PROBLEMS: COLEMAN INTEGRATION AND p-ADIC HEIGHTS

JENNIFER BALAKRISHNAN

(1) Let E be the elliptic curve $y^{2}=x^{3}-55 x+157$ over \mathbb{Q}.
(a) Compute the rank of $E(\mathbb{Q})$ and its Tamagawa numbers.
(b) Let $P_{1}=(4,1)$ and $P_{2}=(12,35)$, let $h\left(P_{i}\right)$ denote the cyclotomic 7 -adic height, and let \int denote 7 -adic Coleman integration. Compute the following ratios:

$$
\frac{h\left(P_{i}\right)}{\left(\int_{\infty}^{P_{i}} \frac{d x}{2 y}\right)^{2}}, \quad i=1,2
$$

(2) Let X be the hyperelliptic curve $y^{2}=x^{5}+1$. Compute the 7 -adic matrix of Frobenius on $H_{\mathrm{dR}}^{1}(X)$.
(3) Let X / \mathbb{Q} be a nice curve, $\omega \in H^{0}\left(X, \Omega^{1}\right)$, and $Q_{i}, Q_{i}^{\prime} \in X\left(\mathbb{Q}_{p}\right)$. Suppose that $\sum_{i}\left(Q_{i}-Q_{i}^{\prime}\right)$ is the divisor of a rational function. Prove that

$$
\sum_{i} \int_{Q_{i}^{\prime}}^{Q_{i}} \omega=0
$$

(4) Let X / \mathbb{Q} be a hyperelliptic curve and $\omega \in H^{0}\left(X, \Omega^{1}\right)$. Show that for Weierstrass points $W_{1}, W_{2} \in X\left(\mathbb{Q}_{p}\right)$, we have $\int_{W_{1}}^{W_{2}} \omega=0$.
(5) Let X be the hyperelliptic curve $y^{2}=x^{5}+\frac{33}{16} x^{4}+\frac{3}{4} x^{3}+\frac{3}{8} x^{2}-\frac{1}{4} x+\frac{1}{16}$ and let $P_{1}=\left(0, \frac{1}{4}\right), P_{2}=(-1,1)$. Compute the 7 -adic Coleman integrals

$$
\int_{P_{1}}^{P_{2}} \frac{d x}{2 y}, \int_{P_{1}}^{P_{2}} \frac{x d x}{2 y}, \int_{P_{1}}^{P_{2}} \frac{x^{2} d x}{2 y}, \int_{P_{1}}^{P_{2}} \frac{x^{3} d x}{2 y}
$$

[^0]
[^0]: Date: June 16, 2016.

