
1

Sparse Approximation of PDEs based on
Compressed Sensing

Simone Brugiapaglia
Department of Mathematics

Simon Fraser University

Retreat for Young Researchers in Stochastics
September 24, 2016



2

Introduction
We address the following question

Can we employ Compressed Sensing to solve a PDE?

In particular, we consider the weak formulation of a PDE

find u ∈ U : a(u, v) = F(v), ∀v ∈ V,

focusing on the Petrov-Galerkin (PG) discretization method [Aziz and
Babuška, 1972].

Motivation:
I reduce the computational cost associated with a classical PG

discretization;
I situations with a limited budget of evaluations of F(·);
I better theoretical understanding of the PG method.

Case study:

. Advection-diffusion-reaction (ADR) equation, with
U = V = H1

0 (Ω), Ω = [0, 1]d, and

a(u, v) = (η∇u,∇v) + (b · ∇u, v) + (ρu, v), F(v) = (f, v).
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CORSING (COmpRessed SolvING)

A theoretical study of CORSING
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Compressed Sensing (CS)

[D. Donoho, 2006; E. Candès, J. Romberg, and T. Tao, 2006]

Consider a signal s ∈ CN , sparse w.r.t.
Ψ ∈ CN×N :

s = Ψu and ‖u‖0 =: s� N,

where ‖u‖0 := #{i : ui 6= 0}.

A sparse vector u
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It can be acquired by means of m� N linear and non-adaptive
measurements

〈s,ϕi〉 =: fi, for i = 1, . . . ,m.

If we consider the matrix Φ = [ϕi] ∈ CN×m, we have

Au = f ,

where A = ΦHΨ ∈ Cm×N and f ∈ Cm.
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Sensing phase
A picture to have in mind

f �t  u

=

measurements
vector

sensing matrix

sparsity basis unknown 
sparse signal

*H

Since m� N , the system Au = f is highly underdetermined. How to
recover the right u among its infinite solutions?
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Recovery: finding a needle in a haystack

Thanks to the sparsity hypothesis, we can resort to sparse recovery
techniques. We aim at approximating the solution to

(P0) min
u∈CN

‖u‖0, s.t. Au = f .

/ Unfortunately, in general (P0) is a NP-hard problem...

, There are computationally tractable strategies to approximate it!

In particular, we employ the greedy algorithm Orthogonal Matching
Pursuit (OMP) to approximate

(Pε0) min
u∈CN

‖u‖0
s.t. ‖Au− f‖2 ≤ ε

or (Ps0) min
u∈CN

‖Au− f‖2
s.t. ‖u‖0 ≤ s.

Another valuable option is convex relaxation (not discussed here)

(P1) min
u∈CN

‖u‖1, s.t. Au = f .
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Orthogonal Matching Pursuit (OMP)

Input:
Matrix A ∈ Cm×N , with `2-normalized columns
Vector f ∈ Cm
Tolerance on the residual ε > 0 (or else, sparsity s ∈ [N ])

Output:
Approximate solution u to (Pε0) (or else, (Ps0))

Procedure:
1: S ← ∅ . Initialization
2: u← 0
3: while ‖Au− f‖2 > ε (or else, ‖u‖0 < s) do
4: j ← arg max

j∈[N ]
|[AH(Au− f)]j | . Select new index

5: S ← S ∪ {j} . Enlarge support
6: u← arg min

z∈CN
‖Az− f‖2 s.t. supp(z) ⊆ S . Minimize residual

7: end while
8: return u

I The computational cost for the (Ps0) formulation is in general
O(smN).
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Recovery results based on the RIP
Many important recovery results in CS are based on the Restricted
Isometry Property (RIP).

Definition (RIP)
A matrix A ∈ Cm×N satisfies the RIP(s, δ) iff

(1− δ)‖u‖22 ≤ ‖Au‖22 ≤ (1 + δ)‖u‖22, ∀u ∈ ΣNs := {v ∈ CN : ‖v‖0 ≤ s}.

Among many others, the RIP implies the following recovery result for
OMP. [T. Zhang, 2011; A. Cohen, W. Dahmen, R. DeVore, 2015]

Theorem (RIP ⇒ OMP recovery)
There exist K ∈ N, C > 0 and δ ∈ (0, 1) s.t. for every s ∈ N, the following
holds: if

A ∈ RIP((K + 1)s, δ),

then, for any f ∈ Cm, the OMP algorithm computes in Ks iterations a
solution u that fulfills

‖Au− f‖2 ≤ C inf
w∈ΣNs

‖Aw − f‖2.

>
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The reference problem

Given two Hilbert spaces U, V , consider the following problem

find u ∈ U : a(u, v) = F(v), ∀v ∈ V, (1)

where a : U × V → R is a bilinear form and F ∈ V ∗. We will assume
a(·, ·) to fulfill

∃α > 0 : inf
u∈U

sup
v∈V

a(u, v)

‖u‖U‖v‖V
≥ α, (2)

∃β > 0 : sup
u∈U

sup
v∈V

|a(u, v)|
‖u‖U‖v‖V

≤ β, (3)

sup
u∈U

a(u, v) > 0, ∀v ∈ V \ {0}. (4)

. (2) + (3) + (4) =⇒ ∃! solution to (1). [J. Nečas, 1962]

. We will focus on advection-diffusion-reaction (ADR) equations.
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The Petrov-Galerkin method

Given Ω ⊆ Rd, consider the weak formulation of an ADR equation:

find u ∈ H1
0 (Ω) : (η∇u,∇v) + (b∇u, v) + (ρu, v)︸ ︷︷ ︸

a(u,v)

= (f, v)︸ ︷︷ ︸
F(v)

, ∀v ∈ H1
0 (Ω).

(ADR)
Choose UN ⊆ H1

0 (Ω) and VM ⊆ H1
0 (Ω) with

UN = span{ψ1, . . . , ψN︸ ︷︷ ︸
trials

}, VM = span{ϕ1, . . . , ϕM︸ ︷︷ ︸
tests

}

Then we can discretize (ADR) as

Aû = f , Aij = a(ψj, ϕi), fi = F(ϕi)
with A ∈ CM×N , f ∈ CM .

A common choice is M = N .

I Examples of Petrov-Galerkin methods: Finite elements, spectral
methods, collocation methods, etc.
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The main analogy

A fundamental analogy guided us
through the development of our
method...

Petrov-Galerkin method: Sampling:
solution of a PDE ⇐⇒ signal

tests (bilinear form) measurements (inner product)

Reference:
Compressed solving: a numerical approximation technique for elliptic
PDEs based on compressed sensing
S. B., S. Micheletti, S. Perotto
Comput. Math. Appl. 2015; 70(6):1306-1335
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CORSING (COmpRessed SolvING)

Assembly phase

¬ Choose two sets of N independent elements of U and V :

trials→ {ψ1, . . . , ψN}, {ϕ1, . . . , ϕN} ← tests;

­ choose m� N tests {ϕτ1 , . . . , ϕτm}:

® build A ∈ Cm×N and f ∈ Cm as

[A]ij := a(ψj , ϕτi) [f ]i := F(ϕτi).

Recovery phase
Find a compressed solution uNm to Au = f , via sparse recovery.
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Classical case: square matrices

When dealing with Petrov-Galerkin discretizations, one usually
ends up with a big square matrix.

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7

↓ ↓ ↓ ↓ ↓ ↓ ↓
ϕ1 →
ϕ2 →
ϕ3 →
ϕ4 →
ϕ5 →
ϕ6 →
ϕ7 →



× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×


︸ ︷︷ ︸

a(ψj ,ϕi)



u1

u2

u3

u4

u5

u6

u7


=



F(ϕ1)
F(ϕ2)
F(ϕ3)
F(ϕ4)
F(ϕ5)
F(ϕ6)
F(ϕ7)


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“Compressing” the discretization

We would like to use only m random tests instead of N , with
m� N ...

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7

↓ ↓ ↓ ↓ ↓ ↓ ↓
ϕ1 →
ϕ2 →
ϕ3 →
ϕ4 →
ϕ5 →
ϕ6 →
ϕ7 →



× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×


︸ ︷︷ ︸

a(ψj ,ϕi)



u1

u2

u3

u4

u5

u6

u7


=



F(ϕ1)
F(ϕ2)
F(ϕ3)
F(ϕ4)
F(ϕ5)
F(ϕ6)
F(ϕ7)


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Sparse recovery

...in order to obtain a reduced discretization.

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7

↓ ↓ ↓ ↓ ↓ ↓ ↓
ϕ2 →
ϕ5 →

[
× × × × × × ×
× × × × × × ×

]
︸ ︷︷ ︸

a(ψj ,ϕi)



u1

u2

u3

u4

u5

u6

u7



=

[
F(ϕ2)
F(ϕ5)

]

The solution is then computed using sparse recovery
techniques.
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How to choose {ψj} and {ϕi}?

One heuristic criterion commonly used in CS is to choose one basis
sparse in space, and the other in frequency.

Hierarchical hat functions
[O. Zienkiewicz et al., 1982]
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We name the corresponding strategies CORSING HS and SH.
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A 1D example
We test CORSING HS on the homogeneous 1D Poisson problem
(a(u, v) = (u′, v′)):
I Trial space dimension N = 8191

I Solution sparsity s = 50

I Selected random tests m = 1200

Test Savings: TS :=
N −m
N

· 100% ≈ 85%
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A glance at the space of coefficients...
Lexicographic ordering
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Level-based ordering (log10 |û`,k|)
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Generalization to the 2D case (space domain)

Hierarchical Pyramids
[H. Yserentant, 1986]
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The 2D case (frequency domain)

Tensor product of sine functions
(r1,r2)=(1,1)
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An advection-dominated example

We evaluate the CORSING performance on the following 2D
advection-dominated problem{

−µ∆u+ b · ∇u = f in Ω = (0, 1)2,

u = 0 on ∂Ω,

where b = [1, 1]ᵀ, 0 < µ� 1 and f s.t. the exact solution be

u∗µ(x) = Cµ(x1 − x2
1)(x2 − x2

2)(ex1/µ + ex2/µ − 2),

where Cµ > 0 is chosen such that maxx∈Ω u
∗
µ(x) = 1.

I The function u∗µ exhibits two boundary layers along the
edges {x1 = 1} and {x2 = 1} of Ω.
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N = 16129
TS = 85%
ESP = 1.00
L2-rel. err. = 7.1e-02

L2−rel. err. = 7.2e−02
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Figure: CORSING SP, with µ = 0.01: worst
solution in the successful cluster (right). 50 random
experiments are performed.
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Cost reduction with respect to the full-PG (m=N)

We compare the assembly/recovery times of full-PG and CORSING.

full-PG CORSING SP
A f trec (\) TS A f trec (OMP)

2.5e+03 9.1e-01 7.1e+01 85% 3.8e+02 2.7e-01 8.1e+01
90% 2.5e+02 2.0e-01 3.4e+01

I The assembly time reduction is proportional to TS.

I Also the RAM is reduced proportionally to TS.

I The recovery phase is cheaper for high TS rates.

The CORSING method can considerably reduce the computational
cost associated with a full-PG discretization.
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More challenging test cases
The CORSING technique has also been implemented for

The 3D Poisson problem{
−∆u = f in Ω = (0, 1)3

u = 0 on∂Ω

CORSINGQS
TS=85%

Exact
solution

The 2D Stokes problem
−∆u +∇p = f in Ω = (0, 1)2

divu = 0 in Ω

u = 0 on∂Ω

CORSING SP
TS=70%
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A theoretical understanding of the method
Reference:
A theoretical study of COmpRessed SolvING for advection-diffusion-reaction
problems
S.B., F. Nobile, S. Micheletti, S. Perotto
To appear in Mathematics of Computation

Some notation:

I Finite dimensional trial and test spaces

UN := span{ψj}j∈[N ] and VM := span{ϕi}i∈[M ],

where [k] := {1, . . . , k} for every k ∈ N.

I The set of s-sparse elements of UN

UNs :=

{ ∑
j∈[N ]

ujψj : ‖u‖0 ≤ s
}

Simplification: Let us assume the bases {ψj}j∈N and {ϕq}q∈N to be
orthonormal.
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Local a-coherence
An important tool employed in the theoretical analysis is the local
a-coherence, a generalization of the local coherence of CS.

Definition
Given N ∈ N ∪ {∞}, the real-valued sequence µN defined as

µNq := sup
j∈[N ]

|a(ψj, ϕq)|2, ∀q ∈ N,

is called local a-coherence of {ψj}j∈[N ] with respect to {ϕq}q∈N.

I Following [F. Krahmer and R. Ward, 2014], we define a
computable upper bound νN to µN :

µNq ≤ νNq , ∀q ∈ N.

Moreover, for every M ∈ N, we define

νN,M := [νN1 , . . . , ν
N
M ]ᵀ ∈ RM .
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Formalization of the CORSING procedure
PROCEDURE û = CORSING (N , s, νN , γ̂, γ)

1. [Definition of M and m]

M ∼ sγ̂N ; m ∼ sγ‖νN,M‖1 log(N/s);

2. [Test selection] Draw τ1, . . . , τm independently at random from [M ]
according to the probability

p := νN,M/‖νN,M‖1;

3. [Assembly] Build A ∈ Rm×N , f ∈ Rm and D ∈ Rm×m, defined as:

Aij := a(ψj , ϕτi), fi := F(ϕτi), Dik :=
δik√
mpτi

.

4. [Recovery]

> Find an approximate solution û to min
u∈RN

‖D(Au− f)‖22, s.t. ‖u‖0 ≤ s;

> û←
N∑
j=1

ûjψj .
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Main tools of the analysis

The theoretical analysis is based on three main tools:

1. the concept of local a-coherence between two bases;

2. Chernoff’s bounds for the sum of random matrices
[H. Chernoff,1952; R. Ahlswede and A. Winter, 2002;
J. Tropp, 2012];

3. a variant of the classical inf-sup property, that we called
restricted inf-sup property (RISP), i.e.,

inf
u∈ΣNs

sup
v∈Rm

vᵀDAu

‖u‖2‖v‖2
> α̃ > 0,

where ΣNs := {u ∈ RN : ‖u‖0 ≤ s}.
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From the∞-dimensional problem to CORSING

While moving from the ∞-dimensional weak problem to the CORSING
reduced formulation we will track the inf-sup constant:

# of tests inf-sup constant
Weak problem ∞ α

PG discretization M <∞ α(1− δ̂)
1
2

CORSING m�M α(1− δ̂)
1
2 (1− δ)

1
2

This will guarantee the stability of our method and will imply recovery
error estimates for the CORSING technique.

inf
u∈UNs

sup
v∈V

a(u, v)

‖u‖U‖v‖V
; inf

u∈UNs
sup
v∈VM

a(u, v)

‖u‖U‖v‖V
; inf

u∈ΣNs

sup
v∈Rm

vᵀDAu

‖u‖2‖v‖2
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Uniform RISP

Theorem
For every s ∈ N, given δ̂ ∈ (0, 1), choose M ∈ N such that

∑
q>M

µNq ≤
α2δ̂

s
.

Then, for every ε > 0 and δ ∈ (0, 1), provided

m & δ
−2‖νN,M‖1[s2 log(eN/s) + s log(s/ε)],

the following uniform RISP holds with probability ≥ 1− ε

inf
u∈ΣNs

sup
v∈Rm

vᵀDAu

‖u‖2‖v‖2
> α̃ > 0,

where α̃ := (1− δ̂)
1
2 (1− δ)

1
2α.
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Non-uniform RISP: sketch of the proof (1/2)

The proof can be organized as follows:

1. Fix S ⊆ [N ], with |S| = s, and notice that

inf
u∈Rs

sup
v∈Rm

vᵀDASu

‖u‖2‖v‖2
= [λmin(Aᵀ

SD
2AS)]

1
2 = [λmin(X)]

1
2 .

Indeed, Aᵀ
SD

2AS is the sample mean of random matrices

(Aᵀ
SD

2AS)jk =
1

m

m∑
i=1

1

pτi
a(ψσj , ϕτi)a(ψσk , ϕτi)︸ ︷︷ ︸

=:X
τi
jk

.

2. The minimum eigenvalue of Xτi can be controlled in expectation:

∑
q>M

µNq ≤
δ̂α2

s
=⇒ λmin(E[Xτi ])

1
2 = inf

u∈UNS
sup
v∈VM

a(u, v)

‖u‖U‖v‖V
≥ (1−δ̂)

1
2α

3. The thesis is proved by resorting to the matrix Chernoff bounds.



36

Non-uniform RISP: sketch of the proof (2/2)
Theorem (Matrix Chernoff bounds)
Consider a finite sequence of i.i.d. random, symmetric s× s real matrices
M1, . . . ,Mm such that

0 ≤ λmin(Mi) and λmax(Mi) ≤ R almost surely, ∀i ∈ [m].

Define M := 1
m

∑m
i=1 M

i and λ∗ := λmin(E[Mi]). Then,

P{λmin(M) ≤ (1− δ)λ∗} . s exp

(
−mδ

2λ∗
R

)
, ∀δ ∈ [0, 1].

I After choosing Mi = Xτi , direct computations show that

0 ≤ λmin(Xτi) and λmax(Xτi) ≤ s‖νN,M‖1.

I Finally, we consider the inf-sup over UNs employing a union bound.

�
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Recovery error analysis
Our aim is to compare the recovery error ‖û− u‖U with the best
s-term approximation error of the exact solution u in UN , i.e. the
quantity ‖us − u‖U , where

us := arg min
w∈UNs

‖w − u‖U .

A key quantity is the following preconditioned random residual

R(us) :=

[
1

m

m∑
i=1

1

pτi
[a(us, ϕτi)−F(ϕτi)]

2

] 1
2

= ‖D(Aus − f)‖2.

Assumption: we assume that û solves the problem

min
u∈RN

‖D(Au− f)‖22, s.t. ‖u‖0 ≤ s

exactly (even if, in reality, OMP can only approximate its solution).
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Two lemmas about R(us)
. An argument analogous to Cea’s lemma shows the following

Lemma
If the following uniform 2s-sparse RISP holds

inf
u∈ΣN2s

sup
v∈Rm

vᵀDAu

‖u‖2‖v‖2
> α̃ > 0,

then the CORSING procedure computes a solution û such that

‖û− us‖U <
2

α̃
R(us).

. Moreover, this mysterious residual behaves nicely in expectation!

Lemma

E[R(us)2] ≤ β2‖us − u‖2U ,

where β is the continuity constant of a(·, ·).
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Error estimate in expectation
Theorem (CORSING recovery in expectation)
Let s ≤ N and K > 0 be such that ‖u‖U ≤ K and δ̂, δ ∈ (0, 1). Choose
M ∈ N such that the following truncation condition is fulfilled

∑
q>M

µNq ≤
α2δ̂

s
.

Then, for every ε > 0, provided

m & δ
−2‖νN,M‖1[s2 log(N/s) + s log(s/ε)],

the truncated CORSING solution TKû fulfills

E[‖TKû− u‖U ] ≤
(

1 +
2β

α̃

)
‖us − u‖U + 2Kε,

where α̃ = (1− δ̂)
1
2 (1− δ)

1
2α and TK(w) := max(1,K/‖w‖U )w.

Remarks:
I A possible choice for K is ‖F ‖V ∗/α.
I An analogous result holds in probability.
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Application to the 1D Poisson problem

Proposition (CORSING HS recovery)
Fix a maximum hierarchical level L ∈ N, corresponding to
N = 2L+1 − 1. Then, for every ε ∈ (0, 2−1/3] and s ≤ 2N/e, provided

M & sN, m & logM [s2 log(N/s) + s log(s/ε)]

and chosen the upper bound νN as

νNq ∼
1

q
, ∀q ∈ N,

the CORSING HS solution to the homogeneous 1D Poisson problem
fulfills

E[|TKû− u|H1 ] ≤ 5|us − u|H1 + 2Kε,

for every K > 0 such that |u|H1 ≤ K.
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Sketch of the proof
For the 1D Poisson problem we have the following bound

µNq . min

{
N

q2
,
1

q

}
.
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Then, we have∑
q>M

µNq . N
∑
q>M

1

q2
∼ N

M
, required to be .

1

s
.

Moreover, choosing νNq ∼ 1/q yields

‖νN,M‖1 ∼
M∑
q=1

1

q
∼ logM.

�
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Application to 1D ADR problems
Consider the problem

find u ∈ H1
0 (Ω) : (u′, v′) + b(u′, v) + ρ(u, v) = (f, v), ∀v ∈ H1

0 (Ω) (ADR)

with b, ρ ∈ R, ρ > 0 and Ω = (0, 1). Let H1
0 (Ω) be endowed with | · |H1(Ω).

Proposition (CORSING HS for 1D ADR)
Fix N ∈ N. Then, for every ε ∈ (0, 2−1/3] and s ≤ 2N/e, provided that

M & sN, |b|/M . 1, |ρ|/M2 . 1,

m & (logM + |b|2 + |ρ|2)[s2 log(N/s) + s log(s/ε)],

and chosen the upper bound νN such that

νNq ∼
1

q
+
|b|2

q3
+
|ρ|2

q5
, ∀q ∈ N,

the CORSING HS solution to (ADR) fulfills

E[|TKû− u|H1(Ω)] . (1 + |b|+ |ρ|)|us − u|H1(Ω) +Kε,

for every K > 0 such that |u|H1(Ω) ≤ K.
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Application to the 1D diffusion equation
Let Ω = (0, 1) and consider the problem

find u ∈ H1
0 (Ω) : (ηu′, v′) = (f, v), ∀v ∈ H1

0 (Ω). (DIF)

Proposition
Let η ∈ L∞(Ω) be such that
I there exists ηmin > 0 so that η(x) ≥ ηmin, for almost every x ∈ Ω;
I there exists a finite set P ⊆ Ω such that η ∈ C2(Ω \ P);

I sup
x∈Ω\P

|η(k)(x)| <∞, for k = 1, 2.

Fix L ∈ N and put N = 2L+1 − 1. Then, provided

νNq ∼ 1/q, ∀q ∈ N,

and
M & sN, m & logM [s2 log(N/s) + s log(s/ε)],

the CORSING HS solution û to (DIF) fulfills

E[|TKû− u|H1(Ω)] ≤
(

1 +
4‖η‖L∞
ηmin

)
|us − u|H1(Ω) + 2Kε,

for every K > 0 such that |u|H1(Ω) ≤ K.
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A RIP theorem for CORSING
(with S. Dirksen, H.C. Jung, H. Rauhut, RWTH Aachen)

Theorem (RIP for CORSING)
Let s,N ∈ N, with s < N , and δ̂ ∈ (0, 1). Suppose the truncation condition

∑
q>M

µNq ≤
α2δ̂

s
.

to be fulfilled. Then, provided δ ∈
(
1− (1− δ̂)α

2

β2 , 1
)
, and

m & δ−2‖νN,M‖1s log3(s) log(N),

it holds
P{β−1DA ∈ RIP(s, δ)} ≥ 1−N− log3(s), .

where β is the continuity constant of a(·, ·).

CORSING computes the best s-term
approximation to u in O(smN) flops. >
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Further results

I The previous results hold in the case of nonorthogonal trial
and test functions. Indeed, they suffice to be Riesz bases, i.e.,

‖
∑
j∈N

ujψj‖U ∼ ‖u‖2, ∀u ∈ UN .

I We checked the theoretical hypotheses on the local a-coherence
for the 2D and 3D ADR equations numerically.
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Figure: The plot shows that

ν
N
q ∼

1

q1q2q3

is a local a-coherence upper bound for the
3D Poisson problem (CORSING QS).



46

Wrap up: main results

X CS can be successfully applied to solve PDEs, such as 1D, 2D, and 3D
ADR problems, or the 2D Stokes problem;

X CORSING can considerably reduce the computational cost associated
with a full-PG discretization;

X the local a-coherence is crucial to understand the behavior of the
method theoretically;

Future directions

I Speed-up the recovery phase (get rid of the “N ” in the cost O(smN));
I Investigate other trial/test combinations: e.g., biorthogonal

wavelets, instead of hierarchical basis (ongoing);
I 2D and 3D theory (ongoing);
I apply CORSING to more challenging benchmarks, such as

Navier-Stokes, or nonlocal problems;
I adapt the CORSING technique to the case of parametric PDEs.
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Thank you for your attention!
...questions?
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