PROBLEMS: p-ADIC HEIGHTS ON ELLIPTIC CURVES

JENNIFER BALAKRISHNAN

(1) Let E be the elliptic curve $y^{2}=x^{3}-4 x+4$ over \mathbb{Q}.
(a) Compute the Mordell-Weil rank of $E(\mathbb{Q})$.
(b) Find the smallest good, ordinary prime p for E.
(c) Using p from part (b) above, compute the cyclotomic p-adic height h of $P=(2,-2)$ and of $Q=(0,-2)$. Are $h(P)$ and $h(Q)$ related?
(2) Let E be the elliptic curve $y^{2}+y=x^{3}+x^{2}-2 x$ (LMFDB label 389.a1).
(a) What is the rank of $E(\mathbb{Q})$? Compute generators for the Mordell-Weil group.
(b) Compute the p-adic regulator for good, ordinary primes $p<100$. What do you notice about its valuation?
(c) What is the valuation of the 16231-adic regulator?
(d) Challenge (for those familiar with Sage development): check out the OMS code at http://trac.sagemath.org/ticket/812 and see if you can compute Ш[16231].
(3) Find an example of an elliptic curve E, quadratic imaginary field K, prime p, and non-torsion point P such that the anticyclotomic p-adic height of P is 0 .

[^0]
[^0]: Date: June 16, 2016.

