \lambda+\left(\frac{2 \lambda+2}{4 \lambda+3}\right) \varepsilon \log (\varepsilon)+O(\varepsilon)
$$

Dear Karl,

1. Thanks for all the wonderful mathematics: past, present and future.
2. HAPPY BIRTHDAY
3. I will save the embarrassing stories for Friday night.

Best wishes - Brian

