Open questions on Jacobians of curves over finite fields: supersingular curves

Rachel Pries

Colorado State University pries@math.colostate.edu

Effective methods for abelian varieties June 16-18, 2016

Open question on supersingular curves

Let p be a prime number. Let g be a natural number.

Open question:

Does there exist a supersingular curve of genus g defined over a finite field of characteristic p, for every p and g?

Outline. What is:

- a supersingular elliptic curve;
- a supersingular curve of higher genus;
- known about this question already;
- the next step?

Complex elliptic curves and *p*-torsion

Let *E* be a complex elliptic curve.

 $E \simeq \mathbb{C}/L$ for a lattice $L = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. (Thus *E* is an abelian group).

Torsion points: $E[p](\mathbb{C}) = \{Q \in E(\mathbb{C}) \mid pQ = 0_E\}.$

Then $E[p](\mathbb{C}) \simeq \frac{1}{p}L/L \simeq (\mathbb{Z}/p)^2$.

If X is a complex curve of genus $g \ge 2$, its Jacobian J_X is a p.p. abelian variety of dimension g and $J_X[p](\mathbb{C}) \simeq (\mathbb{Z}/p)^{2g}$.

Rachel Pries (CSU)

Supersingular curves

Elliptic curves - algebraic version

Let $E: y^2 = h(x)$ be an elliptic curve over $k = \overline{\mathbb{F}}_p$ where $h(x) = x^3 + ax^2 + bx + c = \prod_{i=1}^3 (x - \lambda_i)$.

Algebraic group law on E:

The ℓ -torsion of E is $\text{Ker}[\ell]$ where $[\ell] : E \to E$ is mult.by- ℓ .

 $E[\ell](k) := \{Q \in E(k) \mid \ell Q = 0_E\} \simeq (\mathbb{Z}/\ell)^2 \text{ if } p \nmid \ell.$

Let
$$E: y^2 = x^3 + ax^2 + bx + c$$
 and $\ell = 3$.

A point *Q* has order 3 iff 2Q = -Q iff x(2Q) = x(Q).

This occurs iff x(Q) is a root of the 3-division polynomial.

$$P. < a, b, c >= PolynomialRing(ZZ,3)$$

 $E = EllipticCurve(P, [0, a, 0, b, c])$
 $d_3 = E.division_polynomial(3, x = None)$

$$3 * x^4 + 4 * a * x^3 + 6 * b * x^2 + 12 * c * x - b^2 + 4 * a * c$$

If $p \neq 3$, then $d_3(x)$ has 4 distinct roots so *E* has 8 points of order 3 and |E[3](k)| = 9.

< ロ > < 同 > < 回 > < 回 >

Collapsing torsion points - example

What if
$$p = 3$$
?
 $d_3 = 3 * x^4 + 4 * a * x^3 + 6 * b * x^2 + 12 * c * x - b^2 + 4 * a * c$.

2

Collapsing torsion points - example

What if
$$p = 3$$
?
 $d_3 = 3 * x^4 + 4 * a * x^3 + 6 * b * x^2 + 12 * c * x - b^2 + 4 * a * c$.
 $P3. < a, b, c >= PolynomialRing(GF(3),3)$
 $r_3 = d_3.change_ring(P3)$
 $+a * x^3 - b^2 + a * c$

Mod p binomial thm: In k[x], $(x + \alpha)^p = x^p + \alpha^p$.

So
$$r_3 = a * x^3 - b^2 + a * c$$
 has

$$\begin{cases}
\text{one (triple) root} & a \neq 0 \mod 3 \\
\text{no roots} & a \equiv 0 \mod 3
\end{cases}$$

So |E[3](k)| divides 3 when p = 3.

3

Ordinary and supersingular elliptic curves

$$\begin{array}{|c|c|c|c|c|c|} \hline p & r_p \text{ reduction of } p - \text{division polynomial of } y^2 = x^3 + bx + c \\ \hline 5 & +2*b*x^{10} - b^2*c*x^5 + b^6 - 2*b^3*c^2 - c^4 \\ \hline 7 & +3*c*x^{21} + 3*b^2*c^2*x^{14} + (-b^7*c - 2*b^4*c^3 + 3*b*c^5)*x^7 \\ & -b^{12} - b^9*c^2 + 3*b^6*c^4 - b^3*c^6 + 2*c^8 \end{array}$$

Then r_p has at most (p-1)/2 roots. The *p*-torsion points on $E: y^2 = f(x)$ collapse to either *p* points or 1 point modulo *p*.

Def:

$$E \text{ is } \begin{cases} \text{ordinary} & \text{if } |E[p](k)| = p \\ \text{supersingular} & \text{if } |E[p](k)| = 1 \end{cases}$$

The local set

• • • • • • • • • • •

Supersingularity and slopes

If E/\mathbb{F}_q is elliptic curve, then $\#E(\mathbb{F}_q) = q+1-a$. The zeta function of *E* is $Z(t) = (1-at+qt^2)/(1-t)(1-qt)$.

Fact: $p \mid a$ iff E supersingular.

E supersingular, Newton polygon of $1 - at + qt^2$ has slopes 1/2. 1 0.8-0.6called $G_{1,1}$. 0.4-0.2-05 15 2 E ordinary, then Newton polygon has slopes 0 and 1. 1-0.8 0.6called $G_{0,1} \oplus G_{1,0}$. 0.4 0.2 0.5 15

```
E = EllipticCurve(GF(5), [0, 1, 0, 2, 0])
Elliptic Curve defined by y^2 = x^3 + x^2 + 2 \cdot x over Finite Field of size 5
E.is supersingular()
True
E.hasse invariant()
0
E.trace of frobenius()
0
F = E.frobenius()
C = F.absolute charpoly()
x^{2}+5
C.newton slopes(5)
[1/2, 1/2]
```

.

A D M A A A M M

Examples of supersingular elliptic curves

For all *p*, there exists a supersingular elliptic curve E/\mathbb{F}_{p^2} (Igusa). The number of isomorphism classes of ss elliptic curves is $\lfloor \frac{p}{12} \rfloor + \epsilon$.

 $p = 2: y^2 + y = x^3$ (unique) $p \equiv 3 \mod 4: y^2 = x^3 - x$ $p \equiv 2 \mod 3: y^2 = x^3 + 1$

p odd: $y^2 = h(x)$, where h(x) cubic with distinct roots, is supersingular iff the coefficient c_{p-1} of x^{p-1} in $h(x)^{(p-1)/2}$ is zero.

This coefficient vanishes iff Cartier operator trivializes $\frac{dx}{v} \in H^0(E, \Omega^1)$.

$$C(\frac{dx}{y}) = C(\frac{y^{p-1}dx}{y^p}) = \frac{1}{y}C(h(x)^{(p-1)/2})dx) = \frac{c_{p-1}^{1/p}dx}{y}.$$

 $y^2 = x(x-1)(x-\lambda)$ is supersingular for $\frac{p-1}{2}$ choices of $\lambda \in \overline{\mathbb{F}}_{p}$ (Igusa).

4 /

Review: supersingular elliptic curves

Let *E* be a smooth elliptic curve over $k = \overline{k}$, with char(k) = *p*. Let *E*[*p*] be the kernel of the inseparable multiplication-by-*p* morphism.

E is **supersingular** if it satisfies the following equivalent conditions:

A. The only *p*-torsion point is the identity: $E[p](k) = {id}$.

B. The Newton polygon of *E* is a line segment of slope $\frac{1}{2}$.

C. The Cartier operator annihilates $H^0(E, \Omega^1)$.

D. End(E) non-commutative (order in quat. algebra).

Rachel Pries (CSU)

Supersingular curves

Introduction: different properties when g > 1

Let *A* be a p.p. abelian variety of dimension *g* over $k = \overline{k}$, char(k) = *p*. Let *A*[*p*] be the kernel of the inseparable multiplication-by-*p* morphism.

The following conditions are all different for $g \ge 3$.

A. *p***-rank** 0 - The only *p*-torsion point is the identity: $A[p](k) = {id}$.

B. supersingular - The Newton polygon of A is a line of slope $\frac{1}{2}$.

C. superspecial - The Cartier operator annihilates $H^0(X, \Omega^1)$.

Then $C \Rightarrow B \Rightarrow A$ but $A \stackrel{g \ge 3}{\Rightarrow} B \stackrel{g \ge 2}{\Rightarrow} C$

Question: if $g \ge 2$, do these occur for Jacobian of smooth *k*-curve?

イロト 不得 トイヨト イヨト 二日

Let $k = \overline{\mathbb{F}}_{p}$ (an algebraically closed field of char. *p*).

Let X be a (smooth projective connected) curve over k.

Recall: everything you learned about Riemann surfaces (C-curves).

Analogous structures: e.g., functions, differentials, Jacobians.

More complicated definitions: e.g., genus is $g = \dim(H^0(X, \Omega_1))$ rather than 'the number of holes'.

Guideline:

Most facts not involving the number *p* are still true.

Most facts involving the number *p* are now false.

< ロ > < 同 > < 回 > < 回 >

Suppose X is a curve. The genus is $g = \dim(H^0(X, \Omega_1))$.

If $g \ge 2$, there is no natural group law on the points of *X*.

(Recall, define group structure on points of a complex curve by integrating holomorphic differentials and taking quotient by lattice of periods: $J_x = \Omega^1(X)^* / H^1(X, \mathbb{Z}) \simeq \mathbb{C}^g / \mathbb{L}$. Its *p*-torsion points satisfy $J_X[p](\mathbb{C}) \simeq (\mathbb{Z}/p)^{2g}$.)

Now Jacobian J_X of X is $Pic^0(X)$ (line bundles of deg 0) or $Div^0(X)/PDiv(X)$ (divisors of deg 0 mod principal divisors).

Then J_X is a principally polarized abelian variety of dimension g.

A B A A B A

B. Definition of Newton polygon

Let X be a smooth projective curve defined over \mathbb{F}_q , with $q = p^a$. Zeta function of X is $Z(X/\mathbb{F}_q, t) = L(X/\mathbb{F}_q, t)/(1-t)(1-qt)$

where
$$L(X/\mathbb{F}_q,t) = \prod_{i=1}^{2g} (1 - w_i t) \in \mathbb{Z}[t]$$
 and $|w_i| = \sqrt{q}$.

The Newton polygon of X is the NP of the *L*-polynomial L(t). Find *p*-adic valuation v_i of coefficient of t^i in L(t). Draw lower convex hull of $(i, v_i/a)$ where $q = p^a$.

Facts: The NP goes from (0,0) to (2g,g). NP line segments break at points with integer coefficients; If slope λ occurs with length m_{λ} , so does slope $1 - \lambda$.

Definition

 X/\mathbb{F}_q is *supersingular* if the Newton polygon of $L(X/\mathbb{F}_q, t)$ is a line segment of slope 1/2.

イロト イポト イヨト イヨト

Let A be a p.p. abelian variety of dimension g over k.

Manin: for *c*, *d* relatively prime s.t. $\lambda = \frac{c}{d} \in \mathbb{Q} \cap [0, 1]$, define a *p*-divisible group $G_{c,d}$ of dimension *c* and height *d*.

The Dieudonné module D_{λ} for $G_{c,d}$ is a W(k)-module. Over $\operatorname{Frac}(W(k))$, there is a basis x_1, \ldots, x_d for D_{λ} s.t. $F^d x_i = p^c x_i$.

There is an isogeny of *p*-divisible groups $A[p^{\infty}] \sim \bigoplus_{\lambda} G_{c,d}^{m_{\lambda}}$.

Newton polygon: lower convex hull - line segments slope λ , length m_{λ} .

Definition: A supersingular iff $\lambda = \frac{1}{2}$ is the only slope.

There is a partial ordering on NPs; the supersingular NP is 'smallest'.

Let *X* be a smooth projective curve defined over \mathbb{F}_q , with $q = p^a$. The following are equivalent:

- X is supersingular;
- 2 the Newton polygon of $L(X/\mathbb{F}_q, T)$ is a line segment of slope 1/2;
- each eigenvalue of the relative Frobenius morphism equals ζ_√q for some root of unity ζ;
- X is minimal (satisfies lower bound in Hasse-Weil bound for number of points) over F_q for some r;
- Tate: End $(\operatorname{Jac}(X \times_{\mathbb{F}_q} k)) \otimes \mathbb{Q}_p \simeq M_g(D_p), D_p$ quat alg ram at p, ∞ ;
- Oort: Jac(X) is geometrically isogenous to a product of supersingular elliptic curves.

* maximal and minimal curves (supersingular) yield good error-correcting Goppa codes;

* abelian varieties with complex multiplication are often supersingular, useful in cryptography;

* good signature schemes built using supersingular curves;

* supersingular curves play a key role in geometric proofs about stratifications of \mathcal{A}_g by Newton polygon type (or EO type).

Example: Hermitian curves are supersingular

Let $q = p^n$. The Hermitian curve X_q has affine equation $y^q + y = x^{q+1}$.

It has genus g = q(q-1)/2.

It is maximal over \mathbb{F}_{q^2} because $\#X_q(\mathbb{F}_{q^2}) = q^3 + 1$.

Ruck/Stichtenoth: X_q is unique curve of genus g maximal over \mathbb{F}_{q^2} .

Hansen: X_q is the Deligne-Lusztig variety for $Aut(X_q) = PGU(3, q)$.

The *L*-polynomial of X_q is $L(X_q/\mathbb{F}_q, t) = (1 + qt^2)^g$.

The only slope of the Newton polygon of $L(X_q/\mathbb{F}_q, t)$ is 1/2.

Thus $Jac(X_q)$ is supersingular.

Which Newton polygons occur for Jacobians?

For all *p* and *g*, there exists:

a supersingular p.p. *abelian variety* of dimension g, namely E^g ; and a supersingular *singular* curve of genus g.

Open question:

Does there exist a supersingular smooth curve of genus g defined over a finite field of characteristic p, for every p and g?

More generally,

which Newton polygons occur for Jacobians of smooth curves?

For g = 1 both, g = 2 all three, g = 3 all five.

Let \mathcal{A}_g be the moduli space of p.p. abelian varieties of dimension g. The image of \mathcal{M}_g in \mathcal{A}_g is open and dense for $g \leq 3$.

20/32

Open question for g = 4:

For all p, does there exist a smooth curve of genus 4 which is supersingular? or whose NP has slopes 1/3, 1/2, 2/3?

*: don't know if this NP occurs for Jacobian of smooth curve for all p
*: this NP occurs but some components may have problems
*: each component has good geometric properties.

(Katz, Oort, Faber/Van der Geer, Pries, Achter-Pries)

Rachel Pries (CSU)

Do all NPs occur for Jacobians? Guess - unlikely?

Observation (Oort 2005) $\dim(\mathcal{A}_g) = g(g+1)/2$ and the dimension of the supersingular locus $\mathcal{A}_g[\sigma_g]$ is $\lfloor g^2/4 \rfloor$.

The difference δ_g is length of longest chain of NPs connecting the supersingular NP σ_g to the ordinary NP v_g .

If $g \ge 9$, then $\delta_g > 3g - 3 = \dim(\mathcal{M}_g)$.

Either (i) \mathcal{M}_g does not admit a perfect stratification by NP (i.e., there are two NPs ξ_1 and ξ_2 such that $\mathcal{A}_g[\xi_1]$ is in the closure of $\mathcal{A}_g[\xi_2]$ but $\mathcal{M}_g[\xi_1]$ is not in the closure of $\mathcal{M}_g[\xi_2]$.)

or (ii) some NPs do not occur for Jacobians of smooth curves.

Test case: g = 11 with NP $G_{5,6} \oplus G_{6,5}$ having slopes of 5/11, 6/11 (does occur when p = 2 - Blache).

イロン イ理 とく ヨン イヨン

Only non-existence results are for curves with automorphisms:

Bouw 2001: Not all *p*-ranks occur for cyclic degree d > 2 covers

Especially, not all NPs occur for wildly ramified covers:

Deuring-Shafarevich formula restricts *p*-rank. Oort: If p = 2, there does not exist a hyp. ss curve of genus 3. Scholten/Zhu: p = 2, $n \ge 2$, there is no hyp. ss curve with $g = 2^n - 1$. (for odd *p*, generalized for Artin-Schreier covers $X \xrightarrow{\mathbb{Z}/p} \mathbb{P}^1$ by Blache)

But....

Van der Geer & Van der Vlugt: If p = 2, then there exists a supersingular curve of every genus.

Step one of proof by VdG/VdV

Def: $R[x] \in k[x]$ is an additive polynomial if $R(x_1 + x_2) = R(x_1) + R(x_2)$. Then $R[x] = c_0 x + c_1 x^p + c_2 x^{p^2} + c_h x^{p^h}$.

Supersingular Artin-Schreier curves

If $R[x] \in k[x]$ is an additive polynomial of degree p^h , then $X: y^p - y = xR[x]$ is supersingular with genus $p^h(p-1)/2$.

Proof: Induction on *h*, starting with h = 0. Key fact: Jac(X) is isogenous to a product of Jacobians of Artin-Schreier curves for additive polynomials of smaller degree.

Remark: Bouw et al studied *L*-polynomials, automorphism groups of *X*. Remark: Blache studied first slope of NP of more general AS curves

(日)

Van der Geer and Van der Vlugt

If p = 2, then there exists a supersingular curve over $\overline{\mathbb{F}}_2$ of every genus.

Proof sketch: Expand *g* as (with $s_i \le s_{i-1} + r_{i-1} + 2$) $g = 2^{s_1}(1 + 2 + \dots + 2^{r_1}) + 2^{s_2}(1 + 2 + \dots + 2^{r_2}) + \dots + 2^{s_t}(1 + 2 + \dots + 2^{r_t})$.

Let $\mathbf{L} = \bigoplus_{i=1}^{t} L_i$ for L_i subspace of dim $d_i := r_i + 1$ in vector space of additive polynomials of deg 2^{u_i} , with $u_i = (s_i + 1) - \sum_{i=1}^{i-1} (r_i + 1)$.

If $f \in L$, let $C_f : y^p - y = xf$. Let Y be fiber product of $C_f \to \mathbb{P}^1$ for all $f \in L$. Then $J_Y \sim \bigoplus_{f \neq 0} J_{C_f}$ (thus supersingular). Also, $g_Y = \sum_{f \neq 0} g_{C_f}$.

The number of $f \in \mathbf{L}$ which have a non-zero contribution from L_i , but not from L_j for j > i, is $(2^{d_i} - 1)\prod_{j=1}^{i-1} 2^{d_j}$. Each adds 2^{u_i-1} to g. So $g_Y = \sum_{i=1}^t (2^{d_i} - 1)\prod_{j=1}^{i-1} 2^{d_j} 2^{u_i-1} = \sum_{i=1}^t 2^{s_i} (1 + \dots + 2^{r_i}) = g$.

Supersingular Artin-Schreier curves for odd *p*

Here is what VdG/VdV's method produces for odd *p*.

Karemaker/P

Let $g = Gp(p-1)^2/2$ where $G = \sum_{i=1}^{t} p^{s_i}(1+p+\cdots p^{r_i})$. Then there exists a supersingular curve over $\overline{\mathbb{F}}_p$ of genus g.

Can this be improved?

VdG/VdV also prove that there exists a supersingular curve defined over \mathbb{F}_2 of every genus. The construction is a little more complicated.

A B F A B F

If X is a smooth k-curve of genus g,

Fact/Def:

then $|J_X[p](k)| = p^f$ for some integer $0 \le f \le g$ called the *p*-rank of *X*.

Also, $f = \dim_{\mathbb{F}_p} \operatorname{Hom}(\mu_p, J_X[p])$ where $\mu_p \simeq \operatorname{Spec}(k[x]/(x^p - 1))$ is the kernel of Frobenius on \mathbb{G}_m .

Let L(t) be the *L*-polynomial of the zeta function of an \mathbb{F}_q -curve *X*.

The *p*-rank of X is the length of the slope 0 portion of NP(X).

X is supersingular if all slopes of NP(X) equal 1/2. X supersingular implies X has p-rank 0 but converse false for $g \ge 3$.

Existence of curves with given genus and *p*-rank

Let $g \in \mathbb{N}$, $0 \le f \le g$ and p prime.

The moduli space \mathcal{M}_g (resp. \mathcal{H}_g) of (hyperelliptic) curves of genus g can be stratified by p-rank into strata \mathcal{M}_g^f (resp. \mathcal{H}_g^f)

whose points represent (hyperelliptic) curves of genus g and p-rank f.

Theorem: Faber/Van der Geer

Every component of \mathcal{M}_g^f has dimension 2g - 3 + f; there exists a smooth curve over $\overline{\mathbb{F}}_p$ with genus g and p-rank f.

Theorem: Glass/P (*p* odd), P/Zhu (*p* even)

Every component of \mathcal{H}_{g}^{f} has dimension g - 1 + f; there exists a smooth hyp. curve over $\overline{\mathbb{F}}_{p}$ with genus g and p-rank f.

In most cases, it is not known whether \mathcal{M}_{q}^{f} and \mathcal{H}_{q}^{f} are irreducible.

Let A/k be a p.p. abelian variety of dimension g.

Fact: If A is supersingular, then A has p-rank 0.

If $g \in \{1,2\}$ and A has p-rank 0, then A is supersingular. If $g \ge 3$ and A has p-rank 0, then A usually not supersingular.

Example: Let $j \in \mathbb{N}$ with $p \nmid j$ and $h(x) \in k[x]$ of degree j. The curve $X : y^q + y = h(x)$ has genus g = (q-1)(j-1)/2. Deuring-Shafarevich formula: Jac(X) has p-rank 0.

Zhu: Let q = 2 and $j = 2^{n+1} - 1$, none of the 2-rank 0 curves $y^2 + y = h(x)$ are supersingular.

Oort: There exists a hyperelliptic curve of genus 3 with *p*-rank 0 which is not supersingular.

proof: study intersection of two codim 1 conditions in \mathcal{M}_3^0 .

Application - Achter/P. Let $g \ge 3$ and $p \ne 2$ for hyperelliptic

The generic point of any component of the *p*-rank 0 strata \mathcal{M}_g^0 and \mathcal{H}_g^0 is not supersingular.

 $A \Rightarrow B$ for curves: if $g \ge 3$, there exists a (hyperelliptic) curve of genus g with p-rank 0 which is not supersingular.

Newton polygon results for f = g - 3 and f = g - 4

For $g \ge 4$ and $g - 2 \le f \le g$, the *p*-rank determines the Newton polygon (and so that Newton polygon occurs, open and dense in \mathcal{M}_{q}^{f} .

Let
$$v_{g,f} = f(G_{0,1} + G_{1,0}) + (G_{1,g-f-1} + G_{g-f-1,1}).$$

Application - Achter/P. Let $g \ge 3$ and f = g - 3.

The generic point of each component of \mathcal{M}_{g}^{g-3} has Newton polygon $v_{g,g-3}$ (slopes $0, \frac{1}{3}, \frac{2}{3}, 1$).

Application - Achter/P. Let $g \ge 4$ and f = g - 4.

The generic point of *at least one* component of \mathcal{M}_{g}^{f} has Newton polygon $v_{g,g-4}$ (slopes $0, \frac{1}{4}, \frac{3}{4}, 1$).

Note: When g = 4, there is *at most one* component of \mathcal{M}_4^0 whose generic NP is not $v_{4,0}$. If so, the NP has slopes $\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$.

Proof: inductive strategy, reduce to p-rank f = 0

Let v_r be a NP type with *p*-rank 0 occurring in dimension *r*.

Let $c_r = \operatorname{codim}(\mathcal{A}_g[v_r], \mathcal{A}_g)$.

For $g \ge r$, let v_g be the NP type with *p*-rank g - r 'containing' v_r

 $(v_g = (G_{0,1} \oplus G_{1,0})^{g-r} \oplus v_r)$, add g - r slopes of 0, 1.

Proposition P

If there exists a component S_r of $\mathcal{M}_r[v_r]$ s.t. $\operatorname{codim}(S_r, \mathcal{M}_r) = c_r$,

then, for all $g \ge r$,

there exists a component S_g of $\mathcal{M}_g[v_g]$ s.t. $\operatorname{codim}(S_g, \mathcal{M}_g) = c_r$.