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Canonical height

Let

■ K be a number field,
■ A/K be an abelian variety, e.g. an elliptic curve or the Jacobian of a smooth projective curve.

A height function on A(K) is supposed to measure the arithmetic complexity (or size) of a point.

In these lectures we’ll discuss the canonical height (or Néron-Tate height)

ĥ : A(K) → R≥0 .

It has the following properties:

■ ĥ is a quadratic form.
■ SB := {P ∈ A(K) : ĥ(P ) ≤ B} is finite for all B ∈ R≥0.
■ ĥ(P ) = 0 if and only if P has finite order.

We’ll focus on those parts of the theory which are useful for explicit methods.
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Outline
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Motivation 4 / 36

Mordell-Weil

Theorem (Mordell-Weil). The group A(K) is finitely generated. In other words, we have

A(K) ∼= Zr × T ,

where r is a non-negative integer and T ∼= A(K)tors is finite.

We call

■ A(K) the Mordell-Weil group of A/K;
■ r the rank of A/K.

The theorem holds in much greater generality, e.g. over arbitrary global fields.
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Descent Lemma

For the proof of the theorem, canonical heights are useful because of the

Descent lemma. Suppose that G is an abelian group such that

1. G�nG is finite for some n ≥ 2.
2. There is a quadratic form

q : G → R≥0

such that SB := {g ∈ G : q(g) ≤ B} is finite for all B ∈ R≥0.

Then G is finitely generated.

The proof is left as an exercise.

By the descent lemma and the properties of the canonical height, the Mordell-Weil theorem follows
from the

Weak Mordell-Weil theorem. If n ≥ 2, then A(K)�
nA(K) is finite.
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Computing generators of A(K)

Suppose we’ve computed

■ the rank r,
■ independent nontorsion points Q1, . . . , Qr ∈ A(K),
■ generators Qr+1, . . . , Qs of A(K)tors.

All known methods to compute generators of A(K) using this information require algorithms to

(i) compute ĥ(P ) for given P ∈ A(K);
(ii) enumerate SB = {P ∈ A(K) : ĥ(P ) ≤ B} for given B ∈ R≥0.

For instance, if Q1, . . . , Qs are representatives of A(K)�
nA(K) for some n ≥ 2, then your proof of the

descent lemma will probably tell you how to compute generators using (i) and (ii).

There are more efficient methods due to Siksek and to Stoll.
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Regulator

For P, Q ∈ A(K), we write

〈P, Q〉 :=
ĥ(P +Q)− ĥ(P )− ĥ(Q)

2

Let P1, . . . , Pr be generators of A(K)/A(K)tors.

Then
Reg(A/K) := det(〈Pi, Pj〉)1≤i,j≤r

is called the regulator of A/K.

It appears in the statement of the full Birch and Swinnerton-Dyer conjecture for abelian varieties.

So we need to compute Reg(A/K) in order to collect empirical evidence for the conjecture.
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Canonical heights on Elliptic Curves 9 / 36

Naive heights on elliptic curves

Let E/Q be an elliptic curve, given by an equation

y2 = x3 + αx+ β, α, β ∈ Z

and let O = (0 : 1 : 0) ∈ E(Q). An affine point P ∈ E(Q) is of the form

P = (xP , yP ) =

(
aP
d2P

,
bP
d3P

)
, aP , bP , dP ∈ Z, gcd(aP , dP ) = 1 = gcd(bP , dP ) .

Definition. The naive height of P is

h(P ) :=
1

2
logmax

{
|aP |, d

2
P

}
∈ R≥0 .

We also set h(O) = 0. Then

■ h is quadratic up to a bounded function;
■ S′

B := {P ∈ E(Q) : h(P ) ≤ B} is finite for all B ∈ R≥0.
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Canonical heights on elliptic curves

Definition (Tate). The canonical height of P ∈ E(Q) is

ĥ(P ) := lim
n→∞

4−nh(2nP ) ∈ R≥0 .

Properties.

■ ĥ is a quadratic form.
■ Ψ := h− ĥ is bounded.
■ SB := {P ∈ E(Q) : ĥ(P ) ≤ B} is finite for all B ∈ R≥0.
■ ĥ(P ) = 0 if and only if P has finite order.

Idea. Suppose we can compute Ψ(P ) for given P ∈ E(Q) and bound |Ψ| ≤ D on E(Q). Then we
can

■ compute ĥ(P ) = h(P )−Ψ(P ) for given P ∈ E(Q),
■ enumerate {P ∈ E(Q) : h(P ) ≤ B +D} ⊃ SB for given B ∈ R.
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Local decomposition of Ψ

To analyze Ψ, decompose it into local terms.

Proposition (Néron). For every place v of Q there is a v-adically continuous bounded function
Ψv : E(Qv) → R such that

Ψ(P ) =
∑

v

Ψv(P ) for all P ∈ E(Q) .

For a prime number p, let E0(Qp) be the set of points which reduce to a smooth point modulo p.
Then Ψp factors through the finite group E(Qp)/E0(Qp).

There are simple formulas and optimal bounds for the non-archimedean Ψp due to Silverman and
Cremona-Prickett-Siksek, respectively.

To use Silverman’s formulas, one needs some integer factorisation to find which Ψp(P ) can be

non-trivial. For an algorithm which computes Ψ(P ) (and hence ĥ(P )) without any integer
factorisation, and runs in quasi-linear time, come to my talk on Friday next week.
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Simple local decomposition

We normalize the absolute values | · |p for the primes p so that the product formula holds. Then, for
P ∈ E(Q) \ {O}, we get:

h(P ) = −
∑

p

log |dP |p +
1

2
logmax

{
|aP |

d2P
, 1

}
= log |dP |+

1

2
max{log |xP |, 0}

So, if we define the archimedean canonical local height by

λ∞(P ) := Ψ∞(P )−
1

2
max{log |xP |, 0} for P ∈ E(R) \ {O} ,

then the canonical height of an affine point P ∈ E(Q) ∩
⋂

pE0(Qp) is

ĥ(P ) = h(P )−Ψ∞(P ) = log |dP |+ λ∞(P ) .

Every P ∈ E(Q) has a multiple nP ∈ E(Q) ∩
⋂

pE0(Qp), so we can use this to compute

ĥ(P ) = ĥ(nP )/n2.

13 / 36

6



Archimedean canonical local heights

Let θ̃ be a normalized theta function with respect to τ ∈ H, where E(C) ∼= C�Z+ τZ , let H be the

Riemann form associated to θ̃, and let zP ∈ C reduce to P ∈ E(C).

Proposition (Néron). For P ∈ E(C) \ {O} we have

λ∞(P ) = − log |θ̃(zP )|+
π

2
H(zP , zP ) .

For instance, we can use a normalized version of

■ the Weierstrass sigma function or
■ the Riemann theta function with characteristic

(
1

2
, 1
2

)
.

For the latter, we get H(z, w) = zw̄/ Im(τ) and

θ̃(z) = exp

(
πz2

2 Im τ

)
·
∑

m∈Z

exp

(
πiτ

(
m+

1

2

)2

+ 2πi

(
m+

1

2

)(
z +

1

2

))
.
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Hyperelliptic curves 15 / 36

Hyperelliptic curves

Let K be a field of characteristic 6= 2.

A hyperelliptic curve C/K of genus g ≥ 1 is given by an equation Y 2 = F (X,Z) in the weighted
projective plane P2

K(1, g + 1, 1), where

■ F ∈ K[X,Z] is a binary form of degree 2g + 2,
■ disc(F ) 6= 0.

C is covered by the two standard affine charts

y2 = f(x) := F (x, 1)

and
t2 = f̃(s) := F (1, s).

For simplicity, we will assume that f has degree 2g + 1 and is monic. Then C(Q) ∋ O = (1 : 0 : 0) is
the unique point of C not on y2 = f(x).

Let A be the Jacobian of C. Then A(K) ∼= Pic0(C/K), so every P ∈ A(K) has a representative
D ∈ Div0(C/K) = {D ∈ Div(C/K) : deg(D) = 0}.
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Points on the Jacobian

Let C/K be an odd degree hyperelliptic curve as above.

An effective divisor D =
∑d

i=1
(Pi) ∈ Div(C/K) is called reduced if

■ 0 ≤ d ≤ g,
■ Pi 6= O for all i,
■ Pi 6= w(Pj) for all j 6= i, where w(X : Y : Z) = (X : −Y : Z) is the hyperelliptic involution on X.

If D is a reduced divisor, then there are unique a, b ∈ K[x] such that

■ a is monic of degree d and factors as a(x) =
∏d

i=1
(x− xPi

);
■ b has degree at most d− 1 and we have b(xPi

) = yPi
for all i;

■ there is a polynomial c ∈ K[x] such that b2 − f = ac.

Fact. If P ∈ A(K), then there is a unique representative D − d(O) of P such that D is reduced.

We call the pair (a, b) the Mumford representation of D or of P .
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Higher genus: The Kummer variety

For the Jacobian A/Q of a hyperelliptic curve of genus g, the naive height can be defined as follows:
Let κ : A → P2g−1 be such that κ(A) is a model for the Kummer variety K = A�{±1} of A.

Define the naive height of P ∈ A(Q) as

h(P ) := h(κ(P )) = logmax{|κ1(P )|, . . . , |κ2g (P )|}

and the canonical height as
ĥ(P ) := lim

n→∞
4−nh(2nP ) .

One can use this to compute ĥ(P ) and bound Ψ = h− ĥ when

■ A is the Jacobian of a curve of genus 2 (Flynn-Smart, Stoll, M.-Stoll),
■ A is the Jacobian of a hyperelliptic curve of genus 3 (Stoll).

For g > 3, this seems hopeless in practice, because the explicit arithmetic of K is too complicated.

18 / 36

8



Canonical heights on Jacobians: Idea

Let C/Q be an odd degree hyperelliptic curve as above and let A denote its Jacobian.

Idea. Instead of using the structure of A as a variety, express the canonical height using only data on
C.

Arakelov conjectured that ĥ can be expressed using arithmetic intersection theory. This was proved by
Hriljac and Faltings.

We’ll develop the theory for general “nice” curves and restrict to the hyperelliptic case for explicit
results.

Remark. In addition to the computation of the regulator, generators of A(Q) are also needed to
apply an algorithm of Bugeaud, Mignotte, Siksek, Stoll and Tengely which computes the integral
points on C.
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Faltings-Hriljac

Let C/Q be an odd degree hyperelliptic curve as above and let A denote its Jacobian. Let
P,Q ∈ A(Q) and let D, E ∈ Div0(C/Q) be representatives of P and Q, respectively, with disjoint
support.

For a prime p, consider the divisors D ⊗Qp and E ⊗Qp on the curve C ⊗Qp. Also consider the
divisors D ⊗ C and E ⊗C on the Riemann surface C(C).

Theorem (Faltings, Hriljcac). The canonical height pairing

〈P,Q〉 =
ĥ(P +Q)− ĥ(P )− ĥ(Q)

2

between P and Q is given by

〈P, Q〉 = −
∑

p

〈D ⊗Qp, E ⊗Qp〉p · log p− 〈D ⊗ C, E ⊗ C〉∞ ,

where 〈 , 〉v is the Néron symbol on C ⊗Qv – to be constructed today.
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Intersection theory on regular models 21 / 36

Models

Let R be a discrete valuation ring with

■ normalized discrete valuation v,
■ fraction field K of characteristic 0,
■ perfect residue field k,
■ spectrum S = SpecR.

Let C/K be a nice (i.e. smooth projective geometrically irreducible) curve.

A model π : C → S of C over S is an integral, normal, two-dimensional S-scheme which is proper, flat
and of finite type over S, such that the generic fiber C0 = C ⊗K of C is isomorphic to C.

In other words, a model is a proper arithmetic surface over R.

You should think of this as an arithmetic analogue of an algebraic surface which is fibered over a base
curve.
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Facts about models

Let π : C → S be a model of a nice curve C/K.

■ The special fiber Cv = C ⊗ k is a connected curve over k.
■ A section P ∈ C(R) gives rise to a K-rational point P on the generic fiber by specialization, so

we get a natural map C(R) → C(K).
By the valuative criterion of properness, this map is a bijection, so every P ∈ C(K) extends to a
section PC ∈ C(R).

■ If P ∈ C(K), then we call the specialization of PC to the special fiber Cv the reduction of P (or of
PC).

■ Let P ∈ C with local ring OC,P and maximal ideal mC,P . We call P regular if the dimension of
mC,P�

m
2

C,P
as an OC,P�mC,P

-vector space is 2.

■ We call C regular if all points on C are regular.
■ If C is regular, then the reduction of every P ∈ C(K) is a smooth point in Cv(k).

Theorem (Abhyankar, Lipman). Let C/K be a nice curve. Then there is a regular model C of C
over R.
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Divisors on regular models

Let π : C → S be a regular model of a nice curve C/K.

An irreducible divisor on C is either

1. the closure DC of an irreducible divisor D ∈ Div(C/K) (e.g. a section) or
2. an irreducible component Γ of Cv.

The divisor group Div(C/R) is the free abelian group on these irreducible divisors.

We extend the assignment D 7→ DC to arbitrary D ∈ Div(C/K) by linearity.

We call D =
∑

i niDi ∈ Div(C/R) horizontal if all Di are irreducible of type (i) and vertical if all Di

are irreducible of type (ii).

The vertical divisors form a group Divv(C/K).
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Intersection multiplicity

Let π : C → S be a regular model of a nice curve C/K.

Let D, E ∈ Div(C/R) be effective divisors without common component.

Let z ∈ Cv be a closed point and let f, g ∈ OC,z be respective local equations for D, E in z.

The intersection multiplicity of D and E in z is defined by

(D · E)z := dimk
OC,z�(f, g) ∈ Z≥0 .

The total intersection multiplicity of D and E is defined by

(D · E) :=
∑

z

(D · E)z ∈ Z≥0 ,

where the sum is over all closed points of Cv.

We extend these to divisors in Div(C/R) without common component by linearity.
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Vertical intersection multiplicities

The total intersection multiplicity is symmetric (obviously) and bilinear (less obviously), but in general
it does not respect linear equivalence. However, we have:

Lemma. Let E = div(ϕ) ∈ Div(C/R) be a principal divisor and let Γ ∈ Divv(C/R) be vertical.
Then (Γ ·E) = 0 . In particular, we have (Γ · Cv) = 0, if we view Cv is a (principal) divisor on C.

Hence the intersection of a vertical divisor with an arbitrary divisor class is well-defined.

Let QDivv(C/R) := Divv(C/R)⊗Q and let Q Cv ⊂ QDivv(C/R) consist of the rational multiples of
Cv.

Then we get a well-defined symmetric bilinear pairing

QDivv(C/R)/Q Cv × QDivv(C/R)/Q Cv → Q .
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Intersection matrix

Let Cv =
∑n

i=1
aiΓi, where the Γi are the irreducible components of Cv and the ai are positive

integers.

Let M = (mij)i,j be the intersection matrix of Cv, where mij = (aiΓi · ajΓj).

Proposition.

(a) mij = mji ≥ 0 for all i 6= j.
(b)

∑n
j=1

mij = 0 for all i ∈ {1, . . . , n}.
(c) M is negative semi-definite.
(d) The kernel of M is spanned by the vector t(1 . . . 1).

Corollary. Let Γ ∈ QDivv(C/R). Then we have Γ2 := (Γ · Γ) ≤ 0 and the following are equivalent:

(i) Γ2 = 0,
(ii) (Γ ·∆) = 0 for all ∆ ∈ QDivv(C/R),
(iii) Γ = a Cv for some a ∈ Q.

27 / 36
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Non-archimedean Néron symbols

This gives us an (almost) canonical way to extend a divisor D ∈ Div0(C/K) on C ∼= C0 to C.

Theorem (Manin). There is a unique linear map

Φ : Div0(C/K) → QDivv(C/R)/Q Cv

such that for all D ∈ Div0(C/K) and all Γ ∈ QDivv(C/R), we have

(DC + Φ(D) · Γ) = 0 .

Definition. Let D, E ∈ Div0(C/K) have disjoint support. Then the Néron symbol of D and E is
defined as

〈D,E〉v := (DC +Φ(D) ·EC +Φ(E)) ∈ Q .

Proposition. The Néron symbol is bilinear and symmetric. If D = div(ϕ) is principal, then
〈D,E〉v = v(ϕ(E)).
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Green’s functions and theta functions 29 / 36

Green’s functions

Let X be a compact Riemann surface, let D ∈ Div(X) and let dµ be a volume form on X such that∫
X
dµ = 1.

Definition. A Green’s function on X with respect to D (and dµ) is a smooth function
gD : X \ supp(D) → R such that

(i) gD has a logarithmic singularity along D,
(ii) i · ∂∂gD = π deg(D)dµ ,
(iii)

∫
X
gDdµ = 0 .

Note that gD is uniquely determined and gD1+D2
= gD1

+ gD2
.

If D has degree 0, then (ii) means that gD is harmonic.
If, moreover, E =

∑
j bj (Qj) ∈ Div0(X) has disjoint support from D, then all functions gD

satisfying (i) and (ii) lead to the same value of

gD(E) :=
∑

j

bj gD(Qj) .

30 / 36
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Archimedean Néron symbols

Let X be a compact Riemann surface of genus g > 0 and let D, E ∈ Div0(X) have disjoint support.

Then the Néron symbol of D and E is defined by

〈D,E〉∞ := gD(E) ,

where gD satisfies (i) and (ii) above.

Proposition. The Néron symbol is bilinear and symmetric. If D = div(ϕ) is principal, then
〈D,E〉∞ = − log |ϕ(E)|.

Theorem (Hriljac – very vague version). Let D ∈ Div(X) be non-special. Then a function
satisfying (i) and (ii) with respect to D and the canonical volume form on X can be constructed by
pulling back to X a translate of an archimedean canonical local height on the Jacobian J of X with
respect to a theta divisor.
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Riemann θ-function with characteristic

Let
J = Jac(X) ∼= C

g

�Z
g + τZ

g and π : Cg
։ J ,

where τ ∈ Cg×g has positive definite imaginary part. Fix a base point O ∈ X, let

ι : X → J ; P 7→ [(P )− (O)]

be the corresponding Abel-Jacobi map and let

Θ = {ι(P1) + . . .+ ι(Pg−1) : P1, . . . , Pg−1 ∈ X}

be the corresponding theta divisor on J . We linearly extend ι to Div(X).

For a, b ∈
(
1

2
Z
)g

and τ as above we define the Riemann theta function with characteristic [a; b] as a
function on Cg by

θa,b(z) =
∑

m∈Zg

exp

(
2πi

(
1

2
t(m+ a)τ(m+ a) + t(m+ a)(z + b)

))
.
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A normalized theta function

Now let a =
(
1

2
, . . . , 1

2

)
, b =

(
g
2
, g−1

2
, . . . , 1, 1

2

)
∈
(
1

2
Z
)g
. Then

■ θa,b is odd and entire;
■ the divisor of θa,b on Cg is π∗Θ;
■ the Riemann form associated to θa,b is H(z, w) = tz Im(τ)−1w.

The “normalized” theta function associated to θa,b is

θ̃a,b(z) := θa,b(z) exp
(π
2
tz(Im τ)−1z

)
.

Theorem. Let D ∈ Div(X) be non-special, i.e. D is effective, deg(D) = g and dimL(D) = 1, and
define gD : X \ suppD → R by

gD(P ) := − log |θa,b(zP−D)|+ πt Im(zP−D) Im(τ)−1 Im(zP−D) ,

where for E ∈ Div(X), zE ∈ Cg is such that π(zE) = ι(E) ∈ J . Then gD satisfies properties (i)
and (ii) w.r.t. D and the canonical volume form on X.
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Néron symbols in terms of θa,b

Proposition. Let D1, D2, E1, E2 ∈ Div(X) be effective divisors with disjoint support such that D1

and D2 are non-special and we have E1 =
∑d

i=1
(Pi) and E2 =

∑d
i=1

(Qi). Then

〈D1 −D2, E1 − E2〉∞ =− log
d∏

i=1

∣∣∣∣
θa,b(zPi

− zD1
) θa,b(zQi

− zD2
)

θa,b(zPi
− zD2

) θa,b(zQi
− zD1

)

∣∣∣∣

− 2π

d∑

i=1

t Im(zD1−D2
) Im(τ)−1 Im(zPi

− zQi
) .

where for E ∈ Div(X), zE ∈ Cg is such that π(zE) = ι(E) ∈ J .

Note that for all P,Q ∈ J we can find such representatives E1 − E2 of Q and D1 −D2 of some
multiple nP .
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Computing canonical heights using Néron symbols 35 / 36

Faltings-Hriljac

Let C/Q be a nice curve with Jacobian A.

Let P,Q ∈ A(Q) and let D, E ∈ Div0(C/Q) be representatives of P and Q, respectively, with
disjoint support.

For a prime p, consider the divisors D ⊗Qp and E ⊗Qp on the curve C ⊗Qp. Also consider the
divisors D ⊗ C and E ⊗C on the Riemann surface C(C).

Theorem (Faltings, Hriljcac). The canonical height pairing

〈P,Q〉 =
ĥ(P +Q)− ĥ(P )− ĥ(Q)

2

between P and Q is given by

〈P, Q〉 = −
∑

p

〈D ⊗Qp, E ⊗Qp〉p · log p− 〈D ⊗ C, E ⊗ C〉∞ .

This can be used for an algorithm to compute 〈P,Q〉 – at least when C is hyperelliptic (Holmes, M.).
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