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Infroduction

We address the following question

‘ Can we employ Compressed Sensing to solve a PDE?

In particular, we consider the weak formulation of a PDE
findueU: a(u,v)=F(), YveV,

focusing on the Petrov-Galerkin (PG) discretization method [Aziz and
Babuska, 1972].
Motivation:

» reduce the computational cost associated with a classical PG
discretization;

> situations with a limited budget of evaluations of F(-);

> better theoretical understanding of the PG method.
Case study:

% Advection-diffusion-reaction (ADR) equation, with

U=V =H}),Q=][0,1% and

a(u,v) = (NVu, Vo) + (b - Vu,v) + (pu,v), Fv) = (f,v).



Compressed Sensing



Compressed Sensing (CS)

[D. Donoho, 2006; E. Candeés, J. Romberg, and T. Tao, 2006]

A sparse vector u

Consider a signal s € CV, sparse w.r.t. 2
W c CNXN: 15
s=%u and |luljp=:s< N, o 9 H 9
| ST
where Hu”O = #{Z Ty 7é O} o 20 40 60 80 100

component i
It can be acquired by means of m < N linear and non-adaptive
measurements

(s,;) =t fi, fori=1,...,m.

If we consider the matrix ® = [p,;] € CV*™ we have

Au=f,

where A = ®"W € C"*N and £ € C™.



Sensing phase
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Since m < N, the system Au = f is highly underdetermined. How to
recover the right u among its infinite solutions?



Recovery: finding a needle in a haystack

Thanks to the sparsity hypothesis, we can resort to sparse recovery
techniques. We aim at approximating the solution to

(Po) min [jullo, s.t. Au=f.
uechN

® Unfortunately, in general (Py) is a NP-hard problem...

© There are computationally tractable strategies to approximate it!

In particular, we employ the greedy algorithm Orthogonal Matching
Pursuit (OMP) to approximate

P, min |ju P; min |[Au—f
(P5)  min ull or (P§)  min, [|Au — £l
st. [|[Au—fl2 <e s.t. JJullo < s.

Another valuable option is convex relaxation (not discussed here)

(P1) min [jull:, st. Au=f.
uechN



Orthogonal Matching Pursuit (OMP)

Input:
Matrix A € C™*Y | with ¢?-normalized columns
Vector f € C™
Tolerance on the residual € > 0 (or else, sparsity s € [N])

Output:
Approximate solution u to (P§) (or else, (Pj))

Procedure:

1: S« 0 > Initialization
2:u<+0

3: while ||[Au — f||2 > ¢ (or else, ||lullo < s) do

4 j + arg Jnel% I[A"(Au — f)];] > Select new index
5: S« Su{j} > Enlarge support
6: u < arg rg&l}v |Az — f||2 s.t. supp(z) C S > Minimize residual
7: end while

8: return u

> The computational cost for the (Pg) formulation is in general
O(smN).



Recovery results based on the RIP

Many important recovery results in CS are based on the Restricted
Isometry Property (RIP).

Definition (RIP)
A matrix A € C™* satisfies the RIP(s, 6) iff

(1= 8)lulz < |Aulz < (1+3)[uf3, Vuexd ={veC":|v|]o<s}

Among many others, the RIP implies the following recovery result for
OMP. [T. Zhang, 2011; A. Cohen, W. Dahmen, R. DeVore, 2015]

Theorem (RIP = OMP recovery)

There exist K € N, C >0 and § € (0,1) s.t. for every s € N, the following
holds: if
A € RIP((K + 1)s,0),

then, for any f € C™, the OMP algorithm computes in Ks iterations a
solution u that fulfills

|Au—f]s <C inf [|Aw — £]..
WEEéV



CORSING (COmpRessed SolvING)



The reference problem

Given two Hilbert spaces U, V', consider the following problem
find u € U : a(u,v) = F(v), YoV, (1)

where a : U x V — R is a bilinear form and F € V*. We will assume
a(-, ) to fulfill

Ja>0: inf sup a(u,v) > a, (2)
uel ey H'IIHL' vilv

35 >0: supsupmgﬁ, (3)
uelU veV ||UHU||'UHV

sup a(u,v) >0, YveV\{0}. (4)

uclU

& (2) + (3) + (4) = 3! solution to (1). [J. Necas, 1962]

% We will focus on advection-diffusion-reaction (ADR) equations.
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The Petrov-Galerkin method

Given Q C R?, consider the weak formulation of an ADR equation:

find v € Hy(Q) : (nVu, Vo) + (bVu,v) + (pu,v) = (f,v), Yo € Hy(Q).

~——
a(u,v) F(v)
(ADR)
Choose U C H}(Q) and VM C Hg(Q) with
UN =span{i, ... 0w}, VM =span{pi, ..., om}
N——— ———
trials tests

Then we can discretize (ADR) as
Aﬁ = f, Az’j = a((,{,-, 901), fz = .7:(901)
with A € CM*V f e CcM.

A common choice is M = N.

» Examples of Petrov-Galerkin methods: Finite elements, spectral
methods, collocation methods, etc.
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The main analogy

A fundamental analogy guided us
through the development of our

method...
Petrov-Galerkin method: Sampling:
solution of a PDE = signal
tests (bilinear form) measurements (inner product)
Reference:

Compressed solving: a numerical approzimation technique for elliptic
PDEs based on compressed sensing

S. B., S. Micheletti, S. Perotto

Comput. Math. Appl. 2015; 70(6):1306-1335
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CORSING for ADR problems
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CORSING (COmpRessed SolvING)
Assembly phase
@ Choose two sets of N independent elements of / and V:
trials = {¢1, ..., N}, {e1,..., 0N} < tests;

@ choose m < N tests {@r,,..., ¢, }:

DETERMINISTICALLY rdndomh
YSQ how
D- CORSING % R- CORSING
® build A € C™*N and f € C™ as

[A]U = a(ﬁ’j) 907'1‘) [f]l = '7:(907'1)

Recovery phase
Find a compressed solution u)) to Au = f, via sparse recovery.
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CORSING (COmpRessed SolvING)
Assembly phase

@ Choose two sets of N independent elements of / and V:

trials = {¢1, ..., N}, {e1,..., 0N} < tests;
@ choose m < N tests {@r,,..., ¢, }:
MINISTIC/ how rdndomly
%ﬁ ‘SQ % R- CORSING
® build A € C™*" and f € C™ as

[Alij == a(t;,¢r)  [£li = F(er,).

Recovery phase
Find a compressed solution u)) to Au = f, via sparse recovery.
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Classical case: square matrices

When dealing with Petrov-Galerkin discretizations, one usually
ends up with a big square matrix.

Y1 Y2 Y3 Ya s Y Y7

N
11— [x x x x x x x| [u] [F(e1)]
P2 — X X X X X x X us F(p2)
03 = X X X X X x X us F(e3)
04— X X X X X x X ug| = [ F(pa)
o5 — X X X X X x X us F(es)
06— | X X X X X X X ug F(pe)
er— X x x x x x x| |ur] | F (7).

a(;,pi)



"Compressing” the discretization

We would like to use only m random tests instead of N, with
m << N...

Y1 2 P3 s Y5 Y Y7

N
01— [x x oxoxooxooox x] Tu] [F(¢1)]
o — X X X X X X X Uo F(p2)
03 —> X X X X X X X us F(p3)
01— X X X X X X X ug | = | Flpq)
05 — X X X X X X X us F(es)
v — X X X X X X X Ug F(v6)
or— X x  x x  ox  x x| |lurl | F (7).

a(j,pi)



Sparse recovery

...In order to obtain a reduced discretization.

U1 2 3 s Y5 Y Y7
N
Y= [x X x x X X X u1
Ys— [ X X X x X X x] u2
~~ us
a(thj,pi) Uy
us
Ue
[ U7 ]

The solution is then computed using sparse recovery

techniques.
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How fo choose {v;} and {y;}?

19



How fo choose {v;} and {y;}?

One heuristic criterion commonly used in CS is to choose one basis
sparse in space, and the other in frequency.

A 4
Hierarchical hat functions Sine functions
[O. Zienkiewicz et al., 1982]
05 HO‘U
04 Hl,O Hll
03 H20 H2,1 H22 H23
0.2
0.1
0
0 0.2 0.4 0.6 0.8 1
H S

We name the corresponding strategies CORSING HS and SH.
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A 1D example

We test CORSING HS on the homogeneous 1D Poisson problem
(a(u,v) = (u',0")):

» Trial space dimension N = 8191

» Solution sparsity s = 50

» Selected random tests m = 1200

Test Savings: TS = ~—™ . 100% ~ 85%

35 35
3 3.45 — — —exact
corsing
25 34
3.35
2
33
15
3.25
: 32
05 — — —exact
corsing E L e A
0 31
0 0.2 0.4 0.6 0.8 1 0.38 0.39 0.4 0.41 0.42

x = hat functions selected by OMP after solving the program

min ||Au — f|2, s.t.]|uljo <50
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A glance at the space of coefficients...

Lexicographic ordering

- © -exact
*__corsing

I L L
1000 2000 3000

L I
4000 5000

L L
6000 7000
i

L
8000

Level-based ordering (iog; |, 1)

Exact solution CORSING solution

level |

level |

kindex kindex
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Generalization to the 2D case (space domain)

Hierarchical Pyramids
[H. Yserentant, 1986]

(1k1.k2)=(1,0,1) (Ik1k2) (1,05,1) (Ik1k2) (1,1.1)
l' v
V‘f V‘f i

%
Ik1k2) (1,0,0.5) (\k1k2) (0,0,0) (\k1k2) (1,1,0.5)

#
0

0 %
(1k1.k2)=(1,0,0) (IKIKZ =(1,0.5,0) (Ik1k2) (1,1,0)

‘Y r ’
V‘f r‘r
0

73

Tensor product of hat

functions
1=(0,1) k=(0,1) 1=(1,1) k=(0,1) 1=(1,1) k=(1.1)
1 1
E ﬂ | n HU 1
0.5] 0.5]
5 0.05
00 05 1 0 0
1=(0,1) k=(0,0) I=(1, 1) k (1,0)
1
E U ! ﬂo 1
0.5 -
0.05
C‘U 05 0

1=(0,0) k=(0,0) 1=(1, U) k (0, D) I=(1,1 0) k (1,0)
1,

OSEU
% 05 1

0.15 0.15
01 45 0.1
0.05
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The 2D case (frequency domain)

Tensor product of sine functions

(r1,2)=(1,1) (11,2)=(12) (11.2)=(1.3)

1
05} 05| [
0.4 0.4 0.4
02| 02| - 02|

0 10 05 10

Iw...

("2’ (2‘) r2) (1,12)=(2,3)
08 08 . . 08 . .
04 04 04
02 02 . 02 . .
0%
(r1, v2; (31) [GE m (32 112)=(3.3)

08| o.a' . . 08|

06| 06| 0|

0.4 0.4 0.4

o2 02 . ' o2
05 05

@

We have four strategies: CORSING PS, QS, SP and SQ.
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An advection-dominated example

We evaluate the CORSING performance on the following 2D
advection-dominated problem

—pAu+b-Vu=f inQ=(0,1)%
u=20 on 0f2,

where b =[1,1]T,0 < 4 < 1 and f s.t. the exact solution be

wh(x) = Cpu(zy — a3) (22 — 22) ("M + ™2/t — 9),

*
n
where C), > 0 is chosen such that maxyeq uj,(x) = 1.

» The function u;, exhibits two boundary layers along the
edges {x; = 1} and {z2 =1} of Q.
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L*-rel. err. = 7.2e-02

N = 16129

TS = 85%

ESP = 1.00

L?-rel. err. = 7.1e-02

L-rel. err. = 9.6e-02

N = 16129 0.6
TS — 90% 0.4
ESP = 0.94 0z

L2-rel. err. = 8.7e-02

Figure: CORSING SP, with u = 0.01: worst

solution in the successful cluster (right). 50 random

experiments are performed.

ESP = Empirical Success Probability

Exact

0.8
0.6
0.4
0.2
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Cost reduction with respect to the full-PG (m=N)

We compare the assembly /recovery times of full-PG and CORSING.

full-PG CORSING SP
A f e (0 [ TS A f i (OMP)
85% 380102 2701 8.1 01
2.5e403 - 9.1e-01 T1et0l | ghor 950102 20001  3.4et01

» The assembly time reduction is proportional to TS.
» Also the RAM is reduced proportionally to TS.

» The recovery phase is cheaper for high TS rates.

A 4

The CORSING method can considerably reduce the computational
cost associated with a full-PG discretization.
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More challenging test cases

The CORSING technique has also been implemented for

The 3D Poisson problem The 2D Stokes problem

—Au+Vp=Ff inQ=(0,1)?

—Au=f inQ=(0,1)>
{ ~% f . o1 divu = 0 in Q
w= on u=0 ondQ
. armows = (u, u,), color = p
, oo
. I“ 06
S o " 0s
’%‘25?5’\!7? Q 0 :: CORSING SP 04
02 K. TS=70% 03
0 os 02
| » .
05 i 3 0.1
o 0 o o
1 > 06
08 °®
o7 05
o6
Exac.t . e Exact 04
solution o4 s .
solution
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A theoretical study of CORSING
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A theoretical understanding of the method

Reference:

A theoretical study of COmpRessed SolvING for advection-diffusion-reaction
problems

S.B., F. Nobile, S. Micheletti, S. Perotto

To appear in Mathematics of Computation

Some notation:

» Finite dimensional trial and test spaces
N = span{v; }iciny  and yM = span{®; }iem),

where [k] :={1,...,k} for every k € N.

» The set of s-sparse elements of UY

02 = { 5wy ulo <5}

JE[N]

Simplification: Let us assume the bases {9;};en and {p,}4en to be
orthonormal.
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Local a-coherence

An important tool employed in the theoretical analysis is the local
a-coherence, a generalization of the local coherence of CS.

Definition
Given N € NU {oc}, the real-valued sequence p” defined as

py = sup la(yy, o), Vg €N,
JEIN]

is called local a-coherence of {1);};c[n] With respect to {¢g}sen-

» Following [F. Krahmer and R. Ward, 2014|, we define a
computable upper bound v to p'V:

H;I\; < 1/(‘1\;, Vg € N.
Moreover, for every M € N, we define
N,M N N M
voM =y T e RYL
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Formalization of the CORSING procedure
PROCEDURE % = CORSING (N, s, vV, 7, 7)

1.

[Definition of M and m]

M~ sTN; m~ s [0 M]) log(N/s);
[Test selection] Draw 71, ..., 7m independently at random from [M]
according to the probability

N,M N,M
/v

p:=v [1;

[Assembly] Build A € R™*N f ¢ R™ and D € R™*™ defined as:
ik

Aij = a(y,o7,),  fii=F(pr), Dir:=

. |[Recovery]

Find an approximate solution u to min [D(Au— )3, s.t. |[ullo < s;
ueRk

N
U+ Z ﬂjl/)j.
j=1
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Main tools of the analysis

The theoretical analysis is based on three main tools:

1. the concept of local a-coherence between two bases;

2. Chernoff’s bounds for the sum of random matrices
[H. Chernoff,1952; R. Ahlswede and A. Winter, 2002;
J. Tropp, 2012];

3. a variant of the classical inf-sup property, that we called
restricted inf-sup property (RISP), i.e.,

. vIDAu
inf sup

— >a >0,
uenl verm [|ull2f[v]2

where =V := {u € RV : ||lul|p < s}

32



From the oo-dimensional problem to CORSING

While moving from the co-dimensional weak problem to the CORSING
reduced formulation we will track the inf-sup constant:

# of tests  inf-sup constant

a

Weak problem oo «@ E
T
2

2(1-6)2 6

This will guarantee the stability of our method and will imply recovery
error estimates for the CORSING technique.

PG discretization M < oo a(l
CORSING m < M a(l —9)

T
inf sup a(u, v) inf  sup a(u, v) inf sup v'DAu

weUN vev [[ullullvllv wevd v fluflullvllv wesy verm [lull2][vl2
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Uniform RISP

Theorem R
For every s € N, given 6 € (0,1), choose M € N such that
e
a®d
P
q>M

Then, for every ¢ > 0 and 6 € (0,1), provided

m 23 MM 1[5 og(eN/s) + slog(s/)]
the following uniform RISP holds with probability > 1 — ¢

. viIDAu ~
inf sup >a >0,
ues verm [[ull2f|v]2

~

)

[NIES
N|=

where & := (1 —

(1-73)

Q.

34



Non-uniform RISP: sketch of the proof (1/2)

The proof can be organized as follows:

1. Fix § C [N], with |S| = s, and notice that

viIDAsu
inf sup ———F——
o2 2 Talalv]s

= Pmin(ATD?As)]% = Din(X)] 2.

Indeed, ALDQAS is the sample mean of random matrices

1.1
(A}DQAS)jk *Zp*a(wagﬁpn) a(Voy; ;) -

:X;lk
2. The minimum eigenvalue of X™ can be controlled in expectation:

S <% @ = e, sy 20> 1k

P wev vevy [[ullullvllv

3. The thesis is proved by resorting to the matrix Chernoff bounds.
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Non-uniform RISP: sketch of the proof (2/2)
Theorem (Matrix Chernoff bounds)

Consider a finite sequence of i.i.d. random, symmetric s X s real matrices
M ... M™ such that

0< )\min(Mi) and )\max(Mi) < R almost surely, Vi€ [m].
Define M := L35 M’ and A := Amin(E[M’]). Then,

moZ .
R

P{min(M) < (1 — )M} S sexp <— ) , V5 e0,1].

» After choosing M? = X", direct computations show that
0 < Amin(X7)  and  Amax(X7) < s/
» Finally, we consider the inf-sup over UY employing a union bound.

]
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Recovery error analysis

Our aim is to compare the recovery error |& — u||y with the best
s-term approximation error of the exact solution u in U, i.e. the
quantity |[u® — ul|y, where

S

u® = arg wrg[ijnN lw — ully.
S

A key quantity is the following preconditioned random residual

m 2

R) = |2 30 —faus9n) = Flen) | = [D(A =)

Assumption: we assume that U solves the problem
min |[D(Au - f)|3, s.t. |Jullo < s
ucRN

exactly (even if, in reality, OMP can only approzimate its solution).
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Two lemmas about R(u®)

% An argument analogous to Cea’s lemma shows the following

Lemma
If the following uniform 2s-sparse RISP holds

) viIDAu
inf sup

>a >0,
uexy verm [[ull2v|l2

then the CORSING procedure computes a solution u such that

2
u—u’|ly < =R(u®).
i - wllo < SR

% Moreover, this mysterious residual behaves nicely in expectation!
Lemma
E[R(w*)?] < £2||u® — [},

where B is the continuity constant of a(-,-).
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Error estimate in expectation

Theorem (CORSING recovery in expectation)

Let s < N and K > 0 be such that ||ul|lv < K and 5,0 € (0,1). Choose
M € N such that the following truncation condition is fulfilled

Zqu

q>M

\%

Then, for every ¢ > 0, provided
m 25 UM |1 [s” 1og(N/s) + s log(s/e)],

the truncated CORSING solution Ticu fulfills
E[|Tct — ullv] < (1 + 7) lu® — ullv + 2KCe,

where & = (1 — 5) 1- )%a and Tr(w) := max(1, £/||lw|jv)w
Remarks:
> A possible choice for £ is || F ||v+/c.

» An analogous result holds in probability.



Application to the 1D Poisson problem

Proposition (CORSING HS recovery)

Fixz a maximum hierarchical level L € N, corresponding to
N = 2% 1. Then, for every e € (0,271/3] and s < 2N/e, provided

M > sN, m > log M[s*log(N/s) + slog(s/¢)]

and chosen the upper bound v~ as

1
l/évf\/*, Vq € N,
q

the CORSING HS solution to the homogeneous 1D Poisson problem

fulfills
E[| Tkt — u|g1] < 5lu® — u|gr + 2Ke,

for every KK > 0 such that |ulg: < K.
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Sketch of the proof

For the 1D Poisson problem we have the following bound

10°

local coherence
— — — upper bound

107

[S—
local coherence

Then, we have

S SNY 5~

q>M q>M

) 1
required to be < —.
s

)

==

Moreover, choosing Vév ~ 1/q yields

M
N,M 1 log M
M~y g~ loa M.

q=1
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Application to 1D ADR problems

Consider the problem
find uw € Hy(Q) : (,v") 4+ b, v) + p(u,v) = (f,v), Yv € Hy(Q) (ADR)
with b,p € R,p> 0 and Q = (0,1). Let Hg(£2) be endowed with | - |1 (q).

Proposition (CORSING HS for 1D ADR)
Fiz N € N. Then, for every e € (0, 271/3] and s < 2N/e, provided that

MZsN, /MSL |ol/M?S1,

m 2 (log M + [b]* + |p|*)[s* 1og(N/s) + s log(s/2)],

and chosen the upper bound v™ such that

N 1 “)‘2 ‘P|2
VqN6+qT+qT7 VqEN,

the CORSING HS solution to (ADR) fulfills

E[ITc@ — ul g (o)) S (L+ 0] + [p)|u” — ul 1 (o) + Ke,

Jor every K > 0 such that [u| g1 q) < K.
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Application to the 1D diffusion equation
Let Q = (0,1) and consider the problem

find w € Hy(Q):  (nu/,v') = (f,v), VYove Hy(Q). (DIF)

Proposition

Let n € L () be such that
> there exists Nmin > 0 so that 7(x) > Nmin, for almost every x € Q;
> there exists a finite set P C Q such that n € C*(Q\ P);

» sup [n™ ()] < oo, fork=1,2.
z€Q\P

Fiz L € N and put N = 25+ — 1. Then, provided
vy ~1/q, Vq€EN,

and
M > sN, m > log M[s*log(N/s) + slog(s/e)],

the CORSING HS solution u to (DIF) fulfills

Az

Tlmin

EHT)C/'J* u|H1(Q)} S (1 -+ ) |us — U‘Hl(Q) + QKE,

for every K > 0 such that |u|g1q) < K.



A RIP theorem for CORSING

(with S. Dirksen, H.C. Jung, H. Rauhut, RWTH Aachen)

Theorem (RIP for CORSING)
Let s, N € N, with s < N, and se (0,1). Suppose the truncation condition

-~

25
Zufé%.

q>M
to be fulfilled. Then, provided § € (1 — (1 — 5)6 1), and
m 2 52 s log™(s) log(N),

it holds .
P{87'DA € RIP(s,0)} 2 1 - N~ "5,

where B is the continuity constant of a(-,-).

v

CORSING computes the best s-term
approximation to v in O(smN) flops.
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Further results

» The previous results hold in the case of nonorthogonal trial
and test functions. Indeed, they suffice to be Riesz bases, i.e.,

1> usbsllo ~ ullz, YaeUY.
JjEN

> We checked the theoretical hypotheses on the local a-coherence
for the 2D and 3D ADR equations numerically.

Figure: The plot shows that

N 1
A
q192493

qa

local a-coherence

is a local a-coherence upper bound for the
3D Poisson problem (CORSING QS).

local a-coherence
upper bound
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Wrap up: main results

v

v

v

CS can be successfully applied to solve PDEs, such as 1D, 2D, and 3D
ADR problems, or the 2D Stokes problem;

CORSING can considerably reduce the computational cost associated
with a full-PG discretization;

the local a-coherence is crucial to understand the behavior of the
method theoretically;

Future directions

>

>

Speed-up the recovery phase (get rid of the “N” in the cost O(smN));

Investigate other trial/test combinations: e.g., biorthogonal
wavelets, instead of hierarchical basis (ongoing);

» 2D and 3D theory (ongoing);

apply CORSING to more challenging benchmarks, such as
Navier-Stokes, or nonlocal problems;

adapt the CORSING technique to the case of parametric PDEs.
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Thank you for your attention!

...questions?
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