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Eichler-Shimura and GL2-type Modularity
Conjectures

Table: Modularity of abelian varieties of GL2-type

Hilbert newforms f /F
with Hecke eigenvalues

Z[am(f ) : m ⊆ OF ] ⊆ OK
(weight 2, level N)

(Isogeny classes of)
Abelian varieties A/F

dim(A) = g , cond(A) =Ng

EndF (A) ⊗ Q = K

—— Eichler-Shimura conjecture
—— GL2-type Modularity conjecture
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Elliptic curves with everywhere good reduction
Historical note

First example of an elliptic curve with everywhere good reduction was
discovered by Tate.

Namely, he showed that the curve E defined by

E : y2 + xy + ε2y = x3,

where ε = 5+
√

29
2 is the fundamental unit in F = Q(

√
29), has

discriminant ∆ = −ε10.

This curve is extensively studied by Serre.

Shimura discusses similar examples, and proposes a general strategy for
constructing higher dimension analogues.

From the early 70s to the late 90s, a great deal of work went into finding
more examples of elliptic curves with everywhere good reduction defined
over quadratic fields.
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Elliptic curves with everywhere good reduction

Elkies-Donnelly search method

Let F be a real quadratic field of narrow class number one, and let ε be
the fundamental unit of OF .

Let E be an elliptic curve with everywhere good reduction defined over F .

Suppose that E is given by the extended Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

with coefficients ai ∈ OF and discriminant ∆.

Without loss of generality, we can assume that ∆ = ±εm with 0 ≤ m < 12.

A refinement of an argument of Stroeker by Elkies shows that we can in
fact assume that m ∈ {1, 2, 3, 4, 5}.
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Elliptic curves with everywhere good reduction

Elkies-Donnelly search method

Recall that
c3

4 − c2
6 = 1728∆,

and given m (and hence |∆|), set

H = (v0(c4)|v0(∆)|−1/3)2 + (v1(c4)|v1(∆)|−1/3)2
√

D

=

(
v0(c4)|v1(∆)|1/3

)2
+
(
v1(c4)|v0(∆)|1/3

)2

√
D

,

where v0, v1 : F ↪→ R are the real embeddings of F .

Then, H becomes a positive definite quadratic form in c4 on OF . The
normalizing factor

√
D−1 ensures that this form has discriminant 1.
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Elliptic curves with everywhere good reduction
Elkies-Donnelly search method

Let N > 0 be a fixed bound, and consider the ellipse

RN := {(x , y) ∈ R2 : H(x , y) ≤ N}.

There are roughly πN elements c4 in the intersection OF ∩RN .

Elkies heuristics show that as H represents elements of [1,N], a positive
proportion of c4 will give elliptic curves with unit discriminants.

So, for each D, the algorithm finds a reduced basis for the quadratic form
H, and tries all candidates up to N.

Method was refined by Steve Donnelly:
1 Remove the restriction that ∆ is a unit;
2 Extended to all totally real number fields (of narrow class number 1).

This is currently the algorithm used in Magma to search for elliptic curves
with prescribed conductor of such fields.
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Elliptic curves with everywhere good reduction

Elkies-Donnelly search method: Example

Let F = Q(
√
1997), and w := 1+

√
1997

2 .

Then there are 6 elliptic curves over F with everywhere good reduction.

They are pairwise non-isogenous and determines 3 Gal(F/Q)-conjugacy
classes.

The two conjugacy classes are represented by

E1 : y2 + wxy = x3 + (w + 1)x2 + (111w + 5401)x + (2406w + 81112);
E2 : y2 + wxy + (w + 1)y = x3 − x2 + (9370w − 208733)x

+ (2697263w − 61535794);
E3 : y2 + (w + 1)xy + (w + 1)y = x3 − wx2 + (19636w + 434383)x

+ (5730650w + 125261893).
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Elliptic curves with everywhere good reduction

Elkies-Donnelly search method: Example (cont’d)

By Freitas-Le Hung-Siksek, these curves are modular.

By a Magma computation, we check that there are exactly 6 Hilbert
newforms of level (1) and weight 2 over F with integer Hecke eigenvalues.

Therefore, these are the only elliptic curves with everywhere good
reduction over F .

Exercise
Show that there are no elliptic curves with everywhere good reduction over
F = Q(

√
2017)?

Lassina Dembélé () Everywhere good reduction



Elliptic curves with everywhere good reduction

Elkies-Donnelly search method: Example (cont’d)

By Freitas-Le Hung-Siksek, these curves are modular.

By a Magma computation, we check that there are exactly 6 Hilbert
newforms of level (1) and weight 2 over F with integer Hecke eigenvalues.

Therefore, these are the only elliptic curves with everywhere good
reduction over F .
Exercise
Show that there are no elliptic curves with everywhere good reduction over
F = Q(

√
2017)?
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Abelian surfaces with everywhere good reduction

Historical note

The only examples of abelian surfaces with everywhere good reduction in
the literature before my work with A. Kumar were of the following kinds:

1 Surfaces with complex multiplication (D.-Donnelly);
2 Q-surfaces (Casselman, Shimura);
3 Products of elliptic curves.

Except for (3), none of these examples is given by an explicit equation.

Possible explanations:
1 Not easy to embed such surfaces into projective spaces.
2 Additional complication: A curve can have bad reduction at a given

prime while its Jacobian still has good reduction at the same prime.
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Abelian surfaces with everywhere good reduction

Hilbert modular surfaces

Let K be a real quadratic field of discriminant D′.

The Hilbert modular surface Y−(D′):
1 Is a (compactification of the) coarse moduli space.
2 Parametrizes principally polarized abelian surfaces with real

multiplication by the ring of integers OK of K , i.e. pairs (A, ι), where
ι : OK → EndQ(A) is a homomorphism.

The surfaces Y−(D′) have models over the integers, with good reduction
outside D′.
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Abelian surfaces with everywhere good reduction

Hilbert modular surfaces

Elkies and Kumar compute explicit birational models over Q for these
surfaces for all the fundamental discriminants D′ less than 100.

They describe Y−(D′) as a double cover of P2, with equation z2 = f (r , s),
where r , s are parameters on P2.

They also give the map to A2, which is birational toM2, the moduli
space of genus 2 curves.

It is given by expressing the Igusa-Clebsch invariants of the image point as
rational functions of r and s.
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Abelian surfaces with everywhere good reduction

Our approach

Our strategy combines the Eichler-Shimura conjecture with the explicit
equations of Elkies-Kumar.

To produce such a surface A, we proceed as follows:
1 Find a Hilbert newform f of level (1) and weight 2 for a real

quadratic field F such that Z[am(f ) : m ⊆ OF ] = OD′ , the ring of
integers for some real quadratic field Kf of discriminant D′.

2 Find an F -rational point x on the Hilbert modular surface Y−(D′).
3 Compute the associated surface Ax , and check that Lp(A′, s) matches

Lp(Af , s) for the first few primes, up to twist.
4 Reduce Ax and compute the correct quadratic twist A.
5 Check that the abelian surface A has good reduction everywhere.
6 Prove that the L-functions indeed match up, i.e. that A is modular.
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Abelian surfaces with everywhere good reduction

Method 1: Point search on Hilbert modular surfaces

We illustrate this with the following example.

The smallest discriminant for which we obtain a surface (of GL2-type)
with everywhere good reduction is D = 53.

The abelian surface Af has real multiplication by Z[
√
2].

Notations:

w = 1 +
√

D
2 .
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Abelian surfaces with everywhere good reduction

Table: The first few Hecke eigenvalues of a base change newform of level (1) and
weight 2 over Q(

√
53). Here e =

√
2.

Np p ap(f ) sp(f ) tp(f )

4 2 e + 1 2 7
7 −w − 2 −e − 2 −4 16
7 −w + 3 −e − 2 −4 16
9 3 −3e + 1 2 1
11 w − 2 3e 0 4
11 w + 1 3e 0 4
13 w − 1 −2e + 1 2 19
13 −w −2e + 1 2 19
17 −w − 5 −3 −6 43
17 w − 6 −3 −6 43
25 5 2e + 4 8 58
29 −w − 6 3e − 3 −6 49
29 w − 7 3e − 3 −6 49
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Abelian surfaces with everywhere good reduction

Method 1: Point search on Hilbert modular surfaces

An equation for the Hilbert modular surface Y−(8) is given in
Elkies-Kumar’s paper.

As a double-cover of P2
r ,s , it is given by

z2 = 2(16rs2 + 32r2s − 40rs − s + 16r3 + 24r2 + 12r + 2).

It is a rational surface (over Q) and therefore the rational points are dense.

In particular, there is an abundance of rational points of small height.
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Abelian surfaces with everywhere good reduction

Method 1: Point search on Hilbert modular surfaces

The Igusa-Clebsch invariants (I2 : I4 : I6 : I10) ∈ P2
(1:2:3:5) are given by(

−24B1
A1

,−12A, 96AB1 − 36A1B
A1

,−4A1B2

)
,

where

A1 = 2rs2,

A = −(9rs + 4r2 + 4r + 1)/3,
B1 = (rs2(3s + 8r − 2))/3,
B = −(54r2s + 81rs − 16r3 − 24r2 − 12r − 2)/27,

B2 = r2.
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Abelian surfaces with everywhere good reduction
Method 1: Point search on Hilbert modular surfaces
Expect to find a point of Y−(8) over F = Q(

√
53), corresponding to the

principally polarized surface A which should match the Hilbert newform f .
The L-series of a surface A arising from our search is obtained by counting
points on the residue fields Fp = OF/p as p runs over the set of primes.
On the other hand, the L-series of the conjectural surface Af attached to
f can be written as

L(Af , s) = L(f , s)L(f τ , s) =
∏
p

1
Qp(N(p)−s) ,

where

Qp(T ) := (T 2 − ap(f )T + N(p))(T 2 − ap(f )τT + N(p))
= T 4 − sp(f )T 3 + tp(f )T 2 −N(p)sp(f )T + N(p)2.

We would like the local factors of these two L-series to match.
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Abelian surfaces with everywhere good reduction

Method 1: Point search on Hilbert modular surfaces

A search of Y−(8) for all points of height ≤ 200 using an algorithm of
Doyle-Krumm (implemented in Sage) gives the parameters

r = −24 + 10w
112 , s = 136− 24w

112 ,

and the Igusa-Clebsch invariants

I2 = 208 + 88w ,
I4 = −1660− 588w ,
I6 = −428792− 135456w ,

I10 = 643072 + 204800w .
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Abelian surfaces with everywhere good reduction

Method 1: Point search on Hilbert modular surfaces

By using Mestre’s algorithm, which is implemented in Magma, we obtain a
curve with the above invariants.

We reduce this curve using the algorithm of Bouyer-Streng, implemented
in Sage, to get the curve

C ′ : y2 = (−6w + 25)x6 + (−60w + 246)x5 + (−242w + 1017)x4

+ (−534w + 2160)x3 + (−626w + 2688)x2

+ (−440w + 1724)x − 127w + 567.
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Abelian surfaces with everywhere good reduction

Method 1: Point search on Hilbert modular surfaces

Theorem

Let C : y2 + Q(x)y = P(x) be the curve over F = Q(
√
53), where

P := −4x6 + (w − 17)x5 + (12w − 27)x4 + (5w − 122)x3

+ (45w − 25)x2 + (−9w − 137)x + 14w + 9,
Q := wx3 + wx2 + w + 1.

Then
(a) The discriminant of this curve is ∆C = −ε7. Thus C has everywhere

good reduction.
(b) The surface A := Jac(C) has real multiplication by Z[

√
2]. It is

modular and corresponds to the unique Hecke constituent [f ] in S2(1).
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Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

We can use this method when the Hilbert newform f is a base change, i.e.
when the Hecke eigenvalues of f satisfy

ap(f ) = aσ(p)(f ) for all p,

where Gal(F/Q) = 〈σ〉.

In this case, f arises from a newform g ∈ S2(D, (D
· ))new, whose coefficient

field is a quartic Lg .

Let Bg/Q the fourfold associated to g .
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Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

Let wD be the Atkin-Lehner involution on S2(D, (D
· ))new.

This induces an involution on Bg , which we still denote by wD.

Shimura shows the followings:
1 wD is defined over F , and wσ

D = −wD;
2 We have

Bg ⊗Q F ∼ (1 + wD)Bg × (1− wD)Bg ∼ Af × Aσf .

BUT, this is an algebraic decomposition!

We want an analytic decomposition.

Lassina Dembélé () Everywhere good reduction



Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

Key facts:

The Atkin-Lehner involution wD acts on:

1 H1(Bg ,Z) (described by modular symbols);
2 S2(D, (D

· ))new ' H0(Bg ,Ω1
Bg/Q).

So we can write the analytic decompositions:
1 H1(Bg ,Z) = H1(Bg ,Z)+ ⊕ H1(Bg ,Z)−;
2 H0(Bg ,Ω1

Bg/Q) = H0(Bg ,Ω1
Bg/Q)+ ⊕ H0(Bg ,Ω1

Bg/Q)−.

Integrating (2) against (1) gives Period lattices Λ+ and Λ− of Af and Aσf .

BUT, we also need Af and Aσf to be principally polarized. (Can check this
using intersection pairing.)
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Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

We illustrate this with an example at the discriminant D = 73.

The abelian surface Af has real multiplication by Z[ 1+
√

5
2 ].

A symplectic basis for H1(Bg ,Z) is given by the modular symbols:

γ1 := 2{−1/57, 0} − {−1/62, 0} − {−1/52, 0} + 2{−1/29, 0} + {−1/18, 0},
γ2 = −{−1/62, 0} + 2{−1/41, 0} − {−1/52, 0} + 2{−1/12, 0} + 2{−1/29, 0}

+ {−1/18, 0} − {−1/36, 0},
γ3 := {−1/57, 0} − {−1/41, 0} − {−1/18, 0} + {−1/36, 0},
γ4 := −{−1/57, 0} + {−1/62, 0} − {−1/41, 0} + {−1/52, 0} − {−1/12, 0}

− 2{−1/29, 0} − {−1/18, 0} + {−1/24, 0},

γ
′
1 := {−1/57, 0} + {−1/41, 0} + {−1/18, 0} − {−1/36, 0},

γ
′
2 := {−1/57, 0} + {−1/62, 0} + {−1/41, 0} − {−1/52, 0} − {−1/12, 0}

− {−1/18, 0} + {−1/24, 0},

γ
′
3 := −{−1/62, 0} + {−1/52, 0} + {−1/18, 0},

γ
′
4 := {−1/62, 0} − {−1/52, 0} − {−1/18, 0} + {−1/36, 0}.
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Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

We can also show that {γ1, γ2, γ3, γ4} and {γ′1, γ′2, γ′3, γ′4} are integral
bases for H1(Bg ,Z)+ and H1(Bg ,Z)−.

Computing the intersection pairing in that basis, we see that:
1 Bg is principally polarized.
2 H1(Bg ,Z)+ and H1(Bg ,Z)− have the same polarization of type

(2, 2). Hence Af and Aσf are principally polarized.
Integrating bases of differential forms of H0(Bg ,Ω1

Bg/Q)+ and
H0(Bg ,Ω1

Bg/Q)−, respectively, against the Darboux bases {γ1, γ2, γ3, γ4}
and {γ′1, γ′2, γ′3, γ′4}, we obtain the Riemann period matrices ΩAf and ΩAσf .
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Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example
ΩBg = ΩAf ×ΩAσ

f
= (Ω1 |Ω2)× (Ωσ

1 |Ωσ
2 );

Ω1 :=
(
101.34000...− 7.5977...i −2.6423...− 2.6129...i
23.92200...− 47.37900...i 11.19300...− 4.6090...i

)
Ω2 :=

(
38.70800...− 12.29300...i −6.9177...+ 1.6149...i
−62.63000...+ 19.89100...i −4.275400...+ 0.99804...i

)
Ωσ

1 :=
(
0.53699...− 3.7425...i 3.6304...− 3.4371...i
0.86887...− 6.0555...i −2.2437...+ 2.1243...i

)
Ωσ

2 :=
(
−1.4059...+ 2.3130...i −1.3867...− 5.5613...i
−1.4059...− 2.3130...i −1.3867...+ 5.5613...i

)
This yields the normalized period matrices

Z :=
(
−0.50106...+ 0.29103...i 0.43700...− 0.012594...i
0.43700...− 0.012594...i 0.41383...+ 0.18028...i

)
Zσ :=

(
−0.22570...+ 0.80024...i 0.54639...− 0.32080...i
0.54639...− 0.32080...i −0.67931...+ 0.47944...i

)
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Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

We compute the Igusa-Clebsch invariants I2, I4, I6 and I10 to 200 decimal
digits of precision using Z and Zσ, and identify them as elements in F .

In the weighted projective space P2
(1:2:3:5), this gives the point

(I2 : I4 : I6 : I10) =
(
1, −3080592b + 36303121

3750827536 ,

−72429788520b + 811909152327
229715681614784 ,

680871365928b − 5817295179641
6731436750404224780408

)
,

where b =
√
73.
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Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

By using Mestre’s algorithm, which is implemented in Magma, we obtain a
curve with the above invariants.

We reduce this curve using the algorithm of Bouyer-Streng, implemented
in Sage, to get the curve

C ′ : y2 = (4w − 19)x6 + (12w − 56)x5 + (12w − 74)x4 + (16w − 10)x3

+ (−12w − 63)x2 + (12w + 46)x − 4w − 15.

Lassina Dembélé () Everywhere good reduction



Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

Theorem

Let C : y2 + Q(x)y = P(x) be the curve over F = Q(
√
73), where

P := (w − 5)x6 + (3w − 14)x5 + (3w − 19)x4 + (4w − 3)x3

+ (−3w − 16)x2 + (3w + 11)x + (−w − 4);
Q := x3 + x + 1.

Then
(a) The discriminant of this curve is ∆C = −ε2. Thus C has everywhere

good reduction.
(b) The surface A := Jac(C) has real multiplication by Z[ 1+

√
5

2 ]. It
corresponds to the unique Hecke constituent [f ] in S2(1).
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Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

Proof.
Only the proof of modularity is different from what we did in the previous
example. Here the prime 3 is inert in Of = Z[ 1+

√
5

2 ]. So we prove that the
surface A is modular by combining arguments of Ellenberg and Gee.
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