From trees to seeds:

on the inference of the seed from large random trees
 Joint work with
 Sébastien Bubeck, Ronen Eldan, and Elchanan Mossel

Miklós Z. Rácz
Microsoft Research

Banff Retreat
September 25, 2016.

Statistical inference in non-equilibrium networks

Apple's inventor network over a 6-year period. Source: Kenedict.

Given the current state of a network, what can we say about a previous state?

|Inferring network mechanisms: The Drosophila melanogaster protein interaction network
Manuel Middendort', Etay Ziv', and Chris H. Wiggins ${ }^{\text {sin }}$

OPEN O ACCESS 2 Freely available online
Not All Scale-Free Networks Are Born Equal: The Role of the Seed Graph in PPI Network Evolution
Fereydoun Hormozdiari', Petra Berenbrink ${ }^{1}$, Nataša Pržuli ${ }^{2}$, S. Cenk Sahinalp ${ }^{1 *}$
1school al Computing sco
Unied Stres of Ameika

4Recovering time-varying networks of dependencies in social and biological studies
Amr Ahmed and Eric P. Xing ${ }^{1}$

Randomly growing trees

Randomly growing trees

Preferential attachment:

$$
\mathbb{P}\left(u_{n}=u\right)=\frac{d_{T_{n}}(u)}{2 n-2}
$$

Uniform attachment:

$$
\mathbb{P}\left(u_{n}=u\right)=\frac{1}{n}
$$

Randomly growing trees

Preferential attachment:

$$
\mathbb{P}\left(u_{n}=u\right)=\frac{d_{T_{n}}(u)}{2 n-2}
$$

Uniform attachment:

$$
\mathbb{P}\left(u_{n}=u\right)=\frac{1}{n}
$$

In general:

$$
\mathbb{P}\left(u_{n}=u\right)=\frac{\left(d_{T_{n}}(u)\right)^{\alpha}}{Z}
$$

Randomly growing trees

Preferential attachment:

$$
\mathbb{P}\left(u_{n}=u\right)=\frac{d_{T_{n}}(u)}{2 n-2}
$$

Uniform attachment:

$$
\mathbb{P}\left(u_{n}=u\right)=\frac{1}{n}
$$

In general:

$$
\mathbb{P}\left(u_{n}=u\right)=\frac{\left(d_{T_{n}}(u)\right)^{\alpha}}{Z}
$$

Many other tree growth models...

The influence of the seed - preferential attachment

seed S_{10}

seed P_{10}

The influence of the seed - uniform attachment

seed S_{10}

seed P_{10}

$\mathrm{UA}\left(n=500, S_{10}\right)$

$\mathrm{UA}\left(n=500, P_{10}\right)$

Measuring the influence of the seed

- A crude measure: limit as a countably infinite tree

Measuring the influence of the seed

- A crude measure: limit as a countably infinite tree \rightsquigarrow seed has no influence for PA or UA

Measuring the influence of the seed

- A crude measure: limit as a countably infinite tree \rightsquigarrow seed has no influence for PA or UA

But for superlinear attachment ($\alpha>1$), see Oliveira, Spencer (2005)

Measuring the influence of the seed

- A crude measure: limit as a countably infinite tree \rightsquigarrow seed has no influence for PA or UA

> But for superlinear attachment ($\alpha>1$), see Oliveira, Spencer (2005)

- A finer measure: weak local limit (Benjamini-Schramm)

Measuring the influence of the seed

- A crude measure: limit as a countably infinite tree \rightsquigarrow seed has no influence for PA or UA

> But for superlinear attachment ($\alpha>1$), see Oliveira, Spencer (2005)

- A finer measure: weak local limit (Benjamini-Schramm) \rightsquigarrow seed has no influence for PA or UA

Measuring the influence of the seed

- A crude measure: limit as a countably infinite tree \rightsquigarrow seed has no influence for PA or UA

> But for superlinear attachment ($\alpha>1$), see Oliveira, Spencer (2005)

- A finer measure: weak local limit (Benjamini-Schramm) \rightsquigarrow seed has no influence for PA or UA

See Rudas, Tóth, Valkó (2007) (PA trees) and Berger, Borgs, Chayes, Saberi (2014) (in general) for weak local limits.

Measuring the influence of the seed

- A much finer measure: total variation distance

$$
\begin{aligned}
& \delta_{\mathrm{PA}}(S, T):=\lim _{n \rightarrow \infty} \operatorname{TV}(\operatorname{PA}(n, S), \operatorname{PA}(n, T))
\end{aligned}
$$

Measuring the influence of the seed

- A much finer measure: total variation distance

$$
\begin{gathered}
\delta_{\mathrm{PA}}(S, T):=\lim _{n \rightarrow \infty} \operatorname{TV}(\operatorname{PA}(n, S), \operatorname{PA}(n, T)) \\
\delta_{\mathrm{PA}}(\vdots \ddots, \therefore)=\lim _{n \rightarrow \infty} \mathrm{TV}(\text { 骎, 譄 })
\end{gathered}
$$

Hypothesis testing question:

$$
H_{0}: R \sim \operatorname{PA}(n, S), \quad H_{1}: R \sim \operatorname{PA}(n, T)
$$

Q: test with asymptotically (in n) non-negligible power?

Main results

Preferential attachment:

Theorem (Bubeck, Mossel, R.)

If the degree profiles of S and T are different, and both have at least 3 vertices, then

$$
\delta_{\mathrm{PA}}(S, T)>0 .
$$

Theorem (Curien, Duquesne, Kortchemski, Manolescu)

If S and T are non-isomorphic and both have at least 3 vertices, then

$$
\delta_{\mathrm{PA}}(S, T)>0 .
$$

Uniform attachment:

Theorem (Bubeck, Eldan, Mossel, R.)

If S and T are non-isomorphic and both have at least 3 vertices, then

$$
\delta_{\mathrm{UA}}(S, T)>0
$$

PA heuristics: maximum degree

Degree evolution governed by Pólya urns

$$
\left(2 n-2-d_{\mathrm{PA}(n, S)}(i), d_{\mathrm{PA}(n, S)}(i)\right)
$$

- Replacement matrix: $\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)$; initial condition:
- If $i \in S$ then $\left(2|S|-2-d_{S}(i), d_{S}(i)\right)$;
- If $i \notin S$ then $(2 i-3,1)$.

PA heuristics: maximum degree

Degree evolution governed by Pólya urns

$$
\left(2 n-2-d_{\mathrm{PA}(n, S)}(i), d_{\mathrm{PA}(n, S)}(i)\right)
$$

- Replacement matrix: $\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)$; initial condition:
- If $i \in S$ then $\left(2|S|-2-d_{S}(i), d_{S}(i)\right)$;
- If $i \notin S$ then $(2 i-3,1)$.

Rescaled degrees converge almost surely:

$$
\begin{aligned}
d_{\mathrm{PA}(n, S)}(i) / \sqrt{n} & \xrightarrow{n \rightarrow \infty} D_{i}(S) \\
\Delta(\mathrm{PA}(n, S)) / \sqrt{n} & \xrightarrow{n \rightarrow \infty} D_{\max }(S) \\
D_{\max }(S) & =\max _{i \geq 1} D_{i}(S)
\end{aligned}
$$

See Móri (2005), Janson (2006), Peköz, Röllin, Ross (2013, 2014).

Influence of the seed on the maximum degree

Lemma (Tail behavior of the maximum degree)

Let S be a finite tree and let $m:=\left|\left\{i \in\{1, \ldots,|S|\}: d_{S}(i)=\Delta(S)\right\}\right|$. Then

$$
\mathbb{P}\left(D_{\max }(S)>t\right) \sim m \times c(|S|, \Delta(S)) t^{1-2|S|+2 \Delta(S)} \exp \left(-t^{2} / 4\right)
$$

as $t \rightarrow \infty$, where the constant c is explicit.

Influence of the seed on the maximum degree

Lemma (Tail behavior of the maximum degree)

Let S be a finite tree and let $m:=\left|\left\{i \in\{1, \ldots,|S|\}: d_{S}(i)=\Delta(S)\right\}\right|$. Then

$$
\mathbb{P}\left(D_{\max }(S)>t\right) \sim m \times c(|S|, \Delta(S)) t^{1-2|S|+2 \Delta(S)} \exp \left(-t^{2} / 4\right)
$$

as $t \rightarrow \infty$, where the constant c is explicit.
\rightsquigarrow the seed influences the polynomial factor!

Influence of the seed on the maximum degree

Lemma (Tail behavior of the maximum degree)

Let S be a finite tree and let $m:=\left|\left\{i \in\{1, \ldots,|S|\}: d_{S}(i)=\Delta(S)\right\}\right|$. Then

$$
\mathbb{P}\left(D_{\max }(S)>t\right) \sim m \times c(|S|, \Delta(S)) t^{1-2|S|+2 \Delta(S)} \exp \left(-t^{2} / 4\right)
$$

as $t \rightarrow \infty$, where the constant c is explicit.
\rightsquigarrow the seed influences the polynomial factor!

Corollary (Distinguishing seeds)

If $|S|-\Delta(S) \neq|T|-\Delta(T)$, then

$$
\delta_{\mathrm{PA}}(S, T)>0 .
$$

Influence of the seed on the maximum degree

Lemma (Tail behavior of the maximum degree)

Let S be a finite tree and let $m:=\left|\left\{i \in\{1, \ldots,|S|\}: d_{S}(i)=\Delta(S)\right\}\right|$. Then

$$
\mathbb{P}\left(D_{\max }(S)>t\right) \sim m \times c(|S|, \Delta(S)) t^{1-2|S|+2 \Delta(S)} \exp \left(-t^{2} / 4\right)
$$

as $t \rightarrow \infty$, where the constant c is explicit.
\rightsquigarrow the seed influences the polynomial factor!
Two trees with the same degree profile:

Corollary (Distinguishing seeds)

If $|S|-\Delta(S) \neq|T|-\Delta(T)$, then

$$
\delta_{\mathrm{PA}}(S, T)>0 .
$$

The approach of Curien et al.

$$
D_{\mathcal{I}}(T):=\sum_{\varphi} \prod_{u \in \mathcal{I}}\left[d_{T}(\varphi(u))\right]_{\ell(u)}
$$

Combinatorial interpretation: $D_{\mathcal{I}}(T)=$ \# decorated embeddings Heuristic:

- large degree nodes contribute the most;
- captures geometric structure of large degree nodes.

The approach of Curien et al.

General framework:

- Construct a family of martingales using decorated embeddings:

$$
M_{\underline{\tau}}^{(S)}(n)=\sum_{\underline{\tau}^{\prime} \preccurlyeq \underline{\tau}} c_{n}\left(\underline{\tau}, \underline{\tau}^{\prime}\right) D_{\underline{\tau}^{\prime}}(\operatorname{PA}(n, S)) .
$$

- For any S and T, there exists $\underline{\tau}$ and n such that

$$
\mathbb{E}\left[M_{工}^{(S)}(n)\right] \neq \mathbb{E}\left[M_{工}^{(T)}(n)\right]
$$

- Prove that the martingales are bounded in L^{2}.
- Conclude using the Cauchy-Schwarz inequality that

$$
\delta_{\mathrm{PA}}(S, T)>0 .
$$

The Brownian looptree

[Curien et al. (2014)]

Theorem (Curien, Duquesne, Kortchemski, Manolescu)
For any S there exists a random compact metric space $\mathcal{L}^{(\mathcal{S})}$ such that the following convergence holds a.s. in the Gromov-Hausdorff topology:

$$
n^{-1 / 2} \cdot \operatorname{Loop}(\operatorname{PA}(n, S)) \xrightarrow{n \rightarrow \infty} 2 \sqrt{2} \cdot \mathcal{L}^{(S)} .
$$

The Brownian looptree

[Curien et al. (2014)]

The metric space \mathcal{L} is constructed as a quotient of Aldous's Brownian Continuum Random Tree.

Conjecture (Curien, Duquesne, Kortchemski, Manolescu)
For any pair of seeds S and T,

$$
\delta_{\mathrm{PA}}(S, T)=\operatorname{TV}\left(\mathcal{L}^{(S)}, \mathcal{L}^{(T)}\right)
$$

Uniform attachment

Preferential attachment: the degrees of v_{ℓ} and v_{r} are unbalanced in S but balanced in T, and this likely remains so throughout the process.

Uniform attachment: the subtree sizes under v_{ℓ} and v_{r} are unbalanced in S but balanced in T, and this likely remains so throughout the process.

An example: distinguishing P_{4} and S_{4}

Measuring balancedness:

$$
\begin{aligned}
g(T, e) & :=\frac{\left|T_{1}\right|^{2}\left|T_{2}\right|^{2}}{|T|^{4}} \\
G(T) & :=\sum_{e} g(T, e)
\end{aligned}
$$

In order to show that $\delta_{\mathrm{UA}}\left(P_{4}, S_{4}\right)>0$, it suffices to show that

$$
\liminf _{n \rightarrow \infty}|\mathbb{E}[G(\mathrm{UA}(n, P))]-\mathbb{E}[G(\mathrm{UA}(n, S))]|>0
$$

$\lim \sup (\operatorname{Var}[G(\mathrm{UA}(n, P))]+\operatorname{Var}[G(\mathrm{UA}(n, S))])<\infty$

$$
n \rightarrow \infty
$$

An example: distinguishing P_{4} and S_{4}

Let $\left\{e_{j}^{P}\right\}$ and $\left\{e_{j}^{S}\right\}$ denote the edges.

For every $j \geq 4$:

$$
g\left(\mathrm{UA}(n, P), e_{j}^{P}\right) \stackrel{d}{=} g\left(\mathrm{UA}(n, S), e_{j}^{S}\right)
$$

We also have this for $j=1$ and $j=3$, so

$$
\begin{aligned}
\mathbb{E}[G(\mathrm{UA}(n, P))]-\mathbb{E}[G(\mathrm{UA}(n, S))] & =\mathbb{E}\left[g\left(\mathrm{UA}(n, P), e_{2}^{P}\right)\right]-\mathbb{E}\left[g\left(\mathrm{UA}(n, S), e_{2}^{S}\right)\right] \\
& =\frac{2 n^{3}+5 n^{2}+8 n+5}{140 n^{3}} \rightarrow \frac{1}{70} .
\end{aligned}
$$

An example: distinguishing P_{4} and S_{4}

Let $\left\{e_{j}^{P}\right\}$ and $\left\{e_{j}^{S}\right\}$ denote the edges.
For every $j \geq 4$:

$$
g\left(\mathrm{UA}(n, P), e_{j}^{P}\right) \stackrel{d}{=} g\left(\mathrm{UA}(n, S), e_{j}^{S}\right)
$$

We also have this for $j=1$ and $j=3$, so

$$
\begin{aligned}
\mathbb{E}[G(\mathrm{UA}(n, P))]-\mathbb{E}[G(\mathrm{UA}(n, S))] & =\mathbb{E}\left[g\left(\mathrm{UA}(n, P), e_{2}^{P}\right)\right]-\mathbb{E}\left[g\left(\mathrm{UA}(n, S), e_{2}^{S}\right)\right] \\
& =\frac{2 n^{3}+5 n^{2}+8 n+5}{140 n^{3}} \rightarrow \frac{1}{70} .
\end{aligned}
$$

For the variance we use Cauchy-Schwarz:

$$
\operatorname{Var}[G(\mathrm{UA}(n, S))] \leq\left(\sum_{j=1}^{n-1} \sqrt{\operatorname{Var}\left[g\left(\mathrm{UA}(n, S), e_{j}\right)\right]}\right)^{2}
$$

and estimates on moments of the beta-binomial distribution to give

$$
\mathbb{E}\left[g\left(\mathrm{UA}(n, S), e_{j}\right)^{2}\right] \leq C / j^{4}
$$

General statistics

Combinatorial interpretation: $F_{\underline{工}}(T)=$ \# decorated embeddings Heuristic:

- embeddings that are "central" contribute the most;
- captures global balancedness properties of the tree.

General framework

- Construct a family of martingales using decorated embeddings:

$$
M_{\underline{\tau}}^{(S)}(n)=\sum_{\underline{\tau}^{\prime} \preccurlyeq \underline{\tau}} c_{n}\left(\underline{\tau}, \underline{\tau}^{\prime}\right) F_{\underline{\tau}^{\prime}}(\mathrm{UA}(n, S))
$$

- For any S and T, there exists $\underline{\tau}$ and n such that

$$
\mathbb{E}\left[M_{\underline{I}}^{(S)}(n)\right] \neq \mathbb{E}\left[M_{工}^{(T)}(n)\right]
$$

- Prove that the martingales are bounded in L^{2}.
- Conclude using the Cauchy-Schwarz inequality that

$$
\delta_{\mathrm{UA}}(S, T)>0
$$

Main technical issue: second moment

Lemma (First moment)

Let $\tau \in \mathcal{D}_{+}$be a decorated tree with positive labels and $|\underline{\tau}| \geq 2$, and let S be a seed tree. Then

$$
n^{w(\underline{\tau})} \approx \mathbb{E}\left[F_{\underline{\tau}}(\mathrm{UA}(n, S))\right] \approx n^{w(\underline{\tau})}
$$

where $w(\underline{\tau})=\sum_{u \in \tau} \ell(u)$.

Lemma (Second moment)

Let $\tau \in \mathcal{D}_{+}$be a decorated tree with positive labels and $|\underline{\tau}| \geq 2$, and let S be a seed tree. Then

$$
\begin{equation*}
\mathbb{E}\left[F_{\underline{\tau}}(\mathrm{UA}(n, S))^{2}\right] \approx n^{2 w(\underline{\tau})} \tag{a}
\end{equation*}
$$

(b) $\quad \mathbb{E}\left[\left(F_{\underline{\tau}}(\mathrm{UA}(n+1, S))-F_{\underline{\tau}}(\mathrm{UA}(n, S))\right)^{2}\right] \approx n^{2 w(\underline{\tau})-2}$.

Main technical issue: second moment

Top row: a decorated tree $\underline{\tau}$ and two decorated embeddings, $\underline{\varphi}_{1}$ and $\underline{\varphi}_{2}$, of it into a larger tree T.
Bottom row: an associated decorated tree $\underline{\sigma}$ and the decorated embedding $\underline{\psi}$ of it into T.
Note: $w(\underline{\sigma}) \leq 2 w(\underline{\tau})$.

Main technical issue: second moment

Top row: a decorated tree τ and two decorated embeddings, $\underline{\varphi}_{1}$ and $\underline{\varphi}_{2}$, of it into a larger tree T.
Bottom row: an associated decorated tree $\underline{\sigma}$ and the decorated embedding $\underline{\psi}$ of it into T.
Note: $w(\underline{\sigma}) \leq 2 w(\underline{\tau})$, but no a priori bound on $|\underline{\sigma}|$.
\rightsquigarrow use the fact that diam $(\mathrm{UA}(n, S))=O(\log n)$ whp.

Main technical issue: second moment

Top row: There are two types of decorated embeddings that use the new vertex.

Bottom row: associated decorated trees and decorated embeddings. Roughly speaking, the two arrows associated with the new vertex give the extra factor of n^{-2} required in the bound of (b).

Summary and open questions

Takeaways:

- Every seed has an influence, both in PA and in UA
- Degrees (PA) and balancedness (UA) are key statistics

Open questions:

- Multiple edges added at each time step?
- Is $\delta_{\alpha}(S, T)>0$ for $\alpha \in(0,1)$?

Is it monotone in α ? Is it convex?

- Other models of randomly growing graphs.
- Estimation. Finding the seed. (Bubeck, Devroye, Lugosi)
- Hiding the seed. Rumor source obfuscation.

Summary and open questions

Takeaways:

- Every seed has an influence, both in PA and in UA
- Degrees (PA) and balancedness (UA) are key statistics

Open questions:

- Multiple edges added at each time step?
- Is $\delta_{\alpha}(S, T)>0$ for $\alpha \in(0,1)$?

Is it monotone in α ? Is it convex?

- Other models of randomly growing graphs.
- Estimation. Finding the seed. (Bubeck, Devroye, Lugosi)
- Hiding the seed. Rumor source obfuscation.

