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Entropy of Stationary Processes

For a stationary process Y = {Yi}, defined by joint probability
distribution p, the entropy of Y is:

H(Y ) = lim
n→∞

Hn(Y ),

where

Hn(Y ) = H(Y0|Y−1, Y−2, · · · , Y−n) =
∑

y0
−n

−p(y0
−n) log p(y0|y

−1
−n).

Known as “entropy rate” in info. theory and “measure-theoretic
entropy” in ergodic theory.
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Entropy of Markov chains

Let Y be a stationary (finite-state, first-order) Markov chain defined
by probability transition matrix ∆:

∆(i, j) = p(y1 = j|y0 = i).

and stationary vector p(y0 = i). Then,

H(Y ) = −
∑

i,j

p(y0 = i)∆(i, j) log ∆(i, j).

Higher-order Markov chains can be recoded to first-order Markov
chains.
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Hidden Markov Processes (HMP)

Defn: A Hidden Markov Process is a stationary process which is
a continuous factor of a Markov chain.

Equivalent Defn: A Hidden Markov Process Z = {Zi} is a
stationary process of the form Zi = Φ(Yi), where Y = {Yi} is a
Markov chain and Φ is a function on the Markov states.

Proof: Recode to 1-block factor map by enlarging state space.

Problem: compute entropy of HMP’s.

Motivation:

• HMP’s are tractable models of many phenomena.

• – Entropy measures compressibility−1 of Y .

– Computation of entropy is a first step to compute the
Shannon capacity of an input-restricted noisy channel.
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Note: HMP’s are typically not Markov (of any order).

Example 1:

Let Y be Markov chain on {1, 2, 3} with probability transition matrix:

∆ =









0 2/3 1/3

1/3 2/3 0

2/3 0 1/3









.

Let Z = Φ(Y ) be the HMP, where Φ(1) = a and Φ(2) = Φ(3) = b,
e.g., 1222133121213312221 is mapped to:

abbbabbabababbabbba.
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One computes, using the stationary vector [2/7, 4/7, 1/7]:

p(z0 = b|z−1 = b, z−2 = b, . . . z−k = b, z−k−1 = b) =

a weighted average of 2/3 and 1/3 with relative weights:

(4/7)(2/3)k and (1/7)(1/3)k. And

p(z0 = b|z−1 = b, z−2 = b, . . . z−k = b, z−k−1 = a) =

a weighted average of 2/3 and 1/3 with relative weights:

(2/7)(2/3)k and (2/7)(1/3)k.

• This HMP cannot be realized as an equal entropy factor of any
Markov chain (Marcus-Petersen-Williams (1984)).

• This is in contrast to computation of topological entropy of sofic
shift as an entropy-preserving factor of an SFT
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Example 2:

Z(ε) is the output process obtained when passing a stationary
binary Markov chain X through a binary symmetric channel
(BSC(ε)):

Zn(ε) = Xn ⊕ En(ε),

where ⊕ denotes binary addition, Xn denotes the binary input,
En(ε) denotes the i.i.d. binary noise with pE(0) = 1 − ε and
pE(1) = ε, and Zn(ε) denotes the corrupted output.

Let

Π =





π00 π01

π10 π11





be the probability transition matrix for X .
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Then Y (ε) = {(Xn, En(ε))} is jointly Markov with

∆(ε) =





















y (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) π00(1 − ε) π00ε π01(1 − ε) π01ε

(0, 1) π00(1 − ε) π00ε π01(1 − ε) π01ε

(1, 0) π10(1 − ε) π10ε π11(1 − ε) π11ε

(1, 1) π10(1 − ε) π10ε π11(1 − ε) π11ε





















.

Z(ε) = Φ(Y (ε)) is an HMP, where

Φ((0, 0)) = Φ((1, 1)) = 0 and

Φ((0, 1)) = Φ((1, 0)) = 1

8



History:

• H(Z) expressed as an integral of a simple function with respect
to a complicated measure on a simplex (Blackwell (1957))

• general upper and lower bounds on H(Z) (Birch, (1962))

• Karl Petersen gets interested; MPW paper and plots of
estimated entropies and capacities (1981)

• For Markov chain input over BSC(ε), exact computation of
leading terms of asymptotics of entropy as noise parameters or
Markov transition probabilities tend to extremes.

– Jacquet-Seroussi-Szpankowski (2004, 2006)

– Ordentlich-Weissmann (2004, 2005)

– Zuk et. al (2004, 2006)

– Peres-Quas (2007)
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Decomposition of ∆

M: set of Markov states

A: set of hidden Markov symbols.

So, Φ : M → A.

For a ∈ A, let ∆a denote the matrix defined by:

∆a(i, j) = ∆(i, j) for j with Φ(j) = a

∆a(i, j) = 0 otherwise .

For Example 1:

∆a =

2

6

6

4

0 0 0

1/3 0 0

2/3 0 0

3

7

7

5

∆b =

2

6

6

4

0 2/3 1/3

0 2/3 0

0 0 1/3

3

7

7

5
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Dynamics

Let W denote unit simplex in R|M|. For each symbol a ∈ A, define
fa : W → W by:

fa(w) =
w∆a

w∆a1

Define

xi = xi(z
i
−∞) = p(yi = · |zi

−∞). (1)

Then, {xi} satisfies the iteration

xi = fzi
(xi−1), (2)
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xi

xi+1

fzi+1
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Defn: (Black Hole: ) For every a ∈ A,

• ∆a has rank one – and –

• every column of ∆a is either strictly positive or all zero.

Note: For a Black Hole, each fa maps entire simplex to single point.

Theorem 1. Let ∆(ε) be family of stochastic matrices and Φ a function on
states. Let Z(ε) denote resulting family of HMP’s.

IF

• (∆(0),Φ) is a Black Hole – and –

• ∆(ε) is analytically parameterized around ε = 0,

THEN

• H(Z(ε)) is analytic around ε = 0.

• H(Z(ε))(N)|ε=0 = Hd(N+1)/2e(Z(ε))(N)|ε=0
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Example 1 Revisited

∆ =









0 2/3 1/3

1/3 2/3 0

2/3 0 1/3









,

with Φ(1) = a and Φ(2) = Φ(3) = b,

∆a =









0 0 0

1/3 0 0

2/3 0 0









∆b =









0 2/3 1/3

0 2/3 0

0 0 1/3









(∆, Φ) is Not a Black Hole.
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Example 2 Revisited

) =

2

6

6

6

6

6

6

6

4

y (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) π00(1 − ε) π00ε π01(1 − ε) π01ε

(0, 1) π00(1 − ε) π00ε π01(1 − ε) π01ε

(1, 0) π10(1 − ε) π10ε π11(1 − ε) π11ε

(1, 1) π10(1 − ε) π10ε π11(1 − ε) π11ε

3

7

7

7

7

7

7

7

5

∆(0) =

2

6

6

6

6

6

6

6

4

y (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) π00 0 π01 0

(0, 1) π00 0 π01 0

(1, 0) π10 0 π11 0

(1, 1) π10 0 π11 0

3

7

7

7

7

7

7

7

5

Φ((0, 0)) = Φ((1, 1)) = 0; Φ((0, 1)) = Φ((1, 0)) = 1

0(0) =

2

6

6

6

6

6

6

6

4

y (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) π00 0 0 0

(0, 1) π00 0 0 0

(1, 0) π10 0 0 0

(1, 1) π10 0 0 0

3

7

7

7

7

7

7

7

5

∆1(0) =

2

6

6

6

6

6

6

6

4

y (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) 0 0 π01 0

(0, 1) 0 0 π01 0

(1, 0) 0 0 π11 0

(1, 1) 0 0 π11 0

3

7

7

7

7

7

7

7

5

If Π > 0, then (∆(0), Φ) Is a Black Hole.
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Rough Idea of Proof: Stabilization of Derivatives

Recall (1):

xi = xi(z
i
−∞) = p(yi = · |zi

−∞).

and the iteration (2):

xi =
xi−1∆zi

xi−1∆zi
1
≡ g(xi−1, ∆zi

)

Since at ε = 0, ∆zi
has rank one, g must be constant as a function

of xi−1. So, at ε = 0,

p(yi = ·|zi
−∞) = xi =

xi−1∆zi

xi−1∆zi
1

=
p(yi−1 = ·)∆zi

p(yi−1 = ·)∆zi
1

= p(yi = ·|zi). (3)
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Taking the derivative of g with respect to ε, we have:

x′
i =

∂g

∂xi−1
(xi−1, ∆zi

) x′
i−1 +

∂g

∂∆zi

(xi−1, ∆zi
) ∆′

zi
.

Since at ε = 0, g is constant as a function of xi−1, we have at ε = 0:

∂g

∂xi−1
(xi−1, ∆zi

) =
∂(constant vector)

∂xi−1
= 0.

It then follows from (3) that

p′(yi = ·|zi
−∞)|ε=0 = x′

i|ε=0 = p′(yi = ·|zi
i−1)|ε=0.
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Generalization

• Weak Black Hole: For every a, ∆a has rank 0 or 1.

• ∆(ε) is normally parameterized by ε (ε ≥ 0) if

1. each entry of ∆(ε) is an analytic function around ε = 0,

2. for sufficiently small ε > 0, ∆(ε) is irreducible.
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Theorem 2. Let ∆(ε) be family of stochastic matrices and Φ a
function on states. Let Z(ε) denote resulting family of HMP’s.
IF

• (∆(0), Φ) is a Weak Black Hole – and –

• ∆(ε) is normally parameterized

THEN there are sequences fj , gj such that

• for k ≥ 0,

H(Z(ε)) = H(Z(0)) +

k
∑

j=1

fjε
j +

k+1
∑

j=1

gjε
j log ε + O(εk+1) (4)

• fj and gj depend only on H6j+6(Z(ε))
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Example 2 Re-Revisited

) =

2

6

6

6

6

6

6

6

4

y (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) π00(1 − ε) π00ε π01(1 − ε) π01ε

(0, 1) π00(1 − ε) π00ε π01(1 − ε) π01ε

(1, 0) π10(1 − ε) π10ε π11(1 − ε) π11ε

(1, 1) π10(1 − ε) π10ε π11(1 − ε) π11ε

3

7

7

7

7

7

7

7

5

∆(0) =

2

6

6

6

6

6

6

6

4

y (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) π00 0 π01 0

(0, 1) π00 0 π01 0

(1, 0) π10 0 π11 0

(1, 1) π10 0 π11 0

3

7

7

7

7

7

7

7

5

0(0) =

2

6

6

6

6

6

6

6

4

y (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) π00 0 0 0

(0, 1) π00 0 0 0

(1, 0) π10 0 0 0

(1, 1) π10 0 0 0

3

7

7

7

7

7

7

7

5

∆1(0) =

2

6

6

6

6

6

6

6

4

y (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) 0 0 π01 0

(0, 1) 0 0 π01 0

(1, 0) 0 0 π11 0

(1, 1) 0 0 π11 0

3

7

7

7

7

7

7

7

5

• (∆(0), Φ) Is a Weak Black Hole (without any assumptions on
transition matrix Π)

• If Π is irreducible, then ∆(ε) is a normal parameterization.
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Example 3: Binary Erasure Channel

Inputs are either transmitted faithfully or erased with probability ε.

∆(ε) =





















y (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) π00(1 − ε) π00ε π01(1 − ε) π01ε

(0, 1) π00(1 − ε) π00ε π01(1 − ε) π01ε

(1, 0) π10(1 − ε) π10ε π11(1 − ε) π11ε

(1, 1) π10(1 − ε) π10ε π11(1 − ε) π11ε





















.

Z(ε) = Φ(Y (ε)) is an HMP where:

Φ(0, 0) = 0,

Φ(1, 0) = 1,

Φ(0, 1) = Φ(1, 1) =?
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Thus,

∆0 =















π00(1 − ε) 0 0 0

π00(1 − ε) 0 0 0

π10(1 − ε) 0 0 0

π10(1 − ε) 0 0 0















, ∆1 =















0 0 π01(1 − ε) 0

0 0 π01(1 − ε) 0

0 0 π11(1 − ε) 0

0 0 π11(1 − ε) 0















,

∆? =















0 π00ε 0 π01ε

0 π00ε 0 π01ε

0 π10ε 0 π11ε

0 π10ε 0 π11ε















.

• (∆(0), Φ) Is a Weak Black Hole (without any assumptions on
transition matrix Π).

• If Π is irreducible, then ∆(ε) is a normal parameterization.
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Idea of Proof of Theorem 2

(1) Given k, let N = N(k) = 6k + 6. Then for any hidden Markov
sequence z0

−N ,

EITHER: p(z0
−N ) = O(εk+2)

OR: for any Markov state y “that matters,” and any 0 ≤ i ≤ 2k + 1,

p(i)(z0|z
−1
−N )|ε=0 = p(i)(z0|z

−1
−Ny)|ε=0.

(2) It follows that

H(Z0(ε)|Z(ε)−1
−N ) = H(Z0(ε)|Z(ε)−1

−N , Y−N−1) + O(εk+1).

(3) Apply Birch bounds: Let Z be an HMP defined by Markov chain Y

and function Φ. Then for all n ≥ 0,

H(Z0|Z
−1
−n, Y−n−1) ≤ H(Z) ≤ H(Z0|Z

−1
−n). (5)

(In fact, upper and lower bounds agree and stabilize for n ≥ N(k).)
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Proof of Birch bounds

• Upper bound: monotonicity.

• Lower bound: fix n;

H(Z) = lim
m→∞

H(Z0|Z
−1
−m) ≥ lim

m→∞
H(Z0|Z

−1
−n, Y −n−1

−m ) =

lim
m→∞

H(Z0|Z
−1
−n, Y−n−1) = H(Z0|Z

−1
−n, Y−n−1).
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More on proof of Theorem 2

Let V ≥ 0 be a vector indexed by Markov states M.

Define:

•

pV (z−1
−n) = V ∆z

−n
· · ·∆z

−1
1

•

pV (z0|z
−1
−n) =

pV (z0
−n)

pV (z−1
−n)

Examples:

• If V is the stationary vector, then pV (z0
−n) = p(z0

−n) and
pV (z0|z

−1
−n) = p(z0|z

−1
−n).

• If V = p(y)χy, then pV (z0
−n) = p(yz0

−n) and
pV (z0|z

−1
−n) = p(z0|z

−1
−ny).
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Let V = V (ε) ≥ 0 analytically parameterized by ε and not
identically 0.

Write:

pV (z−1
−n) =

∞
∑

j=0

b(V )jε
j

pV (z0|z
−1
−n) =

∞
∑

j=0

a(V )jε
j

Define: ord(pV (z−1
−n)) as smallest j such that b(V )j 6= 0

Lemma: If ord(pV (z−1
−n)), ord(pV̂ (z−1

−n)) ≤ k, then

a(V )j = a(V̂ )j , for all 0 ≤ j ≤ n − 4k − 1
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Proof: by induction; use rank ≤ 1 condition to build up more and
more j such that this equality holds.

Say k = 0, n = 1.

∞
∑

j=0

a(V )jε
j = pV (z0|z

−1
−n) =

pV (z−1z0)

pV (z−1)
=

V ∆z
−1

∆z0
1

V ∆z
−1

1
=

V ∆z
−1

V ∆z
−1

1
∆z0

1

By assumption that k = 0, we have V (0)∆z
−1

(0)1 6= 0. Thus,

a(V )0 =
V (0)∆z

−1
(0)

V (0)∆z
−1

(0)1
∆z0

(0)1

Similarly,

a(V̂ )0 =
V̂ (0)∆z

−1
(0)

V̂ (0)∆z
−1

(0)1
∆z0

(0)1

But since ∆z
−1

(0) has rank 1, these two expressions are equal.
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Explicit formula in special case

Let X be a Markov chain of order m (recode to first order Markov
chain in order to fit our framework).

Let A(X) denote set of words of positive probability for X .

Let Z(ε) be the output of X passed through BSC (ε). Then for
H(Z(ε)), g1 depends only on X and

g1 = g1(X) = −
∑

w∈A(X),wv/∈A(X),|w|=2m,|v|=1

d(wv)

where

d(u−1
−n) =

n
∑

j=1

pX(u−j−1
−n ū−ju

−1
−j+1)
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Asymptotics of Input-Restricted Noisy Channel Capacity

Consider a binary irreducible Shift of Finite Type S. For BSC(ε)
with input sequences restricted to S, capacity is defined:

C(S, ε) = sup
stationary X supported on S

H(Z(ε)) − H(ε),

where Z(ε) is the output process corresponding to X and H(ε) is
the binary entropy function.

Theorem 3. (JSS, HM (2006))

C(S, ε) = H(S) + (g1(Xmax) + 1)ε log(ε) + O(ε),

where H(S) is the topological entropy of S, Xmax is the maximum
entropy process associated with S, and g1 is as in Theorem 2.

Current work: higher order asymptotics and other channels.
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Example: Let X be a first order input Markov chain supported on S =

Golden Mean Shift (i.e., 11 is forbidden), transmitted over BSC(ε) with
corresponding output HMP Z(ε). Theorem 2 yields:

H(Z(ε)) = H(X) +

„

π01(π01 − 2)

1 + π01

«

ε log(ε) + O(ε).

(originally due to Ordentlich-Weissman (2005))

The maximum entropy Markov chain is defined by the transition matrix:
2

4

1/λ 1/λ2

1 0

3

5

and
H(S) = H(Xmax) = log λ,

where λ is the golden mean. Thus, in this case π01 = 1/λ2, and from
Theorem 3, we obtain:

C(S, ε) = log λ +

„

2λ + 2

4λ + 3

«

ε log(ε) + O(ε).
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Dear Karl,

1. Thanks for all the wonderful mathematics:

past, present and future.

2. HAPPY BIRTHDAY

3. I will save the embarrassing stories for

Friday night.

Best wishes - Brian
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