PROBLEMS: COLEMAN INTEGRATION AND *p***-ADIC HEIGHTS**

JENNIFER BALAKRISHNAN

- (1) Let E be the elliptic curve $y^2 = x^3 55x + 157$ over \mathbb{Q} .
 - (a) Compute the rank of $E(\mathbb{Q})$ and its Tamagawa numbers.
 - (b) Let $P_1 = (4,1)$ and $P_2 = (12,35)$, let $h(P_i)$ denote the cyclotomic 7-adic height, and let \int denote 7-adic Coleman integration. Compute the following ratios:

$$\frac{h(P_i)}{(\int_{\infty}^{P_i} \frac{dx}{2y})^2}, \quad i = 1, 2$$

- (2) Let X be the hyperelliptic curve $y^2 = x^5 + 1$. Compute the 7-adic matrix of Frobenius on $H^1_{dR}(X)$.
- (3) Let X/\mathbb{Q} be a nice curve, $\omega \in H^0(X, \Omega^1)$, and $Q_i, Q'_i \in X(\mathbb{Q}_p)$. Suppose that $\sum_{i} (Q_i - Q'_i)$ is the divisor of a rational function. Prove that

$$\sum_{i} \int_{Q'_{i}}^{Q_{i}} \omega = 0.$$

- (4) Let X/\mathbb{Q} be a hyperelliptic curve and $\omega \in H^0(X,\Omega^1)$. Show that for
- (1) Let H/\mathbb{Q} be a hyperemptie can be and $\omega \in H(\mathbb{Q}, \mathbb{Q})$. Show that for Weierstrass points $W_1, W_2 \in X(\mathbb{Q}_p)$, we have $\int_{W_1}^{W_2} \omega = 0$. (5) Let X be the hyperelliptic curve $y^2 = x^5 + \frac{33}{16}x^4 + \frac{3}{4}x^3 + \frac{3}{8}x^2 \frac{1}{4}x + \frac{1}{16}$ and let $P_1 = (0, \frac{1}{4}), P_2 = (-1, 1)$. Compute the 7-adic Coleman integrals

$$\int_{P_1}^{P_2} \frac{dx}{2y}, \int_{P_1}^{P_2} \frac{x \, dx}{2y}, \int_{P_1}^{P_2} \frac{x^2 \, dx}{2y}, \int_{P_1}^{P_2} \frac{x^3 \, dx}{2y}.$$

Date: June 16, 2016.