Open questions on Jacobians of curves over finite fields: supersingular curves

Rachel Pries

Colorado State University pries@math.colostate.edu

Effective methods for abelian varieties June 16-18, 2016

Open question on supersingular curves

Let p be a prime number. Let g be a natural number.

Open question:

Does there exist a supersingular curve of genus g defined over a finite field of characteristic p, for every p and g ?

Outline. What is:
(1) a supersingular elliptic curve;
(2) a supersingular curve of higher genus;
(3) known about this question already;
(4) the next step?

Complex elliptic curves and p-torsion

Let E be a complex elliptic curve.
$E \simeq \mathbb{C} / L$ for a lattice $L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$.
(Thus E is an abelian group).
Torsion points: $E[p](\mathbb{C})=\left\{Q \in E(\mathbb{C}) \mid p Q=0_{E}\right\}$.
Then $E[p](\mathbb{C}) \simeq \frac{1}{p} L / L \simeq(\mathbb{Z} / p)^{2}$.

If X is a complex curve of genus $g \geq 2$, its Jacobian J_{X} is a p.p. abelian variety of dimension g and $J_{X}[p](\mathbb{C}) \simeq(\mathbb{Z} / p)^{2 g}$.

Elliptic curves - algebraic version

Let $E: y^{2}=h(x)$ be an elliptic curve over $k=\overline{\mathbb{F}}_{p}$ where $h(x)=x^{3}+a x^{2}+b x+c=\prod_{i=1}^{3}\left(x-\lambda_{i}\right)$.

Algebraic group law on E :

The ℓ-torsion of E is $\operatorname{Ker}[\ell]$ where $[\ell]: E \rightarrow E$ is mult.by- ℓ.
$E[\ell](k):=\left\{Q \in E(k) \mid \ell Q=0_{E}\right\} \simeq(\mathbb{Z} / \ell)^{2}$ if $p \nmid \ell$.

Torsion points - example

Let $E: y^{2}=x^{3}+a x^{2}+b x+c$ and $\ell=3$.
A point Q has order 3 iff $2 Q=-Q$ iff $x(2 Q)=x(Q)$.
This occurs iff $x(Q)$ is a root of the 3-division polynomial.
P. $\langle a, b, c\rangle=$ PolynomialRing $(Z Z, 3)$
$E=$ EllipticCurve $(P,[0, a, 0, b, c])$
$d_{3}=$ E.division_polynomial $(3, x=$ None $)$
$3 * x^{4}+4 * a * x^{3}+6 * b * x^{2}+12 * c * x-b^{2}+4 * a * c$
If $p \neq 3$, then $d_{3}(x)$ has 4 distinct roots so E has 8 points of order 3 and $|E[3](k)|=9$.

Collapsing torsion points - example

What if $p=3$?
$d_{3}=3 * x^{4}+4 * a * x^{3}+6 * b * x^{2}+12 * c * x-b^{2}+4 * a * c$.

Collapsing torsion points - example

What if $p=3$?
$d_{3}=3 * x^{4}+4 * a * x^{3}+6 * b * x^{2}+12 * c * x-b^{2}+4 * a * c$.
P3. $\langle a, b, c\rangle=$ PolynomialRing(GF(3),3)
$r_{3}=d_{3} . c h a n g e _r i n g(P 3)$
$+a * x^{3}-b^{2}+a * c$
Mod p binomial thm: $\ln k[x],(x+\alpha)^{p}=x^{p}+\alpha^{p}$.
So $r_{3}=a * x^{3}-b^{2}+a * c$ has

$$
\begin{cases}\text { one (triple) root } & a \neq 0 \bmod 3 \\ \text { no roots } & a \equiv 0 \bmod 3\end{cases}
$$

So $|E[3](k)|$ divides 3 when $p=3$.

Ordinary and supersingular elliptic curves

p	r_{p} reduction of p-division polynomial of $y^{2}=x^{3}+b x+c$
5	$+2 * b * x^{10}-b^{2} * c * x^{5}+b^{6}-2 * b^{3} * c^{2}-c^{4}$
7	$+3 * c * x^{21}+3 * b^{2} * c^{2} * x^{14}+\left(-b^{7} * c-2 * b^{4} * c^{3}+3 * b * c^{5}\right) * x^{7}$
	$-b^{12}-b^{9} * c^{2}+3 * b^{6} * c^{4}-b^{3} * c^{6}+2 * c^{8}$

Then r_{p} has at most $(p-1) / 2$ roots. The p-torsion points on $E: y^{2}=f(x)$ collapse to either p points or 1 point modulo p.

Def:

$$
E \text { is } \begin{cases}\text { ordinary } & \text { if }|E[p](k)|=p \\ \text { supersingular } & \text { if }|E[p](k)|=1\end{cases}
$$

Supersingularity and slopes

If E / \mathbb{F}_{q} is elliptic curve, then $\# E\left(\mathbb{F}_{q}\right)=q+1-a$. The zeta function of E is $Z(t)=\left(1-a t+q t^{2}\right) /(1-t)(1-q t)$.

Fact: $p \mid a$ iff E supersingular.
E supersingular, Newton polygon of $1-a t+q t^{2}$ has slopes $1 / 2$.

E ordinary, then Newton polygon has slopes 0 and 1.

called $G_{0,1} \oplus G_{1,0}$.

Sage - computing supersingularity

$E=$ EllipticCurve (GF(5), $[0,1,0,2,0])$
Elliptic Curve defined by $y^{2}=x^{3}+x^{2}+2 * x$ over Finite Field of size 5
E.is_supersingular()

True
E.hasse_invariant()

0
E.trace_of_frobenius()

0
$F=E$.frobenius()
C = F.absolute_charpoly()
$x^{2}+5$
C. newton_slopes(5)
[1/2,1/2]

Examples of supersingular elliptic curves

For all p, there exists a supersingular elliptic curve $E / \mathbb{F}_{p^{2}}$ (Igusa).
The number of isomorphism classes of ss elliptic curves is $\left\lfloor\frac{p}{12}\right\rfloor+\varepsilon$.
$p=2: y^{2}+y=x^{3}$ (unique)
$p \equiv 3 \bmod 4: y^{2}=x^{3}-x$
$p \equiv 2 \bmod 3: y^{2}=x^{3}+1$
p odd: $y^{2}=h(x)$, where $h(x)$ cubic with distinct roots, is supersingular iff the coefficient c_{p-1} of x^{p-1} in $h(x)^{(p-1) / 2}$ is zero.

This coefficient vanishes iff Cartier operator trivializes $\frac{d x}{y} \in H^{0}\left(E, \Omega^{1}\right)$.

$$
\left.C\left(\frac{d x}{y}\right)=C\left(\frac{y^{p-1} d x}{y^{p}}\right)=\frac{1}{y} C\left(h(x)^{(p-1) / 2}\right) d x\right)=\frac{c_{p-1}^{1 / p} d x}{y}
$$

$y^{2}=x(x-1)(x-\lambda)$ is supersingular for $\frac{p-1}{2}$ choices of $\lambda \in \overline{\mathbb{F}}_{p_{\bar{\Sigma}}}$ (Igusa).

Review: supersingular elliptic curves

Let E be a smooth elliptic curve over $k=\bar{k}$, with $\operatorname{char}(k)=p$.
Let $E[p]$ be the kernel of the inseparable multiplication-by- p morphism.
E is supersingular if it satisfies the following equivalent conditions:
A. The only p-torsion point is the identity: $E[p](k)=\{\mathrm{id}\}$.
B. The Newton polygon of E is a line segment of slope $\frac{1}{2}$.

C. The Cartier operator annihilates $H^{0}\left(E, \Omega^{1}\right)$.
D. $\operatorname{End}(E)$ non-commutative (order in quat. algebra)

Introduction: different properties when $g>1$

Let A be a p.p. abelian variety of dimension g over $k=\bar{k}, \operatorname{char}(k)=p$.
Let $A[p]$ be the kernel of the inseparable multiplication-by- p morphism.
The following conditions are all different for $g \geq 3$.
A. p-rank 0 - The only p-torsion point is the identity: $A[p](k)=\{\mathrm{id}\}$.
B. supersingular - The Newton polygon of A is a line of slope $\frac{1}{2}$.
C. superspecial - The Cartier operator annihilates $H^{0}\left(X, \Omega^{1}\right)$.

Then $C \Rightarrow B \Rightarrow A$ but $A \stackrel{g \geq 3}{\nRightarrow} B \stackrel{g \geq 2}{\Rightarrow} C$
Question: if $g \geq 2$, do these occur for Jacobian of smooth k-curve?

Curves of higher genus

Let $k=\overline{\mathbb{F}}_{p}$ (an algebraically closed field of char. p).
Let X be a (smooth projective connected) curve over k.
Recall: everything you learned about Riemann surfaces (\mathbb{C}-curves).
Analogous structures: e.g., functions, differentials, Jacobians.
More complicated definitions: e.g., genus is $g=\operatorname{dim}\left(H^{0}\left(X, \Omega_{1}\right)\right)$ rather than 'the number of holes'.

Guideline:

Most facts not involving the number p are still true.
Most facts involving the number p are now false.

Jacobians

Suppose X is a curve. The genus is $g=\operatorname{dim}\left(H^{0}\left(X, \Omega_{1}\right)\right)$.
If $g \geq 2$, there is no natural group law on the points of X.
(Recall, define group structure on points of a complex curve by integrating holomorphic differentials and taking quotient by lattice of periods: $J_{X}=\Omega^{1}(X)^{*} / H^{1}(X, \mathbb{Z}) \simeq \mathbb{C}^{g} / \mathbb{L}$. Its p-torsion points satisfy $\left.J_{X}[p](\mathbb{C}) \simeq(\mathbb{Z} / p)^{2 g}.\right)$

Now Jacobian J_{X} of X is $\operatorname{Pic}^{0}(X)$ (line bundles of deg 0) or $\operatorname{Div}^{0}(X) / \operatorname{PDiv}(X)$ (divisors of deg 0 mod principal divisors).

Then J_{X} is a principally polarized abelian variety of dimension g.

B. Definition of Newton polygon

Let X be a smooth projective curve defined over \mathbb{F}_{q}, with $q=p^{\text {a }}$.
Zeta function of X is $Z\left(X / \mathbb{F}_{q}, t\right)=L\left(X / \mathbb{F}_{q}, t\right) /(1-t)(1-q t)$
where $L\left(X / \mathbb{F}_{q}, t\right)=\prod_{i=1}^{2 g}\left(1-w_{i} t\right) \in \mathbb{Z}[t]$ and $\left|w_{i}\right|=\sqrt{q}$.
The Newton polygon of X is the NP of the L-polynomial $L(t)$.
Find p-adic valuation v_{i} of coefficient of t^{i} in $L(t)$.
Draw lower convex hull of $\left(i, v_{i} / a\right)$ where $q=p^{a}$.
Facts: The NP goes from $(0,0)$ to $(2 g, g)$.
NP line segments break at points with integer coefficients; If slope λ occurs with length m_{λ}, so does slope $1-\lambda$.

Definition

X / \mathbb{F}_{q} is supersingular if the Newton polygon of $L\left(X / \mathbb{F}_{q}, t\right)$ is a line segment of slope $1 / 2$.

B. Definition of Newton polygon

Let A be a p.p. abelian variety of dimension g over k.
Manin: for c, d relatively prime s.t. $\lambda=\frac{c}{d} \in \mathbb{Q} \cap[0,1]$, define a p-divisible group $G_{c, d}$ of dimension c and height d.

The Dieudonné module D_{λ} for $G_{c, d}$ is a $W(k)$-module. Over $\operatorname{Frac}(W(k))$, there is a basis x_{1}, \ldots, x_{d} for D_{λ} s.t. $F^{d} x_{i}=p^{c} x_{i}$.

There is an isogeny of p-divisible groups $A\left[p^{\infty}\right] \sim \oplus_{\lambda} G_{c, d}^{m_{\lambda}}$.
Newton polygon: lower convex hull - line segments slope λ, length m_{λ}.
Definition: A supersingular iff $\lambda=\frac{1}{2}$ is the only slope.
There is a partial ordering on NPs; the supersingular NP is 'smallest'.

The supersingular property

Let X be a smooth projective curve defined over \mathbb{F}_{q}, with $q=p^{a}$. The following are equivalent:
(1) X is supersingular;
(2) the Newton polygon of $L\left(X / \mathbb{F}_{q}, T\right)$ is a line segment of slope $1 / 2$;
(each eigenvalue of the relative Frobenius morphism equals $\zeta \sqrt{q}$ for some root of unity ζ;
(1) X is minimal (satisfies lower bound in Hasse-Weil bound for number of points) over $\mathbb{F}_{q^{r}}$ for some r;
(0 Tate: $\operatorname{End}\left(\operatorname{Jac}\left(X \times_{\mathbb{F}_{q}} k\right)\right) \otimes \mathbb{Q}_{p} \simeq M_{g}\left(D_{p}\right), D_{p}$ quat alg ram at p, ∞;
(0) $\operatorname{Oort:~} \operatorname{Jac}(X)$ is geometrically isogenous to a product of supersingular elliptic curves.

Motivation for studying supersingular curves

* maximal and minimal curves (supersingular) yield good error-correcting Goppa codes;
* abelian varieties with complex multiplication are often supersingular, useful in cryptography;
* good signature schemes built using supersingular curves;
* supersingular curves play a key role in geometric proofs about stratifications of \mathcal{A}_{g} by Newton polygon type (or EO type).

Example: Hermitian curves are supersingular

Let $q=p^{n}$. The Hermitian curve X_{q} has affine equation $y^{q}+y=x^{q+1}$. It has genus $g=q(q-1) / 2$.

It is maximal over $\mathbb{F}_{q^{2}}$ because $\# X_{q}\left(\mathbb{F}_{q^{2}}\right)=q^{3}+1$.
Ruck/Stichtenoth: X_{q} is unique curve of genus g maximal over $\mathbb{F}_{q^{2}}$.
Hansen: X_{q} is the Deligne-Lusztig variety for $\operatorname{Aut}\left(X_{q}\right)=\operatorname{PGU}(3, q)$.
The L-polynomial of X_{q} is $L\left(X_{q} / \mathbb{F}_{q}, t\right)=\left(1+q t^{2}\right)^{g}$.
The only slope of the Newton polygon of $L\left(X_{q} / \mathbb{F}_{q}, t\right)$ is $1 / 2$.
Thus $\operatorname{Jac}\left(X_{q}\right)$ is supersingular.

Which Newton polygons occur for Jacobians?

For all p and g, there exists:
a supersingular p.p. abelian variety of dimension g, namely E^{g}; and a supersingular singular curve of genus g.

Open question:

Does there exist a supersingular smooth curve of genus g defined over a finite field of characteristic p, for every p and g ?

More generally, which Newton polygons occur for Jacobians of smooth curves?

For $g=1$ both, $g=2$ all three, $g=3$ all five.
Let \mathcal{A}_{g} be the moduli space of p.p. abelian varieties of dimension g.
The image of \mathcal{M}_{g} in \mathcal{A}_{g} is open and dense for $g \leq 3$.

Open question for $g=4$:

For all p, does there exist a smooth curve of genus 4 which is supersingular? or whose NP has slopes $1 / 3,1 / 2,2 / 3$?

*: don't know if this NP occurs for Jacobian of smooth curve for all p
*: this NP occurs but some components may have problems
*: each component has good geometric properties.
(Katz, Oort, Faber/Van der Geer, Pries, Achter-Pries)

Do all NPs occur for Jacobians? Guess - unlikely?

Observation (Oort 2005) $\operatorname{dim}\left(\mathcal{A}_{g}\right)=g(g+1) / 2$ and the dimension of the supersingular locus $\mathcal{A}_{g}\left[\sigma_{g}\right]$ is $\left\lfloor g^{2} / 4\right\rfloor$.

The difference δ_{g} is length of longest chain of NPs connecting the supersingular NP σ_{g} to the ordinary NP v_{g}.

If $g \geq 9$, then $\delta_{g}>3 g-3=\operatorname{dim}\left(\mathcal{M}_{g}\right)$.
Either (i) \mathcal{M}_{g} does not admit a perfect stratification by NP (i.e., there are two NPs ξ_{1} and ξ_{2} such that $\mathcal{A}_{g}\left[\xi_{1}\right]$ is in the closure of $\mathcal{A}_{g}\left[\xi_{2}\right]$ but $\mathscr{M}_{g}\left[\xi_{1}\right]$ is not in the closure of $\mathscr{M}_{g}\left[\xi_{2}\right]$.)
or (ii) some NPs do not occur for Jacobians of smooth curves.
Test case: $g=11$ with NP $G_{5,6} \oplus G_{6,5}$ having slopes of $5 / 11,6 / 11$ (does occur when $p=2$ - Blache).

Do all NPs occur for Jacobians? Evidence?

Only non-existence results are for curves with automorphisms:
Bouw 2001: Not all p-ranks occur for cyclic degree $d>2$ covers
Especially, not all NPs occur for wildly ramified covers:
Deuring-Shafarevich formula restricts p-rank.
Oort: If $p=2$, there does not exist a hyp. ss curve of genus 3 .
Scholten/Zhu: $p=2, n \geq 2$, there is no hyp. ss curve with $g=2^{n}-1$. (for odd p, generalized for Artin-Schreier covers $X \xrightarrow{\mathbb{Z} / p} \mathbb{P}^{1}$ by Blache)

But.....
Van der Geer \& Van der Vlugt: If $p=2$, then there exists a supersingular curve of every genus.

Step one of proof by VdG/VdV

Def: $R[x] \in k[x]$ is an additive polynomial if $R\left(x_{1}+x_{2}\right)=R\left(x_{1}\right)+R\left(x_{2}\right)$. Then $R[x]=c_{0} x+c_{1} x^{p}+c_{2} x^{p^{2}}+c_{h} x^{p^{h}}$.

Supersingular Artin-Schreier curves

If $R[x] \in k[x]$ is an additive polynomial of degree p^{h}, then $X: y^{p}-y=x R[x]$ is supersingular with genus $p^{h}(p-1) / 2$.

Proof: Induction on h, starting with $h=0$.
Key fact: $\operatorname{Jac}(X)$ is isogenous to a product of Jacobians of Artin-Schreier curves for additive polynomials of smaller degree.

Remark: Bouw et al studied L-polynomials, automorphism groups of X. Remark: Blache studied first slope of NP of more general AS curves

Existence of supersingular curves when $p=2$

Van der Geer and Van der Vlugt

If $p=2$, then there exists a supersingular curve over $\overline{\mathbb{F}}_{2}$ of every genus.
Proof sketch: Expand g as (with $s_{i} \leq s_{i-1}+r_{i-1}+2$) $g=2^{s_{1}}\left(1+2+\cdots+2^{r_{1}}\right)+2^{s_{2}}\left(1+2+\cdots 2^{r_{2}}\right)+\cdots+2^{s_{t}}\left(1+2+\cdots+2^{r_{t}}\right)$.

Let $\mathbf{L}=\oplus_{i=1}^{t} L_{i}$ for L_{i} subspace of $\operatorname{dim} d_{i}:=r_{i}+1$ in vector space of additive polynomials of deg $2^{u_{i}}$, with $u_{i}=\left(s_{i}+1\right)-\sum_{j=1}^{i-1}\left(r_{j}+1\right)$.

If $f \in \mathbf{L}$, let $C_{f}: y^{p}-y=x f$. Let Y be fiber product of $C_{f} \rightarrow \mathbb{P}^{1}$ for all $f \in \mathbf{L}$. Then $J_{Y} \sim \oplus_{f \neq 0} J_{C_{f}}$ (thus supersingular). Also, $g_{Y}=\sum_{f \neq 0} g_{C_{f}}$.

The number of $f \in \mathbf{L}$ which have a non-zero contribution from L_{i}, but not from L_{j} for $j>i$, is $\left(2^{d_{i}}-1\right) \prod_{j=1}^{i-1} 2^{d_{j}}$. Each adds $2^{u_{i}-1}$ to g. So $g_{Y}=\sum_{i=1}^{t}\left(2^{d_{i}}-1\right) \prod_{j=1}^{i-1} 2^{d_{j}} 2^{u_{i}-1}=\sum_{i=1}^{t} 2^{s_{i}}\left(1+\cdots+2^{r_{i}}\right)=g$.

Supersingular Artin-Schreier curves for odd p

Here is what VdG/VdV's method produces for odd p.

Karemaker/P

Let $g=G p(p-1)^{2} / 2$ where $G=\sum_{i=1}^{t} p^{s_{i}}\left(1+p+\cdots p^{r_{i}}\right)$. Then there exists a supersingular curve over $\overline{\mathbb{F}}_{p}$ of genus g.

Can this be improved?
VdG/VdV also prove that there exists a supersingular curve defined over \mathbb{F}_{2} of every genus. The construction is a little more complicated.

Related question: the p-rank of X

If X is a smooth k-curve of genus g,

Fact/Def:

then $\left|J_{X}[p](k)\right|=p^{f}$ for some integer $0 \leq f \leq g$ called the p-rank of X.
Also, $f=\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{Hom}\left(\mu_{p}, J_{x}[p]\right)$ where
$\mu_{p} \simeq \operatorname{Spec}\left(k[x] /\left(x^{p}-1\right)\right)$ is the kernel of Frobenius on \mathbb{G}_{m}.
Let $L(t)$ be the L-polynomial of the zeta function of an \mathbb{F}_{q}-curve X.
The p-rank of X is the length of the slope 0 portion of $\mathrm{NP}(X)$.
X is supersingular if all slopes of $\mathrm{NP}(X)$ equal $1 / 2$.
X supersingular implies X has p-rank 0 but converse false for $g \geq 3$.

Existence of curves with given genus and p-rank

Let $g \in \mathbb{N}, 0 \leq f \leq g$ and p prime.
The moduli space \mathcal{M}_{g} (resp. \mathcal{H}_{g}) of (hyperelliptic) curves of genus g can be stratified by p-rank into strata \mathscr{M}_{g}^{f} (resp. \mathscr{H}_{g}^{f}) whose points represent (hyperelliptic) curves of genus g and p-rank f.

Theorem: Faber/Van der Geer

Every component of \mathscr{M}_{g}^{f} has dimension $2 g-3+f$; there exists a smooth curve over $\overline{\mathbb{F}}_{p}$ with genus g and p-rank f.

Theorem: Glass/P (p odd), P/Zhu (p even)
Every component of \mathscr{H}_{g}^{f} has dimension $g-1+f$; there exists a smooth hyp. curve over $\overline{\mathbb{F}}_{p}$ with genus g and p-rank f.

In most cases, it is not known whether \mathcal{M}_{g}^{f} and \mathcal{H}_{g}^{f} are irreducible.

Supersingular versus p-rank 0

Let A / k be a p.p. abelian variety of dimension g.
Fact: If A is supersingular, then A has p-rank 0 .
If $g \in\{1,2\}$ and A has p-rank 0 , then A is supersingular.
If $g \geq 3$ and A has p-rank 0 , then A usually not supersingular.
Example: Let $j \in \mathbb{N}$ with $p \nmid j$ and $h(x) \in k[x]$ of degree j. The curve $X: y^{q}+y=h(x)$ has genus $g=(q-1)(j-1) / 2$. Deuring-Shafarevich formula: $\operatorname{Jac}(X)$ has p-rank 0.

Zhu: Let $q=2$ and $j=2^{n+1}-1$, none of the 2 -rank 0 curves $y^{2}+y=h(x)$ are supersingular.

Moduli of curves: supersingular versus p-rank 0

Oort: There exists a hyperelliptic curve of genus 3 with p-rank 0 which is not supersingular.
proof: study intersection of two codim 1 conditions in \mathscr{M}_{3}^{0}.

Application - Achter/P. Let $g \geq 3$ and $p \neq 2$ for hyperelliptic

The generic point of any component of the p-rank 0 strata \mathscr{M}_{g}^{0} and \mathcal{H}_{g}^{0} is not supersingular.
$A \nRightarrow B$ for curves:
if $g \geq 3$, there exists a (hyperelliptic) curve of genus g with p-rank 0 which is not supersingular.

Newton polygon results for $f=g-3$ and $f=g-4$

For $g \geq 4$ and $g-2 \leq f \leq g$, the p-rank determines the Newton polygon (and so that Newton polygon occurs, open and dense in \mathcal{M}_{g}^{f}.

Let $v_{g, f}=f\left(G_{0,1}+G_{1,0}\right)+\left(G_{1, g-f-1}+G_{g-f-1,1}\right)$.

Application - Achter/P. Let $g \geq 3$ and $f=g-3$.

The generic point of each component of \mathcal{M}_{g}^{g-3} has Newton polygon $v_{g, g-3}$ (slopes $0, \frac{1}{3}, \frac{2}{3}, 1$).

Application - Achter/P. Let $g \geq 4$ and $f=g-4$.

The generic point of at least one component of \mathcal{M}_{g}^{f} has Newton polygon $v_{g, g-4}$ (slopes $0, \frac{1}{4}, \frac{3}{4}, 1$).

Note: When $g=4$, there is at most one component of \mathcal{M}_{4}^{0} whose generic NP is not $v_{4,0}$. If so, the NP has slopes $\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$.

Proof: inductive strategy, reduce to p-rank $f=0$

Let v_{r} be a NP type with p-rank 0 occurring in dimension r.
Let $c_{r}=\operatorname{codim}\left(\mathcal{A}_{g}\left[v_{r}\right], \mathcal{A}_{g}\right)$.
For $g \geq r$, let v_{g} be the NP type with p-rank $g-r$ 'containing' v_{r} $\left(v_{g}=\left(G_{0,1} \oplus G_{1,0}\right)^{g-r} \oplus v_{r}\right)$, add $g-r$ slopes of $0,1$.

Proposition P

If there exists a component S_{r} of $\mathcal{M}_{r}\left[v_{r}\right]$ s.t. $\operatorname{codim}\left(S_{r}, \mathcal{M}_{r}\right)=c_{r}$, then, for all $g \geq r$, there exists a component S_{g} of $\mathcal{M}_{g}\left[v_{g}\right]$ s.t. $\operatorname{codim}\left(S_{g}, \mathcal{M}_{g}\right)=c_{r}$.

