Abelian surfaces with everywhere good reduction

Lecture 2: Abelian surfaces with everywhere good reduction

Lassina Dembélé

June 17, 2016

PIMS Summer School in Explicit Methods for Abelian Varieties University of Calgary

Abelian surfaces with everywhere good reduction Lecture 2: The good, the bad, and the ugly

Lassina Dembélé

June 17, 2016

PIMS Summer School in Explicit Methods for Abelian Varieties University of Calgary

Eichler-Shimura and GL_{2}-type Modularity Conjectures

Table: Modularity of abelian varieties of GL_{2}-type

$$
\begin{gathered}
\text { Hilbert newforms } f / F \\
\text { with Hecke eigenvalues } \\
\mathrm{Z}\left[a_{\mathfrak{m}}(f): \mathfrak{m} \subseteq \mathcal{O}_{F}\right] \subseteq \mathcal{O}_{K} \\
\text { (weight 2, level } \mathfrak{N} \text {) }
\end{gathered}
$$

_- Eichler-Shimura conjecture
-_ GL2-type Modularity conjecture

Elliptic curves with everywhere good reduction

Historical note

First example of an elliptic curve with everywhere good reduction was discovered by Tate.

Namely, he showed that the curve E defined by

$$
E: y^{2}+x y+\epsilon^{2} y=x^{3}
$$

where $\epsilon=\frac{5+\sqrt{29}}{2}$ is the fundamental unit in $F=\mathbf{Q}(\sqrt{29})$, has discriminant $\Delta=-\epsilon^{10}$.

This curve is extensively studied by Serre.
Shimura discusses similar examples, and proposes a general strategy for constructing higher dimension analogues.

From the early 70 s to the late 90 s, a great deal of work went into finding more examples of elliptic curves with everywhere good reduction defined over quadratic fields.

Elliptic curves with everywhere good reduction

Elkies-Donnelly search method

Let F be a real quadratic field of narrow class number one, and let ϵ be the fundamental unit of \mathcal{O}_{F}.

Let E be an elliptic curve with everywhere good reduction defined over F.
Suppose that E is given by the extended Weierstrass equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

with coefficients $a_{i} \in \mathcal{O}_{F}$ and discriminant Δ.
Without loss of generality, we can assume that $\Delta= \pm \epsilon^{m}$ with $0 \leq m<12$.
A refinement of an argument of Stroeker by Elkies shows that we can in fact assume that $m \in\{1,2,3,4,5\}$.

Elliptic curves with everywhere good reduction

Elkies-Donnelly search method

Recall that

$$
c_{4}^{3}-c_{6}^{2}=1728 \Delta
$$

and given m (and hence $|\Delta|$), set

$$
\begin{aligned}
H & =\frac{\left(v_{0}\left(c_{4}\right)\left|v_{0}(\Delta)\right|^{-1 / 3}\right)^{2}+\left(v_{1}\left(c_{4}\right)\left|v_{1}(\Delta)\right|^{-1 / 3}\right)^{2}}{\sqrt{D}} \\
& =\frac{\left(v_{0}\left(c_{4}\right)\left|v_{1}(\Delta)\right|^{1 / 3}\right)^{2}+\left(v_{1}\left(c_{4}\right)\left|v_{0}(\Delta)\right|^{1 / 3}\right)^{2}}{\sqrt{D}}
\end{aligned}
$$

where $v_{0}, v_{1}: F \hookrightarrow \mathbf{R}$ are the real embeddings of F.
Then, H becomes a positive definite quadratic form in c_{4} on \mathcal{O}_{F}. The normalizing factor \sqrt{D}^{-1} ensures that this form has discriminant 1 .

Elliptic curves with everywhere good reduction

Elkies-Donnelly search method

Let $N>0$ be a fixed bound, and consider the ellipse

$$
\mathscr{R}_{N}:=\left\{(x, y) \in \mathbf{R}^{2}: H(x, y) \leq N\right\} .
$$

There are roughly πN elements c_{4} in the intersection $\mathcal{O}_{F} \cap \mathscr{R}_{N}$.
Elkies heuristics show that as H represents elements of $[1, N]$, a positive proportion of c_{4} will give elliptic curves with unit discriminants.

So, for each D, the algorithm finds a reduced basis for the quadratic form H, and tries all candidates up to N.

Method was refined by Steve Donnelly:
(1) Remove the restriction that Δ is a unit;
(2) Extended to all totally real number fields (of narrow class number 1). This is currently the algorithm used in Magma to search for elliptic curves with prescribed conductor of such fields.

Elliptic curves with everywhere good reduction

Elkies-Donnelly search method: Example

Let $F=\mathbf{Q}(\sqrt{1997})$, and $w:=\frac{1+\sqrt{1997}}{2}$.
Then there are 6 elliptic curves over F with everywhere good reduction.
They are pairwise non-isogenous and determines $3 \mathrm{Gal}(F / \mathbf{Q})$-conjugacy classes.

The two conjugacy classes are represented by

$$
\begin{aligned}
& E_{1}: y^{2}+w x y=x^{3}+(w+1) x^{2}+(111 w+5401) x+(2406 w+81112) \\
& E_{2}: y^{2}+w x y+(w+1) y=x^{3}-x^{2}+(9370 w-208733) x \\
&+(2697263 w-61535794) ; \\
& E_{3}: y^{2}+(w+1) x y+(w+1) y=x^{3}-w x^{2}+(19636 w+434383) x \\
&+(5730650 w+125261893) .
\end{aligned}
$$

Elliptic curves with everywhere good reduction

Elkies-Donnelly search method: Example (cont'd)

By Freitas-Le Hung-Siksek, these curves are modular.
By a Magma computation, we check that there are exactly 6 Hilbert newforms of level (1) and weight 2 over F with integer Hecke eigenvalues.

Therefore, these are the only elliptic curves with everywhere good reduction over F.

Elliptic curves with everywhere good reduction

Elkies-Donnelly search method: Example (cont'd)

By Freitas-Le Hung-Siksek, these curves are modular.
By a Magma computation, we check that there are exactly 6 Hilbert newforms of level (1) and weight 2 over F with integer Hecke eigenvalues.

Therefore, these are the only elliptic curves with everywhere good reduction over F.

Exercise

Show that there are no elliptic curves with everywhere good reduction over $F=\mathbf{Q}(\sqrt{2017})$?

Abelian surfaces with everywhere good reduction

Historical note

The only examples of abelian surfaces with everywhere good reduction in the literature before my work with A. Kumar were of the following kinds:
(1) Surfaces with complex multiplication (D.-Donnelly);
(2) Q-surfaces (Casselman, Shimura);
(3) Products of elliptic curves.

Except for (3), none of these examples is given by an explicit equation. Possible explanations:
(1) Not easy to embed such surfaces into projective spaces.
(2) Additional complication: A curve can have bad reduction at a given prime while its Jacobian still has good reduction at the same prime.

Abelian surfaces with everywhere good reduction

Hilbert modular surfaces

Let K be a real quadratic field of discriminant D^{\prime}.
The Hilbert modular surface $Y_{-}\left(D^{\prime}\right)$:
(1) Is a (compactification of the) coarse moduli space.
(2) Parametrizes principally polarized abelian surfaces with real multiplication by the ring of integers \mathcal{O}_{K} of K, i.e. pairs (A, ι), where $\iota: \mathcal{O}_{K} \rightarrow \operatorname{End}_{\overline{\mathbf{Q}}}(A)$ is a homomorphism.

The surfaces $Y_{-}\left(D^{\prime}\right)$ have models over the integers, with good reduction outside D^{\prime}.

Abelian surfaces with everywhere good reduction

Hilbert modular surfaces

Elkies and Kumar compute explicit birational models over \mathbf{Q} for these surfaces for all the fundamental discriminants D^{\prime} less than 100.

They describe $Y_{-}\left(D^{\prime}\right)$ as a double cover of \mathbf{P}^{2}, with equation $z^{2}=f(r, s)$, where r, s are parameters on \mathbf{P}^{2}.

They also give the map to \mathcal{A}_{2}, which is birational to \mathcal{M}_{2}, the moduli space of genus 2 curves.

It is given by expressing the Igusa-Clebsch invariants of the image point as rational functions of r and s.

Abelian surfaces with everywhere good reduction

Our approach

Our strategy combines the Eichler-Shimura conjecture with the explicit equations of Elkies-Kumar.

To produce such a surface A, we proceed as follows:
(1) Find a Hilbert newform f of level (1) and weight 2 for a real quadratic field F such that $\mathbf{Z}\left[a_{\mathfrak{m}}(f): \mathfrak{m} \subseteq \mathcal{O}_{F}\right]=\mathcal{O}_{D^{\prime}}$, the ring of integers for some real quadratic field K_{f} of discriminant D^{\prime}.
(2) Find an F-rational point x on the Hilbert modular surface $Y_{-}\left(D^{\prime}\right)$.
(3) Compute the associated surface A_{x}, and check that $L_{\mathfrak{p}}\left(A^{\prime}, s\right)$ matches $L_{p}\left(A_{f}, s\right)$ for the first few primes, up to twist.
(9) Reduce A_{x} and compute the correct quadratic twist A.
(5) Check that the abelian surface A has good reduction everywhere.
(0) Prove that the L-functions indeed match up, i.e. that A is modular.

Abelian surfaces with everywhere good reduction

Method 1: Point search on Hilbert modular surfaces

We illustrate this with the following example.
The smallest discriminant for which we obtain a surface (of GL_{2}-type) with everywhere good reduction is $D=53$.

The abelian surface A_{f} has real multiplication by $\mathbf{Z}[\sqrt{2}]$.
Notations:

$$
w=\frac{1+\sqrt{D}}{2}
$$

Abelian surfaces with everywhere good reduction

Table: The first few Hecke eigenvalues of a base change newform of level (1) and weight 2 over $\mathbf{Q}(\sqrt{53})$. Here $e=\sqrt{2}$.

$N \mathfrak{p}$	\mathfrak{p}	$a_{\mathfrak{p}}(f)$	$s_{\mathfrak{p}}(f)$	$t_{\mathfrak{p}}(f)$
4	2	$e+1$	2	7
7	$-w-2$	$-e-2$	-4	16
7	$-w+3$	$-e-2$	-4	16
9	3	$-3 e+1$	2	1
11	$w-2$	$3 e$	0	4
11	$w+1$	$3 e$	0	4
13	$w-1$	$-2 e+1$	2	19
13	$-w$	$-2 e+1$	2	19
17	$-w-5$	-3	-6	43
17	$w-6$	-3	-6	43
25	5	$2 e+4$	8	58
29	$-w-6$	$3 e-3$	-6	49
29	$w-7$	$3 e-3$	-6	49

Abelian surfaces with everywhere good reduction

Method 1: Point search on Hilbert modular surfaces

An equation for the Hilbert modular surface $Y_{-}(8)$ is given in Elkies-Kumar's paper.

As a double-cover of $\mathbf{P}_{r, s}^{2}$, it is given by

$$
z^{2}=2\left(16 r s^{2}+32 r^{2} s-40 r s-s+16 r^{3}+24 r^{2}+12 r+2\right) .
$$

It is a rational surface (over \mathbf{Q}) and therefore the rational points are dense.
In particular, there is an abundance of rational points of small height.

Abelian surfaces with everywhere good reduction

Method 1: Point search on Hilbert modular surfaces

The Igusa-Clebsch invariants $\left(I_{2}: I_{4}: I_{6}: I_{10}\right) \in \mathbf{P}_{(1: 2: 3: 5)}^{2}$ are given by

$$
\left(-\frac{24 B_{1}}{A_{1}},-12 A, \frac{96 A B_{1}-36 A_{1} B}{A_{1}},-4 A_{1} B_{2}\right),
$$

where

$$
\begin{aligned}
A_{1} & =2 r s^{2} \\
A & =-\left(9 r s+4 r^{2}+4 r+1\right) / 3, \\
B_{1} & =\left(r s^{2}(3 s+8 r-2)\right) / 3, \\
B & =-\left(54 r^{2} s+81 r s-16 r^{3}-24 r^{2}-12 r-2\right) / 27, \\
B_{2} & =r^{2} .
\end{aligned}
$$

Abelian surfaces with everywhere good reduction

Method 1: Point search on Hilbert modular surfaces

Expect to find a point of $Y_{-}(8)$ over $F=\mathbf{Q}(\sqrt{53})$, corresponding to the principally polarized surface A which should match the Hilbert newform f.

The L-series of a surface A arising from our search is obtained by counting points on the residue fields $\mathbb{F}_{\mathfrak{p}}=\mathcal{O}_{F} / \mathfrak{p}$ as \mathfrak{p} runs over the set of primes.

On the other hand, the L-series of the conjectural surface A_{f} attached to f can be written as

$$
L\left(A_{f}, s\right)=L(f, s) L\left(f^{\tau}, s\right)=\prod_{\mathfrak{p}} \frac{1}{Q_{\mathfrak{p}}\left(\mathrm{N}(\mathfrak{p})^{-s}\right)}
$$

where

$$
\begin{aligned}
Q_{\mathfrak{p}}(T) & :=\left(T^{2}-a_{\mathfrak{p}}(f) T+\mathrm{N}(\mathfrak{p})\right)\left(T^{2}-a_{\mathfrak{p}}(f)^{\tau} T+\mathrm{N}(\mathfrak{p})\right) \\
& =T^{4}-s_{\mathfrak{p}}(f) T^{3}+t_{\mathfrak{p}}(f) T^{2}-\mathrm{N}(\mathfrak{p}) s_{\mathfrak{p}}(f) T+\mathrm{N}(\mathfrak{p})^{2}
\end{aligned}
$$

We would like the local factors of these two L-series to match.

Abelian surfaces with everywhere good reduction

Method 1: Point search on Hilbert modular surfaces

A search of $Y_{-}(8)$ for all points of height ≤ 200 using an algorithm of Doyle-Krumm (implemented in Sage) gives the parameters

$$
r=-\frac{24+10 w}{11^{2}}, s=\frac{136-24 w}{11^{2}}
$$

and the Igusa-Clebsch invariants

$$
\begin{aligned}
I_{2} & =208+88 w \\
I_{4} & =-1660-588 w \\
I_{6} & =-428792-135456 w \\
I_{10} & =643072+204800 w
\end{aligned}
$$

Abelian surfaces with everywhere good reduction

Method 1: Point search on Hilbert modular surfaces

By using Mestre's algorithm, which is implemented in Magma, we obtain a curve with the above invariants.

We reduce this curve using the algorithm of Bouyer-Streng, implemented in Sage, to get the curve

$$
\begin{aligned}
C^{\prime}: y^{2}=(& -6 w+25) x^{6}+(-60 w+246) x^{5}+(-242 w+1017) x^{4} \\
& +(-534 w+2160) x^{3}+(-626 w+2688) x^{2} \\
& +(-440 w+1724) x-127 w+567
\end{aligned}
$$

Abelian surfaces with everywhere good reduction

Method 1: Point search on Hilbert modular surfaces

Theorem

Let $C: y^{2}+Q(x) y=P(x)$ be the curve over $F=\mathbf{Q}(\sqrt{53})$, where

$$
\begin{aligned}
P:= & -4 x^{6}+(w-17) x^{5}+(12 w-27) x^{4}+(5 w-122) x^{3} \\
& +(45 w-25) x^{2}+(-9 w-137) x+14 w+9 \\
Q:= & w x^{3}+w x^{2}+w+1 .
\end{aligned}
$$

Then
(a) The discriminant of this curve is $\Delta_{C}=-\epsilon^{7}$. Thus C has everywhere good reduction.
(b) The surface $A:=\operatorname{Jac}(C)$ has real multiplication by $\mathbf{Z}[\sqrt{2}]$. It is modular and corresponds to the unique Hecke constituent $[f]$ in $S_{2}(1)$.

Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

We can use this method when the Hilbert newform f is a base change, i.e. when the Hecke eigenvalues of f satisfy

$$
a_{\mathfrak{p}}(f)=a_{\sigma(\mathfrak{p})}(f) \text { for all } \mathfrak{p}
$$

where $\operatorname{Gal}(F / \mathbf{Q})=\langle\sigma\rangle$.
In this case, f arises from a newform $g \in S_{2}(D,(\underline{D}))^{\text {new }}$, whose coefficient field is a quartic L_{g}.

Let B_{g} / \mathbf{Q} the fourfold associated to g.

Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

Let w_{D} be the Atkin-Lehner involution on $S_{2}\left(D,\left(\frac{D}{\cdot}\right)\right)^{\text {new }}$.
This induces an involution on B_{g}, which we still denote by w_{D}. Shimura shows the followings:
(1) w_{D} is defined over F, and $w_{D}^{\sigma}=-w_{D}$;
(2) We have

$$
B_{g} \otimes_{\mathbf{Q}} F \sim\left(1+w_{D}\right) B_{g} \times\left(1-w_{D}\right) B_{g} \sim A_{f} \times A_{f}^{\sigma} .
$$

BUT, this is an algebraic decomposition!
We want an analytic decomposition.

Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

Key facts:

The Atkin-Lehner involution w_{D} acts on:
(1) $H_{1}\left(B_{g}, \mathbf{Z}\right)$ (described by modular symbols);
(2) $S_{2}\left(D,\left(\frac{D}{4}\right)\right)^{\text {new }} \simeq H^{0}\left(B_{g}, \Omega_{B_{g} / \mathbf{Q}}^{1}\right)$.

So we can write the analytic decompositions:
(1) $H_{1}\left(B_{g}, \mathbf{Z}\right)=H_{1}\left(B_{g}, \mathbf{Z}\right)^{+} \oplus H_{1}\left(B_{g}, \mathbf{Z}\right)^{-}$;
(2) $H^{0}\left(B_{g}, \Omega_{B_{g} / \mathbf{Q}}^{1}\right)=H^{0}\left(B_{g}, \Omega_{B_{g} / \mathbf{Q}}^{1}\right)^{+} \oplus H^{0}\left(B_{g}, \Omega_{B_{g} / \mathbf{Q}}^{1}\right)^{-}$.

Integrating (2) against (1) gives Period lattices Λ^{+}and Λ^{-}of A_{f} and A_{f}^{σ}. BUT, we also need A_{f} and A_{f}^{σ} to be principally polarized. (Can check this using intersection pairing.)

Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

We illustrate this with an example at the discriminant $D=73$.
The abelian surface A_{f} has real multiplication by $\mathbf{Z}\left[\frac{1+\sqrt{5}}{2}\right]$.
A symplectic basis for $H_{1}\left(B_{g}, \mathbf{Z}\right)$ is given by the modular symbols:

$$
\begin{aligned}
\gamma_{1}:= & 2\{-1 / 57,0\}-\{-1 / 62,0\}-\{-1 / 52,0\}+2\{-1 / 29,0\}+\{-1 / 18,0\}, \\
\gamma_{2}= & -\{-1 / 62,0\}+2\{-1 / 41,0\}-\{-1 / 52,0\}+2\{-1 / 12,0\}+2\{-1 / 29,0\} \\
& +\{-1 / 18,0\}-\{-1 / 36,0\}, \\
\gamma_{3}:= & \{-1 / 57,0\}-\{-1 / 41,0\}-\{-1 / 18,0\}+\{-1 / 36,0\}, \\
\gamma_{4}:= & -\{-1 / 57,0\}+\{-1 / 62,0\}-\{-1 / 41,0\}+\{-1 / 52,0\}-\{-1 / 12,0\} \\
& -2\{-1 / 29,0\}-\{-1 / 18,0\}+\{-1 / 24,0\}, \\
\gamma_{1}^{\prime}:= & \{-1 / 57,0\}+\{-1 / 41,0\}+\{-1 / 18,0\}-\{-1 / 36,0\}, \\
\gamma_{2}^{\prime}:= & \{-1 / 57,0\}+\{-1 / 62,0\}+\{-1 / 41,0\}-\{-1 / 52,0\}-\{-1 / 12,0\} \\
& -\{-1 / 18,0\}+\{-1 / 24,0\}, \\
\gamma_{3}^{\prime}:= & -\{-1 / 62,0\}+\{-1 / 52,0\}+\{-1 / 18,0\}, \\
\gamma_{4}^{\prime}:= & \{-1 / 62,0\}-\{-1 / 52,0\}-\{-1 / 18,0\}+\{-1 / 36,0\} .
\end{aligned}
$$

Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

We can also show that $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right\}$ and $\left\{\gamma_{1}^{\prime}, \gamma_{2}^{\prime}, \gamma_{3}^{\prime}, \gamma_{4}^{\prime}\right\}$ are integral bases for $H_{1}\left(B_{g}, \mathbf{Z}\right)^{+}$and $H_{1}\left(B_{g}, \mathbf{Z}\right)^{-}$.
Computing the intersection pairing in that basis, we see that:
(1) B_{g} is principally polarized.
(2) $H_{1}\left(B_{g}, \mathbf{Z}\right)^{+}$and $H_{1}\left(B_{g}, \mathbf{Z}\right)^{-}$have the same polarization of type $(2,2)$. Hence A_{f} and A_{f}^{σ} are principally polarized.
Integrating bases of differential forms of $H^{0}\left(B_{g}, \Omega_{B_{g} / \mathbf{Q}}^{1}\right)^{+}$and $H^{0}\left(B_{g}, \Omega_{B_{g} / \mathbf{Q}}^{1}\right)^{-}$, respectively, against the Darboux bases $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right\}$ and $\left\{\gamma_{1}^{\prime}, \gamma_{2}^{\prime}, \gamma_{3}^{\prime}, \gamma_{4}^{\prime}\right\}$, we obtain the Riemann period matrices $\Omega_{A_{f}}$ and $\Omega_{A_{f}^{\sigma}}$.

Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

$$
\begin{aligned}
\Omega_{B_{g}} & =\Omega_{A_{f}} \times \Omega_{A_{f}^{\sigma}}=\left(\Omega_{1} \mid \Omega_{2}\right) \times\left(\Omega_{1}^{\sigma} \mid \Omega_{2}^{\sigma}\right) ; \\
\Omega_{1} & :=\left(\begin{array}{cc}
101.34000 \ldots-7.5977 \ldots i & -2.6423 \ldots-2.6129 \ldots i \\
23.92200 \ldots-47.37900 \ldots i & 11.19300 \ldots-4.6090 \ldots i
\end{array}\right) \\
\Omega_{2} & :=\left(\begin{array}{cc}
38.70800 \ldots-12.29300 \ldots i & -6.9177 \ldots+1.6149 \ldots i \\
-62.63000 \ldots+19.89100 \ldots i & -4.275400 \ldots+0.99804 \ldots i
\end{array}\right) \\
\Omega_{1}^{\sigma} & :=\left(\begin{array}{cc}
0.53699 \ldots-3.7425 \ldots i & 3.6304 \ldots-3.4371 \ldots i \\
0.86887 \ldots-6.0555 \ldots i & -2.2437 \ldots+2.1243 \ldots i
\end{array}\right) \\
\Omega_{2}^{\sigma} & :=\left(\begin{array}{cc}
-1.4059 \ldots+2.3130 \ldots i & -1.3867 \ldots-5.5613 \ldots i \\
-1.4059 \ldots-2.3130 \ldots i & -1.3867 \ldots+5.5613 \ldots i
\end{array}\right)
\end{aligned}
$$

This yields the normalized period matrices

$$
\begin{aligned}
Z & :=\left(\begin{array}{cc}
-0.50106 \ldots+0.29103 \ldots i & 0.43700 \ldots-0.012594 \ldots i \\
0.43700 \ldots-0.012594 \ldots i & 0.41383 \ldots+0.18028 \ldots i
\end{array}\right) \\
Z^{\sigma} & :=\left(\begin{array}{cc}
-0.22570 \ldots+0.80024 \ldots i & 0.54639 \ldots-0.32080 \ldots i \\
0.54639 \ldots-0.32080 \ldots i & -0.67931 \ldots+0.47944 \ldots i
\end{array}\right)
\end{aligned}
$$

Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

We compute the Igusa-Clebsch invariants I_{2}, I_{4}, I_{6} and I_{10} to 200 decimal digits of precision using Z and Z^{σ}, and identify them as elements in F.
In the weighted projective space $\mathbf{P}_{(1: 2: 3: 5)}^{2}$, this gives the point

$$
\left(I_{2}: I_{4}: I_{6}: I_{10}\right)=\left(1, \frac{-3080592 b+36303121}{3750827536}\right.
$$

$\left.\frac{-72429788520 b+811909152327}{229715681614784}, \frac{680871365928 b-5817295179641}{6731436750404224780408}\right)$,
where $b=\sqrt{73}$.

Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

By using Mestre's algorithm, which is implemented in Magma, we obtain a curve with the above invariants.

We reduce this curve using the algorithm of Bouyer-Streng, implemented in Sage, to get the curve

$$
\begin{aligned}
C^{\prime}: y^{2}= & (4 w-19) x^{6}+(12 w-56) x^{5}+(12 w-74) x^{4}+(16 w-10) x^{3} \\
& +(-12 w-63) x^{2}+(12 w+46) x-4 w-15 .
\end{aligned}
$$

Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

Theorem

Let $C: y^{2}+Q(x) y=P(x)$ be the curve over $F=\mathbf{Q}(\sqrt{73})$, where

$$
\begin{aligned}
P:= & (w-5) x^{6}+(3 w-14) x^{5}+(3 w-19) x^{4}+(4 w-3) x^{3} \\
& +(-3 w-16) x^{2}+(3 w+11) x+(-w-4) ; \\
Q:= & x^{3}+x+1 .
\end{aligned}
$$

Then
(a) The discriminant of this curve is $\Delta_{C}=-\epsilon^{2}$. Thus C has everywhere good reduction.
(b) The surface $A:=\operatorname{Jac}(C)$ has real multiplication by $\mathbf{Z}\left[\frac{1+\sqrt{5}}{2}\right]$. It corresponds to the unique Hecke constituent $[f]$ in $S_{2}(1)$.

Abelian surfaces with everywhere good reduction

Method 2: Splitting abelian varieties: Example

Proof.

Only the proof of modularity is different from what we did in the previous example. Here the prime 3 is inert in $\mathcal{O}_{f}=\mathbf{Z}\left[\frac{1+\sqrt{5}}{2}\right]$. So we prove that the surface A is modular by combining arguments of Ellenberg and Gee.

