From trees to seeds: on the inference of the seed from large random trees Joint work with Sébastien Bubeck, Ronen Eldan, and Elchanan Mossel

Miklós Z. Rácz

Microsoft Research

Banff Retreat September 25, 2016.

Statistical inference in non-equilibrium networks

Given the current state of a network, what can we say about a previous state?

Inferring network mechanisms: The Drosophila melanogaster protein interaction network

Naturally common networks public magnification features remail. — method assesses significance of given subgraphs relative to pro-

OPEN & ACCESS Freely available online

Not All Scale-Free Networks Are Born Equal: The Role of the Seed Graph in PPI Network Evolution

Fereydoun Hormozdiari¹, Petra Berenbrink¹, Nataša Pržuli², S. Cenk Sahinalo¹ 1 School of Computing Science, Simon Fraser University, Skursaby, Skrish Columbia, Canada, 2 Department of Computer Science, University of California Invine, California

Recovering time-varying networks of dependencies in social and biological studies

munity is a stochastic network that is topologically rewiring and underhing this reconnegs is the unwaightility of serial searches

OPEN A ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Network Archaeology: Uncovering Ancient Networks from Present-Day Interactions

Saket Navlakha, Carl Kingsford Department of Computer Science and Center for Bioinformatics and Computational Biology, University of Marvinet, College Park, Marvinet, United States of America

Preferential attachment:

$$\mathbb{P}(u_n=u)=\frac{d_{T_n}(u)}{2n-2}$$

Uniform attachment:

$$\mathbb{P}\left(u_n=u\right)=\frac{1}{n}$$

Preferential attachment:

$$\mathbb{P}\left(u_n=u\right)=\frac{d_{T_n}\left(u\right)}{2n-2}$$

Uniform attachment:

$$\mathbb{P}\left(u_n=u\right)=\frac{1}{n}$$

In general:

$$\mathbb{P}\left(u_n=u\right)=\frac{\left(d_{T_n}\left(u\right)\right)^{\alpha}}{Z}$$

Preferential attachment:

$$\mathbb{P}\left(u_n=u\right)=\frac{d_{T_n}\left(u\right)}{2n-2}$$

Uniform attachment:

$$\mathbb{P}\left(u_n=u\right)=\frac{1}{n}$$

In general:

$$\mathbb{P}\left(u_n=u\right)=\frac{\left(d_{T_n}\left(u\right)\right)^{\alpha}}{Z}$$

Many other tree growth models...

The influence of the seed — preferential attachment

seed S₁₀

seed P₁₀

 $PA(n = 500, S_{10})$

$$PA(n = 500, P_{10})$$

The influence of the seed — uniform attachment

seed S₁₀

seed P₁₀

 $UA(n = 500, S_{10})$

 $UA(n = 500, P_{10})$

► A crude measure: limit as a countably infinite tree

But for superlinear attachment ($\alpha > 1$), see Oliveira, Spencer (2005)

► A crude measure: limit as a countably infinite tree

→ seed has no influence for PA or UA

But for superlinear attachment ($\alpha > 1$), see Oliveira, Spencer (2005)

A finer measure: weak local limit (Benjamini-Schramm)

- A crude measure: limit as a countably infinite tree
 - ⇒ seed has no influence for PA or UA

But for superlinear attachment ($\alpha > 1$), see Oliveira, Spencer (2005)

- A finer measure: weak local limit (Benjamini-Schramm)
 - → seed has no influence for PA or UA

- A crude measure: limit as a countably infinite tree
 - ⇒ seed has no influence for PA or UA

But for superlinear attachment ($\alpha > 1$), see Oliveira, Spencer (2005)

- ► A finer measure: weak local limit (Benjamini-Schramm)
 - → seed has no influence for PA or UA

See Rudas, Tóth, Valkó (2007) (PA trees) and Berger, Borgs, Chayes, Saberi (2014) (in general) for weak local limits.

A much finer measure: total variation distance

$$\delta_{\mathrm{PA}}(\mathcal{S}, \mathcal{T}) := \lim_{n \to \infty} \mathrm{TV}(\mathrm{PA}(n, \mathcal{S}), \mathrm{PA}(n, \mathcal{T}))$$

$$\delta_{\mathrm{PA}}(\bigcirc, \searrow) = \lim_{n \to \infty} \mathrm{TV}(\nearrow, \nearrow)$$

A much finer measure: total variation distance

$$\delta_{\mathrm{PA}}(\mathcal{S}, \mathcal{T}) := \lim_{n \to \infty} \mathrm{TV}(\mathrm{PA}(n, \mathcal{S}), \mathrm{PA}(n, \mathcal{T}))$$

$$\delta_{\mathrm{PA}}(\ \bigcirc\ ,\ \divideontimes\)=\lim_{n o\infty}\mathrm{TV}(\ \mathclap{\nwarrow}\ ,\ \divideontimes\)$$

Hypothesis testing question:

$$H_0: R \sim PA(n, S), \qquad H_1: R \sim PA(n, T)$$

Q: test with asymptotically (in n) non-negligible power?

Main results

Preferential attachment:

Theorem (Bubeck, Mossel, R.)

If the degree profiles of S and T are different, and both have at least 3 vertices, then

$$\delta_{\mathrm{PA}}\left(\mathcal{S},\,\mathcal{T}\right)>0.$$

Theorem (Curien, Duquesne, Kortchemski, Manolescu)

If S and T are non-isomorphic and both have at least 3 vertices, then

$$\delta_{\text{PA}}\left(\mathcal{S},\mathcal{T}\right)>0.$$

Uniform attachment:

Theorem (Bubeck, Eldan, Mossel, R.)

If S and T are non-isomorphic and both have at least 3 vertices, then

$$\delta_{\mathrm{UA}}\left(\mathcal{S},\,\mathcal{T}\right)>0.$$

PA heuristics: maximum degree

Degree evolution governed by Pólya urns

$$(2n-2-d_{PA(n,S)}(i),d_{PA(n,S)}(i))$$

- ► Replacement matrix: (20 1 1); initial condition:
 - ▶ If $i \in S$ then $(2|S| 2 d_S(i), d_S(i))$;
 - ▶ If $i \notin S$ then (2i 3, 1).

PA heuristics: maximum degree

Degree evolution governed by Pólya urns

$$(2n-2-d_{PA(n,S)}(i),d_{PA(n,S)}(i))$$

- ► Replacement matrix: (20); initial condition:
 - ▶ If $i \in S$ then $(2|S| 2 d_S(i), d_S(i))$;
 - ▶ If $i \notin S$ then (2i 3, 1).

Rescaled degrees converge almost surely:

$$d_{\text{PA}(n,S)}(i) / \sqrt{n} \xrightarrow{n \to \infty} D_i(S)$$

$$\Delta \left(\text{PA}(n,S) \right) / \sqrt{n} \xrightarrow{n \to \infty} D_{\text{max}}(S)$$

$$D_{\text{max}}(S) = \max_{i>1} D_i(S)$$

See Móri (2005), Janson (2006), Peköz, Röllin, Ross (2013, 2014).

Lemma (Tail behavior of the maximum degree)

Let S be a finite tree and let $m := |\{i \in \{1, \dots, |S|\} : d_S(i) = \Delta(S)\}|$. Then

$$\mathbb{P}\left(D_{\mathsf{max}}\left(S\right) > t\right) \sim m \times c\left(\left|S\right|, \Delta\left(S\right)\right) t^{1 - 2\left|S\right| + 2\Delta\left(S\right)} \exp\left(-t^2/4\right)$$

as $t \to \infty$, where the constant c is explicit.

Lemma (Tail behavior of the maximum degree)

Let S be a finite tree and let $m := |\{i \in \{1, ..., |S|\} : d_S(i) = \Delta(S)\}|$. Then

$$\mathbb{P}\left(D_{\mathsf{max}}\left(S\right) > t\right) \sim m \times c\left(\left|S\right|, \Delta\left(S\right)\right) t^{1-2\left|S\right|+2\Delta\left(S\right)} \exp\left(-t^{2}/4\right)$$

as $t \to \infty$, where the constant *c* is explicit.

→ the seed influences the polynomial factor!

Lemma (Tail behavior of the maximum degree)

Let *S* be a finite tree and let $m := |\{i \in \{1, ..., |S|\} : d_S(i) = \Delta(S)\}|$. Then

$$\mathbb{P}\left(D_{\mathsf{max}}\left(S\right) > t\right) \sim m \times c\left(\left|S\right|, \Delta\left(S\right)\right) t^{1-2\left|S\right|+2\Delta\left(S\right)} \exp\left(-t^{2}/4\right)$$

as $t \to \infty$, where the constant *c* is explicit.

→ the seed influences the polynomial factor!

Corollary (Distinguishing seeds)

If
$$|S| - \Delta(S) \neq |T| - \Delta(T)$$
, then

$$\delta_{\text{PA}}\left(\mathcal{S},T\right)>0.$$

Lemma (Tail behavior of the maximum degree)

Let S be a finite tree and let $m := |\{i \in \{1, ..., |S|\} : d_S(i) = \Delta(S)\}|$. Then

$$\mathbb{P}\left(D_{\mathsf{max}}\left(S\right) > t\right) \sim m \times c\left(\left|S\right|, \Delta\left(S\right)\right) t^{1-2\left|S\right|+2\Delta\left(S\right)} \exp\left(-t^{2}/4\right)$$

as $t \to \infty$, where the constant *c* is explicit.

→ the seed influences the polynomial factor!

Two

Corollary (Distinguishing seeds)

If
$$|S| - \Delta(S) \neq |T| - \Delta(T)$$
, then

$$\delta_{\text{PA}}\left(\mathcal{S},\mathcal{T}\right)>0.$$

Two trees with the same degree profile:

The approach of Curien et al.

$$D_{\underline{\tau}}(T) := \sum_{\varphi} \prod_{u \in \tau} [d_{T}(\varphi(u))]_{\ell(u)}$$

Combinatorial interpretation: $D_{\underline{\tau}}(T) = \#$ decorated embeddings Heuristic:

- large degree nodes contribute the most;
- captures geometric structure of large degree nodes.

The approach of Curien et al.

General framework:

Construct a family of martingales using decorated embeddings:

$$M_{\underline{\tau}}^{\left(\mathcal{S}\right)}\left(n
ight) = \sum_{\underline{\tau}' \preccurlyeq \underline{\tau}} c_{n}\left(\underline{\tau},\underline{\tau}'\right) D_{\underline{\tau}'}\left(\operatorname{PA}\left(n,\mathcal{S}\right)\right).$$

For any S and T, there exists <u>T</u> and n such that

$$\mathbb{E}\left[M_{\underline{\tau}}^{(S)}\left(n\right)\right]\neq\mathbb{E}\left[M_{\underline{\tau}}^{(T)}\left(n\right)\right].$$

- Prove that the martingales are bounded in L².
- Conclude using the Cauchy-Schwarz inequality that

$$\delta_{\text{PA}}\left(\mathcal{S},\mathcal{T}\right)>0.$$

The Brownian looptree

Theorem (Curien, Duquesne, Kortchemski, Manolescu)

For any S there exists a random compact metric space $\mathcal{L}^{(S)}$ such that the following convergence holds a.s. in the Gromov-Hausdorff topology: $n^{-1/2} \cdot \text{Loop}\left(\text{PA}\left(n,S\right)\right) \xrightarrow{n \to \infty} 2\sqrt{2} \cdot \mathcal{L}^{(S)}.$

The Brownian looptree

The metric space \mathcal{L} is constructed as a quotient of Aldous's Brownian Continuum Random Tree.

Conjecture (Curien, Duquesne, Kortchemski, Manolescu)

For any pair of seeds S and T,

$$\delta_{\text{PA}}\left(\mathcal{S},\mathcal{T}\right) = \text{TV}\left(\mathcal{L}^{(\mathcal{S})},\mathcal{L}^{(\mathcal{T})}\right).$$

Uniform attachment

Preferential attachment: the degrees of v_{ℓ} and v_r are unbalanced in S but balanced in T, and this likely remains so throughout the process.

Uniform attachment: the subtree sizes under v_{ℓ} and v_{r} are unbalanced in S but balanced in T, and this likely remains so throughout the process.

An example: distinguishing P_4 and S_4

Measuring balancedness:

$$g(T,e) := \frac{|T_1|^2 |T_2|^2}{|T|^4}$$
 $G(T) := \sum_{e} g(T,e)$

In order to show that $\delta_{\rm UA}\left(P_4,S_4\right)>0$, it suffices to show that

$$\liminf_{n\to\infty}\left|\mathbb{E}\left[G\left(\mathrm{UA}\left(n,P\right)\right)\right]-\mathbb{E}\left[G\left(\mathrm{UA}\left(n,\mathcal{S}\right)\right)\right]\right|>0$$

$$\limsup_{n\to\infty} (\operatorname{Var}[G(\operatorname{UA}(n,P))] + \operatorname{Var}[G(\operatorname{UA}(n,S))]) < \infty$$

An example: distinguishing P_4 and S_4

Let $\{e_i^P\}$ and $\{e_i^S\}$ denote the edges.

For every i > 4:

For every
$$j \ge 4$$
:
$$g\left(\operatorname{UA}(n,P), e_{j}^{P}\right) \stackrel{d}{=} g\left(\operatorname{UA}(n,S), e_{j}^{S}\right).$$

$$e_{1} \qquad e_{2} \qquad e_{3} \qquad e_{1} \qquad e_{3}$$

We also have this for j = 1 and j = 3, so

$$\mathbb{E}[G(\text{UA}(n, P))] - \mathbb{E}[G(\text{UA}(n, S))] = \mathbb{E}[g(\text{UA}(n, P), e_2^P)] - \mathbb{E}[g(\text{UA}(n, S), e_2^S)]$$

$$= \frac{2n^3 + 5n^2 + 8n + 5}{140n^3} \rightarrow \frac{1}{70}.$$

An example: distinguishing P_4 and S_4

Let $\{e_i^P\}$ and $\{e_i^S\}$ denote the edges.

For every i > 4:

For every
$$j \ge 4$$
:
$$g\left(\mathrm{UA}\left(n,P\right),e_{j}^{P}\right) \stackrel{d}{=} g\left(\mathrm{UA}\left(n,S\right),e_{j}^{S}\right).$$

$$e_{1}$$

$$e_{2}$$

$$e_{3}$$

$$e_{4}$$

$$e_{3}$$

$$e_{4}$$

$$e_{3}$$

$$e_{4}$$

$$e_{5}$$

$$e_{6}$$

$$e_{1}$$

$$e_{6}$$

$$e_{6}$$

We also have this for j = 1 and j = 3, so

$$\mathbb{E}[G(\text{UA}(n, P))] - \mathbb{E}[G(\text{UA}(n, S))] = \mathbb{E}[g(\text{UA}(n, P), e_2^P)] - \mathbb{E}[g(\text{UA}(n, S), e_2^S)]$$

$$= \frac{2n^3 + 5n^2 + 8n + 5}{140n^3} \to \frac{1}{70}.$$

For the variance we use Cauchy-Schwarz:

$$\operatorname{Var}[G(\operatorname{UA}(n,S))] \leq \left(\sum_{j=1}^{n-1} \sqrt{\operatorname{Var}[g(\operatorname{UA}(n,S),e_j)]}\right)^2,$$

and estimates on moments of the beta-binomial distribution to give

$$\mathbb{E}[g(\mathrm{UA}(n,S),e_j)^2] \leq C/j^4.$$

General statistics

$$F_{\underline{\tau}}(T) := \sum_{\varphi} \prod_{u \in \tau} [f_{\varphi(u)}(T)]_{\ell(u)}$$

Combinatorial interpretation: $F_{\underline{\tau}}(T) = \#$ decorated embeddings Heuristic:

- embeddings that are "central" contribute the most;
- captures global balancedness properties of the tree.

General framework

Construct a family of martingales using decorated embeddings:

$$\textit{M}_{\underline{\tau}}^{\left(\mathcal{S}\right)}\left(\textit{n}\right) = \sum_{\underline{\tau}' \preccurlyeq \underline{\tau}} \textit{c}_{\textit{n}}\left(\underline{\tau},\underline{\tau}'\right) \textit{F}_{\underline{\tau}'}\left(\text{UA}\left(\textit{n},\mathcal{S}\right)\right).$$

▶ For any S and T, there exists $\underline{\tau}$ and n such that

$$\mathbb{E}\left[M_{\underline{\tau}}^{(S)}\left(n\right)\right]\neq\mathbb{E}\left[M_{\underline{\tau}}^{(T)}\left(n\right)\right].$$

- Prove that the martingales are bounded in L².
- Conclude using the Cauchy-Schwarz inequality that

$$\delta_{\text{UA}}(S, T) > 0.$$

Lemma (First moment)

Let $\underline{\tau} \in \mathcal{D}_+$ be a decorated tree with positive labels and $|\underline{\tau}| \geq 2$, and let S be a seed tree. Then

$$n^{w(\underline{\tau})} \approx \mathbb{E}\left[F_{\underline{\tau}}\left(\mathrm{UA}\left(n,S\right)\right)\right] \approx n^{w(\underline{\tau})},$$

where $w(\underline{\tau}) = \sum_{u \in \tau} \ell(u)$.

Lemma (Second moment)

Let $\underline{\tau} \in \mathcal{D}_+$ be a decorated tree with positive labels and $|\underline{\tau}| \geq 2$, and let S be a seed tree. Then

(a)
$$\mathbb{E}\left[F_{\underline{\tau}}\left(\mathrm{UA}\left(n,S\right)\right)^{2}\right] \approx n^{2w(\underline{\tau})},$$

$$\text{(b)} \qquad \mathbb{E}\left[\left(F_{\underline{\tau}}\left(\mathrm{UA}\left(n+1,S\right)\right)-F_{\underline{\tau}}\left(\mathrm{UA}\left(n,S\right)\right)\right)^{2}\right] \stackrel{\sim}{<} n^{2w(\underline{\tau})-2}.$$

Top row: a decorated tree $\underline{\tau}$ and two decorated embeddings, φ_1 and φ_2 , of it into a larger tree T.

Bottom row: an associated decorated tree $\underline{\sigma}$ and the decorated embedding ψ of it into \mathcal{T} .

Note: $w(\underline{\sigma}) \leq 2w(\underline{\tau})$.

Top row: a decorated tree $\underline{\tau}$ and two decorated embeddings, φ_1 and φ_2 , of it into a larger tree T.

Bottom row: an associated decorated tree $\underline{\sigma}$ and the decorated embedding ψ of it into T.

Note: $w(\underline{\sigma}) \leq 2w(\underline{\tau})$, but no a priori bound on $|\underline{\sigma}|$.

 \rightarrow use the fact that diam (UA (n, S)) = $O(\log n)$ whp.

Top row: There are two types of decorated embeddings that use the new vertex.

Bottom row: associated decorated trees and decorated embeddings.

Roughly speaking, the two arrows associated with the new vertex give the extra factor of n^{-2} required in the bound of (b).

Summary and open questions

Takeaways:

- Every seed has an influence, both in PA and in UA
- Degrees (PA) and balancedness (UA) are key statistics

Open questions:

- Multiple edges added at each time step?
- ▶ Is $\delta_{\alpha}(S, T) > 0$ for $\alpha \in (0, 1)$? Is it monotone in α ? Is it convex?
- Other models of randomly growing graphs.
- Estimation. Finding the seed. (Bubeck, Devroye, Lugosi)
- ▶ Hiding the seed. Rumor source obfuscation.

Summary and open questions

Takeaways:

- Every seed has an influence, both in PA and in UA
- Degrees (PA) and balancedness (UA) are key statistics

Open questions:

- Multiple edges added at each time step?
- ▶ Is $\delta_{\alpha}(S, T) > 0$ for $\alpha \in (0, 1)$? Is it monotone in α ? Is it convex?
- Other models of randomly growing graphs.
- ► Estimation. Finding the seed. (Bubeck, Devroye, Lugosi)
- ▶ Hiding the seed. Rumor source obfuscation.

Thank you!