Enriching Bézout's Theorem

Stephen McKean (Georgia Tech)
June $12^{\text {th }}, 2019$
PIMS Workshop on Arithmetic Topology

Enriching Bézout's Theorem

Enriching Bézout's Theorem

Enriching Bézout's Theorem

"It was my lot to plant the harpoon of algebraic topology into the body of the whale of algebraic geometry."

- Lefschetz, 1924.

Bézout's Theorem

Theorem

Let k be an algebraically closed field. If $f, g \subset \mathbb{P}_{k}^{2}$ are generic algebraic curves of degree c, d, respectively, then

$$
\sum_{p \in f \cap g} i_{p}(f, g)=c d
$$

Bézout's Theorem

Theorem

Let k be an algebraically closed field. If $f, g \subset \mathbb{P}_{k}^{2}$ are generic algebraic curves of degree c, d, respectively, then

$$
\sum_{p \in f \cap g} i_{p}(f, g)=c d
$$

What if k is not algebraically closed?

Bézout's Theorem

What if k is not algebraically closed?

Bézout's Theorem

What if k is not algebraically closed?

$$
k=\mathbb{R}, \quad f=y-x^{3}, \quad g=y^{2}+x^{2}-1 .
$$

Bézout's Theorem

What if k is not algebraically closed?

$$
k=\mathbb{R}, \quad f=y-x^{3}, \quad g=y^{2}+x^{2}-1
$$

\mathbb{A}^{1}-Enumerative Geometry

\mathbb{A}^{1}-Enumerative Geometry

$\mathrm{GW}(k)$ gives us richer counts than \mathbb{Z} :

\mathbb{A}^{1}-Enumerative Geometry

$\mathrm{GW}(k)$ gives us richer counts than \mathbb{Z} :

$$
\mathrm{GW}(\mathbb{C}) \xrightarrow{\text { rank }} \mathbb{Z}
$$

\mathbb{A}^{1}-Enumerative Geometry

$\mathrm{GW}(k)$ gives us richer counts than \mathbb{Z} :

$$
\begin{aligned}
& \mathrm{GW}(\mathbb{C}) \xrightarrow{\text { rank }} \mathbb{Z} \\
& \mathrm{GW}(\mathbb{R}) \xrightarrow{\text { rank } \times \text { sign }} \mathbb{Z} \times \mathbb{Z}
\end{aligned}
$$

\mathbb{A}^{1}-Enumerative Geometry

$\mathrm{GW}(k)$ gives us richer counts than \mathbb{Z} :

$$
\begin{aligned}
& \mathrm{GW}(\mathbb{C}) \xrightarrow{\text { rank }} \mathbb{Z} \\
& \mathrm{GW}(\mathbb{R}) \xrightarrow{\text { rank } \times \text { sign }} \mathbb{Z} \times \mathbb{Z} \\
& \mathrm{GW}\left(\mathbb{F}_{q}\right) \xrightarrow{\text { rank } \times \text { disc }} \mathbb{Z} \times \mathbb{F}_{q}^{\times} /\left(\mathbb{F}_{q}^{\times}\right)^{2}
\end{aligned}
$$

\mathbb{A}^{1}-Enumerative Geometry

$\mathrm{GW}(k)$ gives us richer counts than \mathbb{Z} :

$$
\begin{aligned}
& \mathrm{GW}(\mathbb{C}) \xrightarrow{\text { rank }} \mathbb{Z} \\
& \mathrm{GW}(\mathbb{R}) \xrightarrow{\text { rank } \times \text { sign }} \mathbb{Z} \times \mathbb{Z} \\
& \mathrm{GW}\left(\mathbb{F}_{q}\right) \xrightarrow{\text { rank×disc }} \mathbb{Z} \times \mathbb{F}_{q}^{\times} /\left(\mathbb{F}_{q}^{\times}\right)^{2}
\end{aligned}
$$

If k is not algebraically closed, we get extra information.

\mathbb{A}^{1}-Enumerative Geometry

$\mathrm{GW}(k)$ gives us richer counts than \mathbb{Z} :

$$
\begin{aligned}
& \mathrm{GW}(\mathbb{C}) \xrightarrow{\text { rank }} \mathbb{Z} \\
& \mathrm{GW}(\mathbb{R}) \xrightarrow{\text { rank } \times \text { sign }} \mathbb{Z} \times \mathbb{Z} \\
& \mathrm{GW}\left(\mathbb{F}_{q}\right) \xrightarrow{\text { rank×disc }} \mathbb{Z} \times \mathbb{F}_{q}^{\times} /\left(\mathbb{F}_{q}^{\times}\right)^{2}
\end{aligned}
$$

If k is not algebraically closed, we get extra information.
\mathbb{A}^{1}-enumerative geometry: extra information has geometric meaning.

Enriched Bézout's Theorem

Enriched Bézout's Theorem

Look at sections $\sigma=(f, g)$ of $\mathcal{O}(c) \oplus \mathcal{O}(d)$.

Enriched Bézout's Theorem

Look at sections $\sigma=(f, g)$ of $\mathcal{O}(c) \oplus \mathcal{O}(d)$.
Theorem (M.)
Let k be a perfect field and f, g curves of degrees c, d with $f \cap g$ isolated.

Enriched Bézout's Theorem

Look at sections $\sigma=(f, g)$ of $\mathcal{O}(c) \oplus \mathcal{O}(d)$.
Theorem (M.)
Let k be a perfect field and f, g curves of degrees c, d with $f \cap g$ isolated. If $c+d$ is odd, then

$$
\sum_{p \in f \cap g} \operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)=\frac{c d}{2} \cdot \mathbb{H}
$$

Enriched Bézout's Theorem

Look at sections $\sigma=(f, g)$ of $\mathcal{O}(c) \oplus \mathcal{O}(d)$.

Theorem (M.)

Let k be a perfect field and f, g curves of degrees c, d with $f \cap g$ isolated. If $c+d$ is odd, then

$$
\begin{gathered}
\sum_{p \in f \cap g} \operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)=\frac{c d}{2} \cdot \mathbb{H} . \\
\operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)= \begin{cases}\operatorname{Tr}_{k(p) / k}\left(\frac{i_{p}}{2} \cdot \mathbb{H}\right) & i_{p} \text { even, } \\
\operatorname{Tr}_{k(p) / k}\left(\left\langle a_{p}\right\rangle+\frac{i_{p}-1}{2} \cdot \mathbb{H}\right) & i_{p} \text { odd. }\end{cases}
\end{gathered}
$$

Enriched Bézout's Theorem

Look at sections $\sigma=(f, g)$ of $\mathcal{O}(c) \oplus \mathcal{O}(d)$.

Theorem (M.)

Let k be a perfect field and f, g curves of degrees c, d with $f \cap g$ isolated. If $c+d$ is odd, then

$$
\begin{gathered}
\sum_{p \in f \cap g} \operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)=\frac{c d}{2} \cdot \mathbb{H} . \\
\operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)= \begin{cases}\operatorname{Tr}_{k(p) / k}\left(\frac{i_{p}}{2} \cdot \mathbb{H}\right) & i_{p} \text { even, } \\
\operatorname{Tr}_{k(p) / k}\left(\left\langle a_{p}\right\rangle+\frac{i_{p}-1}{2} \cdot \mathbb{H}\right) & i_{p} \text { odd. }\end{cases}
\end{gathered}
$$

$\operatorname{deg}_{p}^{\mathrm{A}^{1}}(f, g)$ is determined by geometric information.

Enriched Bézout's Theorem

$\operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)$ is determined by geometric information:

Enriched Bézout's Theorem

$\operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)$ is determined by geometric information:

$$
\begin{array}{lll}
\hline k & \operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g) & \frac{c d}{2} \cdot \mathbb{H} \\
\hline
\end{array}
$$

Enriched Bézout's Theorem

$\operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)$ is determined by geometric information:

k	$\operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)$	$\frac{c d}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_{p}(f, g)$	$c d$

Enriched Bézout's Theorem

$\operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)$ is determined by geometric information:

k	$\operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)$	$\frac{c d}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_{p}(f, g)$	$c d$
\mathbb{R}	crossing sign at p	0

Enriched Bézout's Theorem

$\operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)$ is determined by geometric information:

k	$\operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)$	$\frac{c d}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_{p}(f, g)$	$c d$
\mathbb{R}	crossing sign at p	0
\mathbb{F}_{q}	crossing sign at p	$(-1)^{\frac{c d}{2}}$

Enriched Bézout's Theorem

$\operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)$ is determined by geometric information:

k	$\operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)$	$\frac{c d}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_{p}(f, g)$	$c d$
\mathbb{R}	crossing sign at p	0
\mathbb{F}_{q}	crossing sign at p	$(-1)^{\frac{c d}{2}}$

- Over \mathbb{C} : counts intersection points.

Enriched Bézout's Theorem

$\operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)$ is determined by geometric information:

k	$\operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)$	$\frac{c d}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_{p}(f, g)$	$c d$
\mathbb{R}	crossing sign at p	0
\mathbb{F}_{q}	crossing sign at p	$(-1)^{\frac{c d}{2}}$

- Over \mathbb{C} : counts intersection points.
- Over \mathbb{R} : equal number of positive/negative crossings.

Enriched Bézout's Theorem

$\operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)$ is determined by geometric information:

k	$\operatorname{deg}_{p}^{\mathbb{A}^{1}}(f, g)$	$\frac{c d}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_{p}(f, g)$	$c d$
\mathbb{R}	crossing sign at p	0
\mathbb{F}_{q}	crossing sign at p	$(-1)^{\frac{c d}{2}}$

- Over \mathbb{C} : counts intersection points.
- Over \mathbb{R} : equal number of positive/negative crossings.
- Over \mathbb{F}_{q} : counts crossing types mod 2 .

Example

$$
k=\mathbb{R}, \quad f=y-x^{3}, \quad g=y^{2}+x^{2}-1 .
$$

Example

$$
k=\mathbb{R}, \quad f=y-x^{3}, \quad g=y^{2}+x^{2}-1 .
$$

Example

$$
k=\mathbb{R}, \quad f=y-x^{3}, \quad g=y^{2}+x^{2}-1 .
$$

Relative Orientability

Why $c+d$ odd?

Relative Orientability

Why $c+d$ odd?
Approach uses motivic Euler class of $\mathcal{O}(c) \oplus \mathcal{O}(d) \rightarrow \mathbb{P}^{2}$.

Relative Orientability

Why $c+d$ odd?
Approach uses motivic Euler class of $\mathcal{O}(c) \oplus \mathcal{O}(d) \rightarrow \mathbb{P}^{2}$.

- Only well-defined if $c+d$ odd.

Relative Orientability

Why $c+d$ odd?

Approach uses motivic Euler class of $\mathcal{O}(c) \oplus \mathcal{O}(d) \rightarrow \mathbb{P}^{2}$.

- Only well-defined if $c+d$ odd.
- Potential fix (Larson-Vogt): pick a divisor.

Relative Orientability

Why $c+d$ odd?

Approach uses motivic Euler class of $\mathcal{O}(c) \oplus \mathcal{O}(d) \rightarrow \mathbb{P}^{2}$.

- Only well-defined if $c+d$ odd.
- Potential fix (Larson-Vogt): pick a divisor.
- If c, d even and $\left.\{f \cap g\}\right|_{\left\{x_{0}=0\right\}}=\emptyset$, Enriched Bézout still works.

Relative Orientability

Why $c+d$ odd?

Approach uses motivic Euler class of $\mathcal{O}(c) \oplus \mathcal{O}(d) \rightarrow \mathbb{P}^{2}$.

- Only well-defined if $c+d$ odd.
- Potential fix (Larson-Vogt): pick a divisor.
- If c, d even and $\left.\{f \cap g\}\right|_{\left\{x_{0}=0\right\}}=\emptyset$, Enriched Bézout still works.

What's left to do?

Relative Orientability

Why $c+d$ odd?

Approach uses motivic Euler class of $\mathcal{O}(c) \oplus \mathcal{O}(d) \rightarrow \mathbb{P}^{2}$.

- Only well-defined if $c+d$ odd.
- Potential fix (Larson-Vogt): pick a divisor.
- If c, d even and $\left.\{f \cap g\}\right|_{\left\{x_{0}=0\right\}}=\emptyset$, Enriched Bézout still works.

What's left to do?

- Explicit calculation of a_{p} when $i_{p}>1$.

Relative Orientability

Why $c+d$ odd?

Approach uses motivic Euler class of $\mathcal{O}(c) \oplus \mathcal{O}(d) \rightarrow \mathbb{P}^{2}$.

- Only well-defined if $c+d$ odd.
- Potential fix (Larson-Vogt): pick a divisor.
- If c, d even and $\left.\{f \cap g\}\right|_{\left\{x_{0}=0\right\}}=\emptyset$, Enriched Bézout still works.

What's left to do?

- Explicit calculation of a_{p} when $i_{p}>1$.
- Address c, d odd case.

Thanks!

Hurwitz Space Statistics and Dihedral Nichols Algebras

Gregory Michel

PIMS: Workshop in Arithmetic Topology

$$
\text { June 12, } 2019
$$

Number Theory

Question

How many number fields K / \mathbb{Q} of degree n with discriminant bounded by X are there?

Number Theory

Question

How many number fields K / \mathbb{Q} of degree n with discriminant bounded by X are there?

Conjecture(Linnik): For all n, this is asymptotically linear in X.

Number Theory

Question

How many number fields K / \mathbb{Q} of degree n with discriminant bounded by X are there?

Conjecture(Linnik): For all n, this is asymptotically linear in X.

Theorem (Bhargava-Shankar-Tsimerman)

When $n=3$, this number is given by

$$
\frac{1}{12 \zeta(3)} X+\frac{4 \zeta(1 / 3)}{5 \Gamma(2 / 3)^{3} \zeta(5 / 3)} X^{5 / 6}+\text { (smaller order terms) }
$$

Quantum Shuffle Algebras

Theorem (Ellenberg-Tran-Westerland (2017))

$$
H_{j}\left(H u r_{G, m}^{c}, k\right) \cong E x t_{21(V)}^{m-j, m}(k, k),
$$

where $\mathfrak{A}(V)$ denotes a quantum shuffle algebra.

Quantum Shuffle Algebras

Theorem (Ellenberg-Tran-Westerland (2017))

$$
H_{j}\left(H u r_{G, m}^{c}, k\right) \cong E x t_{\mathfrak{A}(V)}^{m-j, m}(k, k),
$$

where $\mathfrak{A}(V)$ denotes a quantum shuffle algebra.

Goal (Ambitious): Apply G-L to the left hand side of this result to get an Arithmetic Statistic result counting function fields.

Quantum Shuffle Algebras

Theorem (Ellenberg-Tran-Westerland (2017))

$$
H_{j}\left(H u r_{G, m}^{c}, k\right) \cong E x t_{\mathfrak{A}(V)}^{m-j, m}(k, k),
$$

where $\mathfrak{A}(V)$ denotes a quantum shuffle algebra.

Goal (Ambitious): Apply G-L to the left hand side of this result to get an Arithmetic Statistic result counting function fields.

There is a subalgebra $\mathfrak{B}(V) \subseteq \mathfrak{A}(V)$ called the Nichols Algebra

Quantum Shuffle Algebras

Theorem (Ellenberg-Tran-Westerland (2017))

$$
H_{j}\left(H u r_{G, m}^{c}, k\right) \cong E x t_{\mathfrak{A}(V)}^{m-j, m}(k, k),
$$

where $\mathfrak{A}(V)$ denotes a quantum shuffle algebra.

Goal (Ambitious): Apply G-L to the left hand side of this result to get an Arithmetic Statistic result counting function fields.

There is a subalgebra $\mathfrak{B}(V) \subseteq \mathfrak{A}(V)$ called the Nichols Algebra
Idea: Replace $\operatorname{Ext}_{\mathfrak{A}(V)}(k, k)$ with $\operatorname{Ext}_{\mathfrak{B}(V)}(k, k)$.

Quantum Shuffle Algebras

Theorem (Ellenberg-Tran-Westerland (2017))

$$
H_{j}\left(H u r_{G, m}^{c}, k\right) \cong E x t_{\mathfrak{A}(V)}^{m-j, m}(k, k),
$$

where $\mathfrak{A}(V)$ denotes a quantum shuffle algebra.

Goal (Ambitious): Apply G-L to the left hand side of this result to get an Arithmetic Statistic result counting function fields.

There is a subalgebra $\mathfrak{B}(V) \subseteq \mathfrak{A}(V)$ called the Nichols Algebra
Idea: Replace $\operatorname{Ext}_{\mathfrak{A}(V)}(k, k)$ with $\operatorname{Ext}_{\mathfrak{B}(V)}(k, k)$. At the moment, this is completely unjustified.

The Third Fomin-Kirillov Algebra

Definition (Fomin-Kirillov Algebras)

For $n \geq 2$, the $n^{\text {th }}$ Fomin-Kirillov algebra $F K_{n}$ over k is the quadratic algebra with generators $x_{i j}$ for $1 \leq i<j \leq n$ subject to the relations

- $x_{i j}^{2}=0$,
- $x_{i j} x_{k l}=x_{k l} x_{i j}$ when i, j, k, I are all distinct,
- $x_{i j} x_{j k}+x_{j k} x_{k i}+x_{k i} x_{i j}=0$ when i, j, k are distinct.

When $G=S_{3}$, the corresponding Nichols Algebra \mathfrak{B} is isomorphic to the third Fomin-Kirillov Algebra FK_{3}.

The Third Fomin-Kirillov Algebra

Definition (Fomin-Kirillov Algebras)

For $n \geq 2$, the $n^{\text {th }}$ Fomin-Kirillov algebra $F K_{n}$ over k is the quadratic algebra with generators $x_{i j}$ for $1 \leq i<j \leq n$ subject to the relations

- $x_{i j}^{2}=0$,
- $x_{i j} x_{k l}=x_{k l} x_{i j}$ when i, j, k, l are all distinct,
- $x_{i j} x_{j k}+x_{j k} x_{k i}+x_{k i} x_{i j}=0$ when i, j, k are distinct.

When $G=S_{3}$, the corresponding Nichols Algebra \mathfrak{B} is isomorphic to the third Fomin-Kirillov Algebra FK_{3}.

Theorem (Stefan-Vay (2016))

$$
E x t_{\mathfrak{B}}(k, k) \cong \mathfrak{B}^{!}[Z]
$$

where \mathfrak{B} ! is generated by three classes A, B, C of degree $(1,1)$ and Z has degree $(4,6)$.

Hurwitz Space Statistics

When $G=S_{3}$, apply G-L to $\operatorname{Hur}_{G, m}^{c}$, naively replacing $\operatorname{Ext}_{\mathfrak{A}(V)}$ with $\operatorname{Ext}_{\mathfrak{B}}$:

Hurwitz Space Statistics

When $G=S_{3}$, apply G-L to $\operatorname{Hur}_{G, m}^{c}$, naively replacing $\operatorname{Ext}_{\mathfrak{A}(V)}$ with $\operatorname{Ext}_{\mathfrak{B}}$:

$$
\begin{gathered}
A, B, C \in E x t_{\mathfrak{B}}^{1,1}=H_{0}\left(\text { Hur }_{1}\right)=H_{C}^{2}\left(\text { Hur }_{1}\right) \\
Z \in E x t_{\mathfrak{B}}^{4,6}=H_{2}\left(\text { Hur }_{6}\right)=H_{C}^{10}\left(\text { Hur }_{6}\right)
\end{gathered}
$$

Use Deligne's bounds to approximate the trace of "Frob"

Resulting point count:

Hurwitz Space Statistics

When $G=S_{3}$, apply G-L to $\operatorname{Hur}_{G, m}^{c}$, naively replacing $\operatorname{Ext}_{\mathfrak{A}(V)}$ with $\operatorname{Ext}_{\mathfrak{B}}$:

$$
\begin{gathered}
A, B, C \in E x t_{\mathfrak{B}}^{1,1}=H_{0}\left(\text { Hur }_{1}\right)=H_{C}^{2}\left(\text { Hur }_{1}\right) \\
Z \in E x t_{\mathfrak{B}}^{4,6}=H_{2}\left(\text { Hur }_{6}\right)=H_{C}^{10}\left(\text { Hur }_{6}\right)
\end{gathered}
$$

Use Deligne's bounds to approximate the trace of "Frob"

Resulting point count:

$$
C X+D X^{5 / 6}
$$

Dihedral Nichols Algebras

Let $G=D_{2 p}$.

Dihedral Nichols Algebras

Let $G=D_{2 p}$.
Theorem (In Progress, M.)
Let B denote the Nichols algebra corresponding to the group $D_{2 p}$. Then

$$
\operatorname{Ext}_{B}(k, k) \cong B^{!}[Z]
$$

where $B^{!}$is generated by p classes of degree $(1,1)$ and Z has degree $(4,2 p)$.

Dihedral Nichols Algebras

Let $G=D_{2 p}$.
Theorem (In Progress, M.)
Let B denote the Nichols algebra corresponding to the group $D_{2 p}$. Then

$$
\operatorname{Ext}_{B}(k, k) \cong B^{!}[Z]
$$

where $B^{!}$is generated by p classes of degree $(1,1)$ and Z has degree $(4,2 p)$.

Naively applying G-L in this situation yields

$$
C X+D X^{\frac{p+2}{2 p}}
$$

Thank you!

Spaces of Noncollinear Points

Ben O'Connor joint with Ronno Das

University of Chicago

PIMS Workshop on Arithmetic Topology
June 12, 2019

$$
B_{n}:=\left\{\left\{x_{1}, \ldots, x_{n}\right\} \in \operatorname{Conf}_{n}\left(\mathbb{C P}^{2}\right) \mid \text { no three } x_{i} \text { collinear }\right\}
$$

$$
B_{n}:=\left\{\left\{x_{1}, \ldots, x_{n}\right\} \in \operatorname{Conf}_{n}\left(\mathbb{C P}^{2}\right) \mid \text { no three } x_{i} \text { collinear }\right\}
$$

$B_{n}:=\left\{\left\{x_{1}, \ldots, x_{n}\right\} \in \operatorname{Conf}_{n}\left(\mathbb{C P}^{2}\right) \mid\right.$ no three x_{i} collinear $\}$

$\in B_{5}$

- $n=5 \longrightarrow$ degree 4 del Pezzo surfaces
$B_{n}:=\left\{\left\{x_{1}, \ldots, x_{n}\right\} \in \operatorname{Conf}_{n}\left(\mathbb{C P}^{2}\right) \mid\right.$ no three x_{i} collinear $\}$

$\in B_{5}$
- $n=5 \longrightarrow$ degree 4 del Pezzo surfaces
- $n=6 \longrightarrow$ cubic surfaces with at most one nodal singularity

$B_{n}:=\left\{\left\{x_{1}, \ldots, x_{n}\right\} \in \operatorname{Conf}_{n}\left(\mathbb{C P}^{2}\right) \mid\right.$ no three x_{i} collinear $\}$

- $n=5 \longrightarrow$ degree 4 del Pezzo surfaces
- $n=6 \longrightarrow$ cubic surfaces with at most one nodal singularity

Goal

$B_{n}:=\left\{\left\{x_{1}, \ldots, x_{n}\right\} \in \operatorname{Conf}_{n}\left(\mathbb{C P}^{2}\right) \mid\right.$ no three x_{i} collinear $\}$

- $n=5 \longrightarrow$ degree 4 del Pezzo surfaces
- $n=6 \longrightarrow$ cubic surfaces with at most one nodal singularity

Goal

Compute $H^{*}\left(B_{n} ; \mathbb{Q}\right)$

Ordered Version

Ordered cover F_{n} :

$$
\begin{aligned}
& F_{n} \\
& \downarrow \\
& B_{n}=F_{n} / S_{n}
\end{aligned}
$$

Ordered Version

Ordered cover F_{n} :

$$
\begin{aligned}
& F_{n} \\
& \downarrow \\
& B_{n}=F_{n} / S_{n}
\end{aligned}
$$

Ordered Version

Ordered cover F_{n} :

Refined Goal

Ordered Version

Ordered cover F_{n} :

Refined Goal
Compute $H^{*}\left(F_{n} ; \mathbb{Q}\right)$

Ordered Version

Ordered cover F_{n} :

Refined Goal
Compute $H^{*}\left(F_{n} ; \mathbb{Q}\right)$ as an S_{n}-representation

Ordered Version

Ordered cover F_{n} :

Refined Goal
Compute $H^{*}\left(F_{n} ; \mathbb{Q}\right)$ as an S_{n}-representation

- By transfer, $H^{*}\left(B_{n} ; \mathbb{Q}\right) \cong H^{*}\left(F_{n} ; \mathbb{Q}\right)^{S_{n}}$

Forgetting Points

- Ordering gives maps $F_{n} \rightarrow F_{n-1}$ by "forget the last point"

Forgetting Points

- Ordering gives maps $F_{n} \rightarrow F_{n-1}$ by "forget the last point"

Forgetting Points

- Ordering gives maps $F_{n} \rightarrow F_{n-1}$ by "forget the last point"

Forgetting Points

- Ordering gives maps $F_{n} \rightarrow F_{n-1}$ by "forget the last point"

Forgetting Points

- Ordering gives maps $F_{n} \rightarrow F_{n-1}$ by "forget the last point"

State of Knowledge

State of Knowledge

- $H^{*}\left(\mathbb{F}_{n} ; \mathbb{Q}\right)$ known for $n=2,3$

State of Knowledge

- $H^{*}\left(\mathbb{F}_{n} ; \mathbb{Q}\right)$ known for $n=2,3$
- $F_{4} \cong P G L_{3}(\mathbb{C})$

State of Knowledge

- $H^{*}\left(\mathbb{F}_{n} ; \mathbb{Q}\right)$ known for $n=2,3$
- $F_{4} \cong P G L_{3}(\mathbb{C})$
- Finitely presented group surjecting onto $\pi_{1}\left(F_{n}\right)$ (Moulton)

Theorem (Das-O.)

For $X_{5}=F_{5} / \mathrm{PGL}_{3}(\mathbb{C})$, there are isomorphisms of S_{5}-representations

$$
H^{*}\left(X_{5} ; \mathbb{Q}\right) \cong \begin{cases}U & \text { if } *=0 \\ S_{3,2} & \text { if } *=1 \\ \wedge^{2} V & \text { if } *=2 \\ 0 & \text { otherwise }\end{cases}
$$

Theorem (Das-O.)

For $X_{6}=F_{6} / \mathrm{PGL}_{3}(\mathbb{C})$, there are isomorphisms of S_{6}-representations

$$
H^{*}\left(X_{6} ; \mathbb{Q}\right) \cong
$$

$\begin{cases}U & \text { if } *=0, \\ S_{3,3} \oplus S_{4,2} & \text { if } *=1, \\ V \oplus \wedge^{2} V \oplus^{\oplus} \oplus \wedge^{3} V \oplus S_{3,3} \oplus S_{3,2,1}^{\oplus 2} & \text { if } *=2, \\ V \oplus \wedge^{2} V^{\oplus 3} \oplus \wedge^{3} V^{\oplus 3} \oplus S_{3,3} \oplus S_{2,2,2} \oplus S_{4,2}^{\oplus 2} \oplus S_{2,2,1,1}^{\oplus 2} \oplus S_{3,2,1}^{\oplus 3} & \text { if } *=3, \\ U \oplus U^{\prime} \oplus V \oplus V^{\prime} \oplus \wedge^{2} V \oplus \wedge^{3} V^{\oplus 2} \oplus S_{3,3}^{\oplus 2} \oplus S_{2,2,2}^{\oplus 3} \oplus S_{4,2}^{\oplus 2} \oplus S_{2,2,1,1} \oplus S_{3,2,1}^{\oplus 3} & \text { if } *=4, \\ 0 & \text { otherwise. }\end{cases}$

Proof(?)

Proof(?)

Fiber bundle \longrightarrow Serre spectral sequence

Proof(?)

Proof(?)

Topology comes up short - what do we do?

Proof(?)

Topology comes up short - what do we do?
F_{n} (smooth) variety defined over \mathbb{Z}

Proof(?)

Topology comes up short - what do we do?
F_{n} (smooth) variety defined over \mathbb{Z}
Use point counts and Grothendieck-Lefschetz trace formula

Refined Point Counting

$$
B_{n}\left(\mathbb{F}_{q}\right) \ni p=\left\{p_{1}, \ldots, p_{n}\right\}
$$

Refined Point Counting

$$
B_{n}\left(\mathbb{F}_{q}\right) \ni p=\left\{p_{1}, \ldots, p_{n}\right\} \longrightarrow\left|B_{n}\left(\mathbb{F}_{q}\right)\right|
$$

Refined Point Counting

$$
\begin{aligned}
& B_{n}\left(\mathbb{F}_{q}\right) \ni p=\left\{p_{1}, \ldots, p_{n}\right\} \longrightarrow\left|B_{n}\left(\mathbb{F}_{q}\right)\right| \\
& B_{n}\left(\mathbb{F}_{q}\right) \ni p=\left\{p_{1}, \ldots, p_{n}\right\}
\end{aligned}
$$

Refined Point Counting

$$
\begin{aligned}
& B_{n}\left(\mathbb{F}_{q}\right) \ni p=\left\{p_{1}, \ldots, p_{n}\right\} \longrightarrow\left|B_{n}\left(\mathbb{F}_{q}\right)\right| \\
& B_{n}\left(\mathbb{F}_{q}\right) \ni p=\left\{p_{1}, \ldots, p_{n}\right\} \oslash \operatorname{Frob}_{q}
\end{aligned}
$$

Refined Point Counting

$$
\begin{aligned}
& B_{n}\left(\mathbb{F}_{q}\right) \ni p=\left\{p_{1}, \ldots, p_{n}\right\} \longrightarrow\left|B_{n}\left(\mathbb{F}_{q}\right)\right| \\
& B_{n}\left(\mathbb{F}_{q}\right) \ni p=\left\{p_{1}, \ldots, p_{n}\right\} \oslash \operatorname{Frob}_{q} \longrightarrow \sigma_{p} \in S_{n}
\end{aligned}
$$

Refined Point Counting

$$
\begin{aligned}
& B_{n}\left(\mathbb{F}_{q}\right) \ni p=\left\{p_{1}, \ldots, p_{n}\right\} \longrightarrow\left|B_{n}\left(\mathbb{F}_{q}\right)\right| \\
& B_{n}\left(\mathbb{F}_{q}\right) \ni p=\left\{p_{1}, \ldots, p_{n}\right\} \oslash \mathrm{Frob}_{q} \longrightarrow \sigma_{p} \in S_{n} \\
& =p \oslash \mathrm{Frob}_{q} \rightarrow \sigma_{p} \in S_{5}
\end{aligned}
$$

$$
p_{n, c}(q)=\left|\left\{p \in B_{n}\left(\mathbb{F}_{q}\right) \mid \sigma_{p} \in C\right\}\right|
$$

Example: $n=6, C=(123)(45)$

- Choices of a

$$
(q-1)^{2} q^{3}(q+1)
$$

- Choices of b

$$
(q-1) q\left(q^{2}+q+1\right)
$$

- Choices of c

$$
p_{6,(123)(45)}(q)=\frac{1}{6}(q-1)^{3} q^{6}(q+1)\left(q^{2}+q+1\right)
$$

Tables of Point Counts

Class (C)	$p_{5, c}(q)$
e	$\frac{1}{120}(q-3)(q-2)(q-1)^{2} q^{3}(q+1)\left(q^{2}+q+1\right)$
(12)	$\frac{1}{1}(q-1)^{3} q^{4}(q+1)\left(q^{2}+q+1\right)$
$(12)(34)$	$\frac{1}{8}(q-2)(q-1)^{2} q^{3}(q+1)^{2}\left(q^{2}+q+1\right)$
(123)	$\frac{1}{6}(q-1)^{2} q^{4}(q+1)^{2}\left(q^{2}+q+1\right)$
$(123)(45)$	$\frac{1}{6}(q-1)^{3} q^{4}(q+1)\left(q^{2}+q+1\right)$
(1234)	$\frac{1}{4}(q-1)^{2} q^{4}(q+1)^{2}\left(q^{2}+q+1\right)$
(12345)	$\frac{1}{5}(q-1)^{2} q^{3}(q+1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)$

Table: Point counts for $B_{5}\left(\mathbb{F}_{q}\right)$ twisted by conjugacy classes of S_{5}.

Class (C)	$p_{6, C}(q)$
e	$\frac{1}{720}(q-3)(q-2)(q-1)^{2} q^{3}(q+1)\left(q^{2}+q+1\right)\left(q^{2}-9 q+21\right)$
(12)	$\frac{1}{48}(q-1)^{3} q^{4}(q+1)\left(q^{2}+q+1\right)\left(q^{2}-3 q+3\right)$
$(12)(34)$	$\frac{1}{6}(q-2)(q-1)^{2} q^{3}(q+1)^{2}\left(q^{2}+q+1\right)\left(q^{2}-q-3\right)$
$(12)(34)(56)$	$\frac{1}{48}(q-1)^{2} q^{3}(q+1)\left(q^{2}+q+1\right)\left(q^{4}-6 q^{2}+q+8\right)$
(123)	$\frac{1}{18}(q-1)^{2} q^{6}(q+1)^{2}\left(q^{2}+q+1\right)$
$(123)(45)$	$\frac{1}{6}(q-1)^{3} q^{6}(q+1)\left(q^{2}+q+1\right)$
$(123)(456)$	$\frac{1}{18}(q-1)^{2} q^{3}(q+1)\left(q^{2}+q+1\right)\left(q^{4}-2 q^{3}-3 q+9\right)$
(1234)	$\frac{1}{8}(q-1)^{2} q^{4}(q+1)^{2}\left(q^{2}+q+1\right)\left(q^{2}+q-1\right)$
$(1234)(56)$	$\frac{1}{8}(q-1)^{2} q^{3}(q+1)\left(q^{2}+q+1\right)\left(q^{4}-2 q^{2}-q-2\right)$
(12345)	$\frac{1}{5}(q-1)^{2} q^{3}(q+1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)^{2}$
(123456)	$\frac{1}{6}(q-1)^{2} q^{3}(q+1)\left(q^{2}+q+1\right)\left(q^{4}+q-1\right)$

Table: Point counts for $B_{6}\left(\mathbb{F}_{q}\right)$ twisted by conjugacy classes of S_{6}

Class (C)	$p_{6, C}(q)$
e	$\frac{1}{720}(q-3)(q-2)(q-1)^{2} q^{3}(q+1)\left(q^{2}+q+1\right)\left(q^{2}-9 q+21\right)$
(12)	$\frac{1}{48}(q-1)^{3} q^{4}(q+1)\left(q^{2}+q+1\right)\left(q^{2}-3 q+3\right)$
$(12)(34)$	$\frac{1}{6}(q-2)(q-1)^{2} q^{3}(q+1)^{2}\left(q^{2}+q+1\right)\left(q^{2}-q-3\right)$
$(12)(34)(56)$	$\frac{1}{48}(q-1)^{2} q^{3}(q+1)\left(q^{2}+q+1\right)\left(q^{4}-6 q^{2}+q+8\right)$
(123)	$\frac{1}{18}(q-1)^{2} q^{6}(q+1)^{2}\left(q^{2}+q+1\right)$
$(123)(45)$	$\frac{1}{6}(q-1)^{3} q^{6}(q+1)\left(q^{2}+q+1\right)$
$(123)(456)$	$\frac{1}{18}(q-1)^{2} q^{3}(q+1)\left(q^{2}+q+1\right)\left(q^{4}-2 q^{3}-3 q+9\right)$
(1234)	$\frac{1}{8}(q-1)^{2} q^{4}(q+1)^{2}\left(q^{2}+q+1\right)\left(q^{2}+q-1\right)$
$(1234)(56)$	$\frac{1}{8}(q-1)^{2} q^{3}(q+1)\left(q^{2}+q+1\right)\left(q^{4}-2 q^{2}-q-2\right)$
(12345)	$\frac{1}{5}(q-1)^{2} q^{3}(q+1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)^{2}$
(123456)	$\frac{1}{6}(q-1)^{2} q^{3}(q+1)\left(q^{2}+q+1\right)\left(q^{4}+q-1\right)$

Table: Point counts for $B_{6}\left(\mathbb{F}_{q}\right)$ twisted by conjugacy classes of S_{6}

- Now we cross the bridge back to topology(!)

Grothendieck-Lefschetz Trace Formula

$$
\sum_{p \in X\left(\mathbb{F}_{q}\right)} \operatorname{tr}\left(\operatorname{Frob}_{q} \mid \mathcal{V}_{p}\right)=\sum_{i}(-1)^{i} \operatorname{tr}\left(\operatorname{Frob}_{q}: H_{\hat{e t}, c}^{2 n-i}(X ; \mathcal{V})\right)
$$

$$
\sum_{C} \chi v(C) p_{n, C}(q)=q^{n} \sum_{i, w} q^{-w}(-1)^{i}\left\langle\chi v, \chi_{w}^{i}\left(F_{n}\right)\right\rangle_{S_{n}}
$$

Theorem (Das-O.)

For $X_{n}=F_{n} / \mathrm{PGL}_{3}(\mathbb{C})$, there are isomorphisms of S_{n}-representations

$$
H^{*}\left(X_{5} ; \mathbb{Q}\right) \cong \begin{cases}U & \text { if } *=0 \\ S_{3,2} & \text { if } *=1 \\ \wedge^{2} V & \text { if } *=2 \\ 0 & \text { otherwise }\end{cases}
$$

Thanks for listening!

Theorem (Das-O.)

For $X_{n}=F_{n} / \mathrm{PGL}_{3}(\mathbb{C})$, there are isomorphisms of S_{n}-representations

$$
H^{*}\left(X_{6} ; \mathbb{Q}\right) \cong
$$

$\left\{\begin{array}{l}U \\ S_{3,3} \oplus S_{4,2} \\ V \oplus \wedge^{2} V^{\oplus 2} \oplus \wedge^{3} V \oplus S_{3,3} \oplus S_{3,2,1}^{\oplus 2} \\ V \oplus \wedge^{2} V{ }^{\oplus 3} \oplus \wedge^{3} V^{\oplus 3} \oplus S_{3,3} \oplus S_{2,2,2} \oplus S_{4,2}^{\oplus 2} \oplus S_{2,2,1,1}^{\oplus} \oplus S_{3,2,1}^{\oplus 3} \\ U \oplus U^{\prime} \oplus V \oplus V^{\prime} \oplus \wedge^{2} V \oplus \wedge^{3} V^{\oplus 2} \oplus S_{3,3}^{\oplus+} \oplus S_{2,2,2}^{\oplus 3} \oplus S_{4,2}^{\oplus 2} \oplus S_{2,2,1,1} \oplus S_{3,2,1}^{\oplus 3} \\ 0\end{array}\right.$

$$
\begin{aligned}
& \text { if } *=0, \\
& \text { if } *=1, \\
& \text { if } *=2, \\
& \text { if } *=3, \\
& \text { if } *=4, \\
& \text { otherwise. }
\end{aligned}
$$

Types of Lines on Quintic Threefolds and Beyond

Sabrina Pauli
University of Oslo
June 12, 2019

Lines on a Cubic Surface

Let $X \subset \mathbb{P}^{3}$ be a smooth cubic surface.

- $k=\mathbb{C}$: \#complex lines on $X=27$
(Cayley, Salmon 19th century)

Lines on a Cubic Surface

Let $X \subset \mathbb{P}^{3}$ be a smooth cubic surface.

- $k=\mathbb{C}$: \#complex lines on $X=27$ (Cayley, Salmon 19th century)
- $k=\mathbb{R}$: There are two types of real lines, called hyperbolic and elliptic (Segre).
- \# real hyperbolic lines on $X-\#$ real elliptic lines on $X=3$
(Finashin-Kharlamov, Okonek-Teleman, Horev-Solomon, Benedetti-Silhol)

Lines on a Cubic Surface

Let $X \subset \mathbb{P}^{3}$ be a smooth cubic surface.

- $k=\mathbb{C}$: \#complex lines on $X=27$
(Cayley, Salmon 19th century)
- $k=\mathbb{R}$: There are two types of real lines, called hyperbolic and elliptic (Segre).
- \# real hyperbolic lines on $X-\#$ real elliptic lines on $X=3$
(Finashin-Kharlamov, Okonek-Teleman, Horev-Solomon, Benedetti-Silhol)
- k arbitrary $(\operatorname{char}(k) \neq 2)$: can assign an
 arithmetic type in $k^{*} /\left(k^{*}\right)^{2}$ (Kass-Wickelgren) \rightsquigarrow can count lines in $\operatorname{GW}(k): 15<1>+12<-1>$

The Type of a Line on a Cubic Surface.

Let $L \subset X$ be a line. To each point $p \in L$, there is exactly one other point q such that $T_{p} X=T_{q} X$.

Definition

The morphism $i: L \rightarrow L$ that swaps p and q is called Segre involution. Its fixed points are called Segre fixed points.

The Type of a Line on a Cubic Surface.

Let $L \subset X$ be a line. To each point $p \in L$, there is exactly one other point q such that $T_{p} X=T_{q} X$.

Definition

The morphism $i: L \rightarrow L$ that swaps p and q is called Segre involution. Its fixed points are called Segre fixed points.

The Segre fixed points are defined over the field $k(\sqrt{\alpha})$ for some $\alpha \in k^{*} /\left(k^{*}\right)^{2}$.

Definition

The type of a line on a cubic surface is $<\alpha>\in \operatorname{GW}(k)$.

Local degree

Let $\operatorname{Gr}(2,4)$ be the Grassmannian of lines in \mathbb{P}^{3}. A homogeneous degree 3 polynomial f defines a section σ_{f} of the vector bundle $\mathcal{E}:=\operatorname{Sym}^{3} \mathcal{S}^{\vee} \rightarrow \operatorname{Gr}(2,4)$ where \mathcal{S} is the tautological subbundle of $\operatorname{Gr}(4,2)$.

$$
\left\{\text { zeros of } \sigma_{f}\right\} \leftrightarrow\left\{\text { lines on } X=\{f=0\} \subset \mathbb{P}^{3}\right\}
$$

Local degree

Let $\operatorname{Gr}(2,4)$ be the Grassmannian of lines in \mathbb{P}^{3}. A homogeneous degree 3 polynomial f defines a section σ_{f} of the vector bundle $\mathcal{E}:=\operatorname{Sym}^{3} \mathcal{S}^{\vee} \rightarrow \operatorname{Gr}(2,4)$ where \mathcal{S} is the tautological subbundle of $\operatorname{Gr}(4,2)$.

$$
\left\{\text { zeros of } \sigma_{f}\right\} \leftrightarrow\left\{\text { lines on } X=\{f=0\} \subset \mathbb{P}^{3}\right\}
$$

Locally σ_{f} is a morphsim $\mathbb{A}^{4} \rightarrow \mathbb{A}^{4}$. The local degree of σ_{f} at a zero is $\langle J\rangle \in \operatorname{GW}(k)$ where J is the determinant of the Jacobian at the zero. We define the Euler number $e(\mathcal{E}):=\sum$ local degrees.

Theorem (Kass-Wickelgren)

The local degree of a zero of σ_{f} is equal to the type of the corresponding line on $X=\{f=0\} \subset \mathbb{P}^{3}$ in $\mathrm{GW}(k)$.

The Type of a Line on a Quintic Threefold
lines quintic threefold.jpg

The Type of a Line on a Quintic Threefold

Let $L \subset X \subset \mathbb{P}^{4}$ be a line on a quintic threefold X.

- There are 3 pairs of points on L with the same tangent space in X (might only be defined over a field extension F / k).

The Type of a Line on a Quintic Threefold

Let $L \subset X \subset \mathbb{P}^{4}$ be a line on a quintic threefold X.

- There are 3 pairs of points on L with the same tangent space in X (might only be defined over a field extension F / k).
- Let $p, q \in L \otimes F$ be such a pair, i.e., $T:=T_{p}(X \otimes F)=T_{q}(X \otimes F)$. For $r \in L \otimes F$ there is exactly one other point $s \in L \otimes F$ such that

$$
T \cap T_{r}(X \otimes F)=T \cap T_{s}(X \otimes F)
$$

$\rightsquigarrow 3$ Segre involutions $i_{j}: L \otimes F_{j} \rightarrow L \otimes F_{j}$ with fixed points defined over $F_{j}\left(\sqrt{\alpha_{j}}\right), j=1,2,3$.

The Type of a Line on a Quintic Threefold

Let $L \subset X \subset \mathbb{P}^{4}$ be a line on a quintic threefold X.

- There are 3 pairs of points on L with the same tangent space in X (might only be defined over a field extension F / k).
- Let $p, q \in L \otimes F$ be such a pair, i.e.,
$T:=T_{p}(X \otimes F)=T_{q}(X \otimes F)$. For $r \in L \otimes F$ there is exactly one other point $s \in L \otimes F$ such that

$$
T \cap T_{r}(X \otimes F)=T \cap T_{s}(X \otimes F)
$$

$\rightsquigarrow 3$ Segre involutions $i_{j}: L \otimes F_{j} \rightarrow L \otimes F_{j}$ with fixed points defined over $F_{j}\left(\sqrt{\alpha_{j}}\right), j=1,2,3$.

Definition

The type of a line on a quintic threefold is
$<\prod N_{F_{j} / k}\left(\alpha_{j}\right)>\in \mathrm{GW}(k)$ where the product runs over the Galois orbits of the pairs of points with the same tangent space.

This has been defined for $k=\mathbb{R}$ by Finashin and Kharlamov $\overline{\bar{F}}$

My Theorem

Let f be a homogeneous degree 5 polynomial in 5 variables and σ_{f} the corresponding section of $\operatorname{Sym}^{5} \mathcal{S}^{\vee} \rightarrow \operatorname{Gr}(2,5)$.

$$
\left\{\text { zeros of } \sigma_{f}\right\} \leftrightarrow\left\{\text { lines on } X=\{f=0\} \subset \mathbb{P}^{4}\right\}
$$

My Theorem

Let f be a homogeneous degree 5 polynomial in 5 variables and σ_{f} the corresponding section of $\operatorname{Sym}^{5} \mathcal{S}^{\vee} \rightarrow \operatorname{Gr}(2,5)$.

$$
\left\{\text { zeros of } \sigma_{f}\right\} \leftrightarrow\left\{\text { lines on } X=\{f=0\} \subset \mathbb{P}^{4}\right\}
$$

Theorem (P.)

The local degree of a zero of σ_{f} is equal to the type of the corresponding line on a $X=\{f=0\} \subset \mathbb{P}^{4}$ in $\operatorname{GW}(k)$.

My Theorem

Let f be a homogeneous degree 5 polynomial in 5 variables and σ_{f} the corresponding section of $\operatorname{Sym}^{5} \mathcal{S}^{\vee} \rightarrow \operatorname{Gr}(2,5)$.

$$
\left\{\text { zeros of } \sigma_{f}\right\} \leftrightarrow\left\{\text { lines on } X=\{f=0\} \subset \mathbb{P}^{4}\right\}
$$

Theorem (P.)

The local degree of a zero of σ_{f} is equal to the type of the corresponding line on a $X=\{f=0\} \subset \mathbb{P}^{4}$ in $\operatorname{GW}(k)$.

The definition of the type of a line can be generalized to lines on degree $2 n-1$ hypersurfaces in \mathbb{P}^{n+1}.

Twin Prime Polynomials Joint with Sawin

Mark Shusterman

UW Madison

6/10/2019

Main Result

Main Result

- Theorem (Sawin, S): There exists a prime power q such that for every $h \in \mathbb{F}_{q}[T]$ there exist infinitely many monic irreducible $f \in \mathbb{F}_{q}[T]$ such that $f+h$ is irreducible as well.

Main Result

- Theorem (Sawin, S): There exists a prime power q such that for every $h \in \mathbb{F}_{q}[T]$ there exist infinitely many monic irreducible $f \in \mathbb{F}_{q}[T]$ such that $f+h$ is irreducible as well.
- Actually, we have a quantitative version where the number of such f (having a certain degree) is obtained (with a power saving error term).

Two Main Sub-Problems

Two Main Sub-Problems

- Level of Distribution for Primes: Counting primes up to X in a certain residue class, with modulus larger than \sqrt{X}.

Two Main Sub-Problems

- Level of Distribution for Primes: Counting primes up to X in a certain residue class, with modulus larger than \sqrt{X}.
- Parity Problem: How often do both f and $f+h$ have an odd number of prime factors?

Two Main Sub-Problems

- Level of Distribution for Primes: Counting primes up to X in a certain residue class, with modulus larger than \sqrt{X}.
- Parity Problem: How often do both f and $f+h$ have an odd number of prime factors?
- We focus on the second problem.

Chowla Conjecture

Chowla Conjecture

- Theorem (Sawin, S): For distinict $h_{1}, \ldots, h_{k} \in \mathbb{F}_{q}[T]$ we have

$$
\sum_{\operatorname{deg} f \leq d} \mu\left(f+h_{1}\right) \cdots \mu\left(f+h_{k}\right)=o\left(q^{d}\right), \quad d \rightarrow \infty
$$

Chowla Conjecture

- Theorem (Sawin, S): For distinict $h_{1}, \ldots, h_{k} \in \mathbb{F}_{q}[T]$ we have

$$
\sum_{\operatorname{deg} f \leq d} \mu\left(f+h_{1}\right) \cdots \mu\left(f+h_{k}\right)=o\left(q^{d}\right), \quad d \rightarrow \infty
$$

- Idea: Split the sum into subsums over those f having the same derivative, and show that (on these subsums) the Möbius function can be mimicked by a multiplicative Dirichlet character.

Chowla Conjecture

- Theorem (Sawin, S): For distinict $h_{1}, \ldots, h_{k} \in \mathbb{F}_{q}[T]$ we have

$$
\sum_{\operatorname{deg} f \leq d} \mu\left(f+h_{1}\right) \cdots \mu\left(f+h_{k}\right)=o\left(q^{d}\right), \quad d \rightarrow \infty
$$

- Idea: Split the sum into subsums over those f having the same derivative, and show that (on these subsums) the Möbius function can be mimicked by a multiplicative Dirichlet character.
- We are then able to reduce the problem to a short character sum.

Improving the Burgess Bound

Improving the Burgess Bound

- Theorem (Sawin, S): Let $g \in \mathbb{F}_{q}[T]$ be squarefree, and χ a nonprincipal Dirichlet character mod g. Then

$$
\left|\sum_{\substack{h \in \mathbb{F}_{q}[T] \\ d(h)<t}} \chi(f+h)\right| \leq\left(q^{1 / 2}+1\right)\binom{\operatorname{deg}(g)}{t} q^{\frac{t}{2}}
$$

for any $f \in \mathbb{F}_{q}[T]$, and $0 \leq t \leq \operatorname{deg}(g)$.

Improving the Burgess Bound

- Theorem (Sawin, S): Let $g \in \mathbb{F}_{q}[T]$ be squarefree, and χ a nonprincipal Dirichlet character mod g. Then

$$
\left|\sum_{\substack{h \in \mathbb{F}_{q}[T] \\ d(h)<t}} \chi(f+h)\right| \leq\left(q^{1 / 2}+1\right)\binom{\operatorname{deg}(g)}{t} q^{\frac{t}{2}}
$$

for any $f \in \mathbb{F}_{q}[T]$, and $0 \leq t \leq \operatorname{deg}(g)$.

- We write down a variety whose $\mathbb{F}_{q^{-}}$-point count controls the above character sum.

Improving the Burgess Bound

- Theorem (Sawin, S): Let $g \in \mathbb{F}_{q}[T]$ be squarefree, and χ a nonprincipal Dirichlet character mod g. Then

$$
\left|\sum_{\substack{h \in \mathbb{F}_{q}[T] \\ d(h)<t}} \chi(f+h)\right| \leq\left(q^{1 / 2}+1\right)\binom{\operatorname{deg}(g)}{t} q^{\frac{t}{2}}
$$

for any $f \in \mathbb{F}_{q}[T]$, and $0 \leq t \leq \operatorname{deg}(g)$.

- We write down a variety whose \mathbb{F}_{q}-point count controls the above character sum.
- Study the geometry (e.g. singularities) of our variety in order to estimate the dimensions of the associated cohomology groups.

Improving the Burgess Bound

- Theorem (Sawin, S): Let $g \in \mathbb{F}_{q}[T]$ be squarefree, and χ a nonprincipal Dirichlet character mod g. Then

$$
\left|\sum_{\substack{h \in \mathbb{F}_{q}[T] \\ d(h)<t}} \chi(f+h)\right| \leq\left(q^{1 / 2}+1\right)\binom{\operatorname{deg}(g)}{t} q^{\frac{t}{2}}
$$

for any $f \in \mathbb{F}_{q}[T]$, and $0 \leq t \leq \operatorname{deg}(g)$.

- We write down a variety whose \mathbb{F}_{q}-point count controls the above character sum.
- Study the geometry (e.g. singularities) of our variety in order to estimate the dimensions of the associated cohomology groups.
- Using Deligne's RH and the Grothendieck-Lefschetz trace formula, we are then able to estimate the number of \mathbb{F}_{q}-ponits on our variety.

Euler characteristics for spaces of string links and the modular envelope of \mathcal{L}_{∞}

Paul Arnaud Songhafouo Tsopméné

University of Regina
(Joint with Victor Turchin)

June 12, 2019

Definition of the space of string links

Fix an integer $d \geq 1$, which represents the dimension of the ambient space, and let $r \geq 1, m_{1}, \cdots, m_{r} \geq 1$.

Definition

Define $E m b_{c}\left(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d}\right)$ to be the space of smooth embeddings $f: \coprod_{i=1}^{r} \mathbb{R}^{m_{i}} \hookrightarrow \mathbb{R}^{d}$ that coincide outside a compact set with a fixed affine embedding ι. Such embeddings are called string links of r strands.

Definition of the space of string links

Fix an integer $d \geq 1$, which represents the dimension of the ambient space, and let $r \geq 1, m_{1}, \cdots, m_{r} \geq 1$.

Definition

Define $E m b_{c}\left(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d}\right)$ to be the space of smooth embeddings $f: \coprod_{i=1}^{r} \mathbb{R}^{m_{i}} \hookrightarrow \mathbb{R}^{d}$ that coincide outside a compact set with a fixed affine embedding ι. Such embeddings are called string links of r strands.

For convenience, we consider a variation of that space, denoted $\overline{\mathrm{Emb}}_{c}\left(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d}\right)$. To be more precise, $\overline{\mathrm{Emb}}_{c}\left(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d}\right)$ is the homotopy fiber over ι of the obvious inclusion $\operatorname{Emb}_{c}\left(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d}\right) \hookrightarrow \operatorname{Imm}_{c}\left(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d}\right)$, where $\mathrm{Imm}_{c}\left(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d}\right)$ is the space of smooth immersions $\coprod_{i=1}^{r} \mathbb{R}^{m_{i}} \rightarrow \mathbb{R}^{d}$ that coincide outside a compact set with ι.

Examples

Figure: A string link of one strand ($r=1, m_{1}=1$), also called a long knot

Examples

Figure: A string link of one strand $\left(r=1, m_{1}=1\right)$, also called a long knot

Figure: A string link of two strands $\left(r=2, m_{1}=m_{2}=1\right)$

Literature Review

Many people studied $\overline{\mathrm{Emb}}_{c}\left(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d}\right)$ for various r and m_{i} :

- For $r=1, m_{1}=1$, we have the space $\overline{E m b}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)$ which has been studied by: V. Turchin (2004, 2013), D. Sinha (2006), P. Salvatore (2006), R. Budney (2007, 2012), K. Sakai (2008), Lambrechts-Volić-Turchin (2010), Dwyer-Hess (2012), P. Songhafouo Tsopméné (2013), S. Moriya (2013), T. Willwacher (2015).

Literature Review

Many people studied $\overline{\operatorname{Emb}}_{c}\left(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d}\right)$ for various r and m_{i} :

- For $r=1, m_{1}=1$, we have the space $\overline{E m b}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)$ which has been studied by: V. Turchin (2004, 2013), D. Sinha (2006), P. Salvatore (2006), R. Budney (2007, 2012), K. Sakai (2008), Lambrechts-Volić-Turchin (2010), Dwyer-Hess (2012), P. Songhafouo Tsopméné (2013), S. Moriya (2013), T. Willwacher (2015).
- For $r \geq 1, m_{1}=\cdots=m_{r}=1$, we have the space $\overline{\mathrm{Emb}}_{c}\left(\coprod_{i=1}^{r} \mathbb{R}, \mathbb{R}^{d}\right)$ studied by: Munson-Volić (2014), P. Songhafouo Tsopméné (2015), Burke-Koytcheff ($r=2$) (2015).

Literature Review

Many people studied $\overline{\mathrm{Emb}}_{c}\left(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d}\right)$ for various r and m_{i} :

- For $r=1, m_{1}=1$, we have the space $\overline{E m b}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)$ which has been studied by: V. Turchin (2004, 2013), D. Sinha (2006), P. Salvatore (2006), R. Budney (2007, 2012), K. Sakai (2008), Lambrechts-Volić-Turchin (2010), Dwyer-Hess (2012), P. Songhafouo Tsopméné (2013), S. Moriya (2013), T. Willwacher (2015).
- For $r \geq 1, m_{1}=\cdots=m_{r}=1$, we have the space $\overline{\mathrm{Emb}}_{c}\left(\coprod_{i=1}^{r} \mathbb{R}, \mathbb{R}^{d}\right)$ studied by: Munson-Volić (2014), P. Songhafouo Tsopméné (2015), Burke-Koytcheff ($r=2$) (2015).
- For $r=1, m_{1} \geq 1$, we have the space $\overline{\operatorname{Emb}}_{c}\left(\mathbb{R}^{m_{1}}, \mathbb{R}^{d}\right)$ studied by Arone-Turchin $(2014,2015)$,
Fresse-Turchin-Willwacher(2017), Boavida-Weiss (2018).

Literature Review

Many people studied $\overline{\mathrm{Emb}}_{c}\left(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d}\right)$ for various r and m_{i} :

- For $r=1, m_{1}=1$, we have the space $\overline{E m b}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)$ which has been studied by: V. Turchin (2004, 2013), D. Sinha (2006), P. Salvatore (2006), R. Budney (2007, 2012), K. Sakai (2008), Lambrechts-Volić-Turchin (2010), Dwyer-Hess (2012), P. Songhafouo Tsopméné (2013), S. Moriya (2013), T. Willwacher (2015).
- For $r \geq 1, m_{1}=\cdots=m_{r}=1$, we have the space $\overline{E m b}_{c}\left(\coprod_{i=1}^{r} \mathbb{R}, \mathbb{R}^{d}\right)$ studied by: Munson-Volić (2014), P. Songhafouo Tsopméné (2015), Burke-Koytcheff ($r=2$) (2015).
- For $r=1, m_{1} \geq 1$, we have the space $\overline{\operatorname{Emb}}_{c}\left(\mathbb{R}^{m_{1}}, \mathbb{R}^{d}\right)$ studied by Arone-Turchin $(2014,2015)$,
Fresse-Turchin-Willwacher(2017), Boavida-Weiss (2018).
- For $r \geq 1, m_{1}, \cdots, m_{r} \geq 1$, we have the space $\overline{E m b}_{c}\left(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d}\right)$ sutied by J. Ducoulombier (2018), Songhafouo Tsopméné - Turchin (two papers, 2018).

Right Г-modules and Right Ω-modules

- Define Γ to be the category whose objects are finite pointed sets $n+=\{0,1, \cdots, n\}$, with 0 as the basepoint, and whose morphisms are pointed maps.
- Let Ω denote the category of finite unpointed sets $\{1, \cdots, n\}, n \geq 0$, and surjections. (Some authors denote that category by FI).
- For $X=\Gamma$ or $X=\Omega$, define a right X-module as a contravariant functor from X to chain complexes.
- For $X=\Gamma$ or $X=\Omega$, the category of right X-modules is denoted Rmod_{X}. We endow this category with the projective model structure.
- Given two objects $A, B \in \operatorname{Rmod}_{\Omega}$, we write $\operatorname{hRmod}_{\Omega}(A, B)$ for the space of derived morphisms from A to B.

Right Г-modules and Right Ω-modules (continued)

- For $k \geq 0$, define $C\left(k, \mathbb{R}^{d}\right)$ denotes the configuration space of k labeled points in \mathbb{R}^{d}.
- One can show that the sequence $\mathbb{Q} \otimes \pi_{*} C\left(\bullet, \mathbb{R}^{d}\right), d \geq 3$, has a natural structure of a right Γ-module.
- Let cr: $\operatorname{Rmod}_{\Gamma} \longrightarrow \operatorname{Rmod}_{\Omega}$ be the cross-effect functor constructed by Pirashvili. And let $\mathbb{Q} \otimes \widehat{\pi}_{*} C\left(\bullet, \mathbb{R}^{d}\right)$ denote the cross effect of $\mathbb{Q} \otimes \pi_{*} C\left(\bullet, \mathbb{R}^{d}\right)$.
- A sequence of r integers s_{1}, \cdots, s_{r} is written as \vec{s}. Also we write $|\vec{s}|$ for $s_{1}+\cdots+s_{r}$, and $\Sigma_{\vec{s}}$ for $\Sigma_{s_{1}} \times \cdots \times \Sigma_{s_{r}}$. If x_{1}, \cdots, x_{r} is another sequence, we write $\vec{s} \cdot \vec{x}$ for $s_{1} x_{1}+\cdots+s_{r} x_{r}$, and $\vec{x}^{\vec{s}}$ for $\prod_{i} x_{i}^{s_{i}}$.
- Let $Q_{\vec{S}}^{\vec{m}}$ be the right Ω-module defined by

$$
Q_{\vec{s}}^{\vec{m}}(k)=\left\{\begin{array}{lll}
0 & \text { if } k \neq|\vec{s}| ; \\
\operatorname{lnd}_{\Sigma_{\vec{s}}}^{\sum_{k}} \widetilde{H}_{*}\left(S^{\vec{s} \cdot \vec{m}} ; \mathbb{Q}\right) & \text { if } k=|\vec{s}| .
\end{array}\right.
$$

Homotopy groups of $\overline{E m b}_{c}\left(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d}\right)$

Theorem (S.T.-Turchin, 2018)

For $d>2 \max \left\{m_{i}: 1 \leq i \leq r\right\}+1$, there is an isomorphism
$\mathbb{Q} \otimes \pi_{*}\left(\overline{E m b}_{c}\left(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d}\right)\right) \cong \bigoplus_{\vec{s}, t} h \operatorname{Rmod}_{\Omega}\left(Q_{\bar{s}}^{\vec{m}}, \mathbb{Q} \otimes \widehat{\pi}_{t(d-2)+1} C\left(\bullet, \mathbb{R}^{d}\right)\right)$

We also have the homology version of this.

The functions $\mu(-), E_{l}(-), S_{j}(-)$, and $F_{l}(-)$

- Let $\mu(-)$ denote the standard Möbius function.
- Given a variable x and an integer $I \geq 1$, let $E_{l}(x)$ denote the $\operatorname{sum} E_{l}(x)=\frac{1}{l} \sum_{p \mid I} \mu(p) x^{\frac{1}{p}}$.
- Let B_{p} denote the p th Bernoulli number, so that $\sum_{p \geq 0} \frac{B_{p} x^{p}}{p!}=\frac{x}{e^{x}-1}$. Recall that $B_{2 n+1}=0, n \geq 1$. Bernoulli's summation formula equates $1^{j}+2^{j}+\cdots+n^{j}$ with $S_{j}(n)$ where $S_{j}(x)=\frac{1}{j+1} \sum_{p=0}^{j}(-1)^{p}\binom{j+1}{p} B_{p} x^{j+1-p}, j \geq 1$.
- Define $F_{l}(u)$ by $F_{l}(u)=l u^{l} E_{l}\left(\frac{1}{u}\right)$.

Euler characteristics for $\mathrm{Emb}_{c}\left(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d}\right)$

For $\vec{s} \geq 0$ and $t \geq 0$, let $\mathcal{X}_{\vec{s}, t}$ be the Euler characteristic of the summand of the previous theorem indexed by \vec{s}, t. The associated generating function is $F_{\vec{m}, d}^{\pi}\left(x_{1}, \cdots, x_{r}, u\right)=\sum_{\vec{s}, t \geq 0} \mathcal{X}_{\vec{s}, t} \cdot u^{t} \vec{x}^{\vec{s}}$.

Theorem (S.T.-Turchin, 2018)

The generating function $F_{\vec{m}, d}^{\pi}\left(x_{1}, \cdots, x_{r}, u\right)$ is given by the formula

$$
\begin{aligned}
F_{\vec{m}, d}^{\pi}\left(x_{1}, \cdots, x_{r}, u\right)= & \sum_{k, l, j \geq 1} \frac{\mu(k)}{k j} S_{j}\left(\sum_{i=1}^{r}(-1)^{m_{i}-1} E_{l}\left(x_{i}^{k}\right)\right)\left(\frac{(-1)^{d-1} / u^{k l}}{F_{l}\left(u^{k}\right)}\right)^{j} \\
& -\sum_{k, l \geq 1} \sum_{i=1}^{r} \frac{\mu(k)}{k}(-1)^{m_{i}-1} E_{l}\left(x_{i}^{k}\right) \ln \left(F_{l}\left(u^{k}\right)\right),
\end{aligned}
$$

We also have the homology version of this.

Modular operads and Modular envelope of \mathcal{L}_{∞}

- Very roughly, an operad is an algebraic structure consisting of an object of n-ary operations for all n. The compositions of operations are encoded by a certain category of trees.

Modular operads and Modular envelope of \mathcal{L}_{∞}

- Very roughly, an operad is an algebraic structure consisting of an object of n-ary operations for all n. The compositions of operations are encoded by a certain category of trees.
- When dealing with moduli spaces $\bar{M}_{g, n}$ of stable marked complex curves, one encounters general graphs (of certain genus), the case of trees corresponding to curves of genus 0 . So one can consider a "higher genus" analogue of the theory of operads, in which graphs replace trees. The resulting object, introduced by E. Getzler and M. Kapranov, is called modular operad.

Modular operads and Modular envelope of \mathcal{L}_{∞}

- Very roughly, an operad is an algebraic structure consisting of an object of n-ary operations for all n. The compositions of operations are encoded by a certain category of trees.
- When dealing with moduli spaces $\bar{M}_{g, n}$ of stable marked complex curves, one encounters general graphs (of certain genus), the case of trees corresponding to curves of genus 0 . So one can consider a "higher genus" analogue of the theory of operads, in which graphs replace trees. The resulting object, introduced by E. Getzler and M. Kapranov, is called modular operad.
- A cyclic operad is a usual symmetric operad for which the output of its elements has the same role as the inputs.

Modular operads and Modular envelope of \mathcal{L}_{∞}

- Very roughly, an operad is an algebraic structure consisting of an object of n-ary operations for all n. The compositions of operations are encoded by a certain category of trees.
- When dealing with moduli spaces $\bar{M}_{g, n}$ of stable marked complex curves, one encounters general graphs (of certain genus), the case of trees corresponding to curves of genus 0 . So one can consider a "higher genus" analogue of the theory of operads, in which graphs replace trees. The resulting object, introduced by E. Getzler and M. Kapranov, is called modular operad.
- A cyclic operad is a usual symmetric operad for which the output of its elements has the same role as the inputs.
- One has an adjunction Mod: CycOp \rightleftarrows ModOp: Cyc between the categories of cyclic and modular operads.

Modular operads and Modular envelope of \mathcal{L}_{∞}

- Very roughly, an operad is an algebraic structure consisting of an object of n-ary operations for all n. The compositions of operations are encoded by a certain category of trees.
- When dealing with moduli spaces $\bar{M}_{g, n}$ of stable marked complex curves, one encounters general graphs (of certain genus), the case of trees corresponding to curves of genus 0 . So one can consider a "higher genus" analogue of the theory of operads, in which graphs replace trees. The resulting object, introduced by E. Getzler and M. Kapranov, is called modular operad.
- A cyclic operad is a usual symmetric operad for which the output of its elements has the same role as the inputs.
- One has an adjunction Mod: CycOp \rightleftarrows ModOp: Cyc between the categories of cyclic and modular operads.
- Let \mathcal{L}_{∞} be the operad for homotopy Lie algebras. We consider the modular operad $\operatorname{Mod}\left(\mathcal{L}_{\infty}\right)=\left\{\operatorname{Mod}\left(\mathcal{L}_{\infty}\right)((g, n))\right\}_{g, n}$.

The notion of supercharacter

Let $M=\left(\oplus_{i} M_{i}, \partial\right)$ be a finite dimensional chain complex of Σ_{k}-modules over a ground field \mathbb{K} of characteristic 0 .

- By the supercharacter we understand the character of the Σ_{k} action on the virtual representation $\mathcal{X} M$ defined as $\mathcal{X} M:=\sum_{i}(-1)^{i} M_{i}$. The latter virtual representation is similar to the Euler characteristic in the sense that $\mathcal{X} M \simeq \mathcal{X}\left(H_{*} M\right)$, that's why we use this notation.
- Let $Z_{M_{i}}$ denote the cycle index sum of M_{i}. The cycle index sum encoding the supercharacter of the Σ_{k} action on M can be defined as $Z_{\mathcal{X} M}=\sum_{i}(-1)^{i} Z_{M_{i}}$,
For a symmetric sequence of chain complexes $M=\{M(k)\}_{k \geq 0}$, we similarly define $Z_{\mathcal{X} M}:=\sum_{k \geq 0} Z_{\mathcal{X} M(k)}$.

The supercharacter of the symmetric group action on $\operatorname{Mod}\left(\mathcal{L}_{\infty}\right)$

For any stable collection $\{M((g, n))\}$ define a symmetric sequence $M((\bullet))=\left\{\oplus_{g} M(g, n), n \geq 0\right\}$.

Theorem (S.T. - Turchin, 2018)

The supercharacter of the symmetric group action on the modular envelope of $\left\{\operatorname{Mod}\left(\mathcal{L}_{\infty}\right)((k))\right\}_{k \geq 0}$ of \mathcal{L}_{∞} is described by the cycle index sum

$$
\begin{aligned}
& Z_{\mathcal{X} \operatorname{Mod}\left(\mathcal{L}_{\infty}\right)((\bullet))}\left(w ; p_{1}, p_{2}, p_{3}, \cdots\right)= \\
& w \sum_{k, I, j \geq 1} \frac{\mu(k)}{k j} S_{j}\left(\frac{1}{l} \sum_{a \mid I} \mu\left(\frac{I}{a}\right) \frac{p_{a k}}{w^{a k}}\right)\left(\frac{l w^{k l}}{F_{l}\left(w^{k}\right)}\right)^{j}- \\
& w \sum_{k, l \geq 1} \frac{\mu(k)}{k l}\left(\sum_{a \mid I} \mu\left(\frac{I}{a}\right) \frac{p_{a k}}{w^{a k}}\right) \ln \left(F_{l}\left(w^{k}\right)\right)
\end{aligned}
$$

The proof of this theorem relies on

- the formula we obtained for the generating function $F_{\vec{m}, d}^{\pi}\left(x_{1}, \cdots, x_{r}, u\right)$, and
- certain graph complexes introduced by M. Kontsevich.

Thanks!

Thanks for listening!

Incidence strata of affine varieties with complex multiplicities

Hunter Spink, joint with Dennis Tseng

Incidence Strata in \mathbf{A}^{1}

Incidence Strata in A^{1}

Consider 4 unordered points in \mathbb{A}^{1}

Incidence Strata in A^{1}

Consider 4 unordered points in \mathbb{A}^{1}

Incidence Strata in A^{1}

Consider 4 unordered points in \mathbb{A}^{1}
$\operatorname{Sym}^{4} \mathrm{~A}^{1}=\mathbb{A}^{4}$ freely parametrizes coefficients a, b, c, d of

$$
\left(z-x_{1}\right)\left(z-x_{2}\right)\left(z-x_{3}\right)\left(z-x_{4}\right)=z^{4}+a z^{3}+b z^{2}+c z+d
$$

Incidence Strata in A^{1}

Consider 4 unordered points in \mathbb{A}^{1}
$\operatorname{Sym}^{4} \mathrm{~A}^{1}=\mathbb{A}^{4}$ freely parametrizes coefficients a, b, c, d of

$$
\left(z-x_{1}\right)\left(z-x_{2}\right)\left(z-x_{3}\right)\left(z-x_{4}\right)=z^{4}+a z^{3}+b z^{2}+c z+d
$$

Incidence Strata in A^{1}

Consider 4 unordered points in \mathbb{A}^{1}
$\operatorname{Sym}^{4} \mathrm{~A}^{1}=\mathbb{A}^{4}$ freely parametrizes coefficients a, b, c, d of

$$
\left(z-x_{1}\right)\left(z-x_{2}\right)\left(z-x_{3}\right)\left(z-x_{4}\right)=z^{4}+a z^{3}+b z^{2}+c z+d
$$

Partitions of [4] are in bijection with closed incidence strata, the closure of the set of configurations where the multiplicities are exactly given by the partition.

Incidence Strata in A^{1}

Consider 4 unordered points in \mathbb{A}^{1}
$\operatorname{Sym}^{4} \mathrm{~A}^{1}=\mathbb{A}^{4}$ freely parametrizes coefficients a, b, c, d of

$$
\left(z-x_{1}\right)\left(z-x_{2}\right)\left(z-x_{3}\right)\left(z-x_{4}\right)=z^{4}+a z^{3}+b z^{2}+c z+d
$$

Partitions of [4] are in bijection with closed incidence strata, the closure of the set of configurations where the multiplicities are exactly given by the partition.

Incidence Strata in A^{1}

Incidence Strata in \mathbf{A}^{1}

[2,1,1]
$=\left\{\left(z-x_{1}\right)^{2}\left(z-x_{2}\right)\left(z-x_{3}\right)\right\} \subset\left\{z^{4}+a x^{3}+b x^{2}+c x+d\right\}=\operatorname{Sym}^{4} \mathbb{A}^{1}=\mathbb{A}^{4}$
Discriminant
hypersurface

Incidence Strata in A^{1}

[2,1,1]

- $=\left\{\left(z-x_{1}\right)^{2}\left(z-x_{2}\right)\left(z-x_{3}\right)\right\} \subset\left\{z^{4}+a x^{3}+b x^{2}+c x+d\right\}=\operatorname{Sym}^{4} \mathbb{A}^{1}=\mathbb{A}^{4}$
$\begin{aligned} & \text { Discriminant } \\ & \text { hypersurface }\end{aligned}=\operatorname{Spec} \mathbb{C}\left[e_{1}\left(x_{1}, x_{1}, x_{2}, x_{3}\right), e_{2}\left(x_{1}, x_{1}, x_{2}, x_{3}\right), e_{3}\left(x_{1}, x_{1}, x_{2}, x_{3}\right), e_{4}\left(x_{1}, x_{1}, x_{2}, x_{3}\right)\right]$

Incidence Strata in A^{1}

[2,1,1]

- $=\left\{\left(z-x_{1}\right)^{2}\left(z-x_{2}\right)\left(z-x_{3}\right)\right\} \subset\left\{z^{4}+a x^{3}+b x^{2}+c x+d\right\}=\operatorname{Sym}^{4} \mathbb{A}^{1}=\mathbb{A}^{4}$
$\begin{aligned} & \text { Discriminant } \\ & \text { hypersurface }\end{aligned}=\operatorname{Spec} \mathbb{C}\left[e_{1}\left(x_{1}, x_{1}, x_{2}, x_{3}\right), e_{2}\left(x_{1}, x_{1}, x_{2}, x_{3}\right), e_{3}\left(x_{1}, x_{1}, x_{2}, x_{3}\right), e_{4}\left(x_{1}, x_{1}, x_{2}, x_{3}\right)\right]$
[r,s, t]

Incidence Strata in A^{1}

[2,1,1]
-

$$
\text { - }=\left\{\left(z-x_{1}\right)^{2}\left(z-x_{2}\right)\left(z-x_{3}\right)\right\} \subset\left\{z^{4}+a x^{3}+b x^{2}+c x+d\right\}=\operatorname{Sym}^{4} \mathbb{A}^{1}=\mathbb{A}^{4}
$$

Discriminant hypersurface

[r,s, t]

$$
80 \text { \& }=\left\{\left(z-x_{1}\right)^{r}\left(z-x_{2}\right)^{s}\left(z-x_{3}\right)^{t}\right\} \subset \operatorname{Sym}^{r+s+t} \mathbb{A}^{1}=\mathbb{A}^{r+s+t}
$$

Incidence Strata in A^{1}

[2,1,1]
\bullet

$$
\text { - }=\left\{\left(z-x_{1}\right)^{2}\left(z-x_{2}\right)\left(z-x_{3}\right)\right\} \subset\left\{z^{4}+a x^{3}+b x^{2}+c x+d\right\}=\operatorname{Sym}^{4} \mathbb{A}^{1}=\mathbb{A}^{4}
$$

Discriminant hypersurface

[r,s, t]

$$
\begin{aligned}
8 \bullet & =\left\{\left(z-x_{1}\right)^{r}\left(z-x_{2}\right)^{s}\left(z-x_{3}\right)^{t}\right\} \subset \operatorname{Sym}^{r+s+t} \mathbb{A}^{1}=\mathbb{A}^{r+s+t} \\
& =\operatorname{Specc}[\{\{_{i} \underbrace{x_{1}, \ldots, x_{1},}_{r} \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})\}_{1 \leq i \leq r+s+t}]
\end{aligned}
$$

Incidence Strata in A^{1}

[2,1,1]
-

$$
\text { - }=\left\{\left(z-x_{1}\right)^{2}\left(z-x_{2}\right)\left(z-x_{3}\right)\right\} \subset\left\{z^{4}+a x^{3}+b x^{2}+c x+d\right\}=\operatorname{Sym}^{4} \mathbb{A}^{1}=\mathbb{A}^{4}
$$

Discriminant hypersurface

[r,s, t]

$$
\begin{aligned}
80 \mathcal{Q} & =\left\{\left(z-x_{1}\right)^{r}\left(z-x_{2}\right)^{s}\left(z-x_{3}\right)^{t}\right\} \subset \operatorname{Sym}^{r+s+t} \mathrm{~A}^{1}=\mathrm{A}^{r+s+t} \\
& =\operatorname{SpecC}[\{e_{i} \underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})\}_{1 \leq i \leq r+s+t}] \\
& e_{i}(\underbrace{x_{1}, \ldots, x_{1}, \underbrace{}_{2}, \ldots, x_{2}}_{r}, \underbrace{x_{3}, \ldots, x_{3}}_{t})=\sum_{i_{1}+i_{2}+i_{3}=i}\binom{r}{i_{1}}\binom{s}{i_{2}}\binom{t}{i_{3}} x_{1}^{i_{1} x_{2} x_{2} x_{3}^{i_{3}}}
\end{aligned}
$$

Incidence Strata in A^{1}

[2,1,1]
-

$$
\text { - }=\left\{\left(z-x_{1}\right)^{2}\left(z-x_{2}\right)\left(z-x_{3}\right)\right\} \subset\left\{z^{4}+a x^{3}+b x^{2}+c x+d\right\}=\operatorname{Sym}^{4} \mathbb{A}^{1}=\mathbb{A}^{4}
$$

Discriminant hypersurface

[r,s, t]

$$
\begin{aligned}
80 \mathcal{Q} & =\left\{\left(z-x_{1}\right)^{r}\left(z-x_{2}\right)^{s}\left(z-x_{3}\right)^{t}\right\} \subset \operatorname{Sym}^{r+s+t} \mathrm{~A}^{1}=\mathrm{A}^{r+s+t} \\
& =\operatorname{SpecC}[\{e_{i} \underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})\}_{1 \leq i \leq r+s+t}] \\
& e_{i}(\underbrace{x_{1}, \ldots, x_{1}, \underbrace{}_{2}, \ldots, x_{2}}_{r}, \underbrace{x_{3}, \ldots, x_{3}}_{t})=\sum_{i_{1}+i_{2}+i_{3}=i}\binom{r}{i_{1}}\binom{s}{i_{2}}\binom{t}{i_{3}} x_{1}^{i_{1} x_{2} x_{2} x_{3}^{i_{3}}}
\end{aligned}
$$

Incidence Strata in A^{1}

[2,1,1]
-

$$
\text { - }=\left\{\left(z-x_{1}\right)^{2}\left(z-x_{2}\right)\left(z-x_{3}\right)\right\} \subset\left\{z^{4}+a x^{3}+b x^{2}+c x+d\right\}=\operatorname{Sym}^{4} \mathbb{A}^{1}=\mathbb{A}^{4}
$$

Discriminant hypersurface

$$
\begin{aligned}
& {[r, \mathrm{~s}, \mathrm{t}] } \\
&=\left\{\left(z-x_{1}\right)^{r}\left(z-x_{2}\right)^{s}\left(z-x_{3}\right)^{t}\right\} \subset \operatorname{Sym}^{r+s+t} \mathbb{A}^{1}=\mathbb{A}^{r+s+t} \\
&= \operatorname{Spec} \mathbb{C}[\{e_{i}(\underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})\}_{1 \leq i \leq r+s+t}] \\
& e_{i}(\underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})=\sum_{i_{1}+i_{2}+i_{3}=i}\binom{r}{i_{1}}\binom{s}{i_{2}}\binom{t}{i_{3}} x_{1}^{i_{1}} x_{2}^{i_{2}} x_{3}^{i_{3}}
\end{aligned}
$$

Idea: Let r, s, t be arbitrary complex numbers, obtain continuous family of "C-incidence strata"

Incidence Strata in A^{1}

[2,1,1]
-

$$
=\left\{\left(z-x_{1}\right)^{2}\left(z-x_{2}\right)\left(z-x_{3}\right)\right\} \subset\left\{z^{4}+a x^{3}+b x^{2}+c x+d\right\}=\operatorname{Sym}^{4} \mathbb{A}^{1}=\mathbb{A}^{4}
$$

Discriminant hypersurface
$=\operatorname{Spec} \mathbb{C}\left[e_{1}\left(x_{1}, x_{1}, x_{2}, x_{3}\right), e_{2}\left(x_{1}, x_{1}, x_{2}, x_{3}\right), e_{3}\left(x_{1}, x_{1}, x_{2}, x_{3}\right), e_{4}\left(x_{1}, x_{1}, x_{2}, x_{3}\right)\right]$

$$
\begin{aligned}
& {[r, \mathrm{~s}, \mathrm{t}] } \\
&=\left\{\left(z-x_{1}\right)^{r}\left(z-x_{2}\right)^{s}\left(z-x_{3}\right)^{t}\right\} \subset \operatorname{Sym}^{r+s+t} \mathbb{A}^{1}=\mathbb{A}^{r+s+t} \\
&= \operatorname{Spec} \mathbb{C}[\{e_{i}(\underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})\}_{1 \leq i \leq r+s+t}] \\
& e_{i}(\underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})=\sum_{i_{1}+i_{2}+i_{3}=i}\binom{r}{i_{1}}\binom{s}{i_{2}}\binom{t}{i_{3}} x_{1}^{i_{1}} x_{2}^{i_{2}} x_{3}^{i_{3}}
\end{aligned}
$$

Idea: Let r, s, t be arbitrary complex numbers, obtain continuous family of "C -incidence strata" Problem: $\mathbb{C}[r, s, t,\{e_{i}(\underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})\}_{i \in \mathbb{N}}]$ isn't finitely generated.

Incidence Strata in A^{1}

[2,1,1]

$$
=\left\{\left(z-x_{1}\right)^{2}\left(z-x_{2}\right)\left(z-x_{3}\right)\right\} \subset\left\{z^{4}+a x^{3}+b x^{2}+c x+d\right\}=\operatorname{Sym}^{4} \mathbb{A}^{1}=\mathbb{A}^{4}
$$

Discriminant hypersurface

$$
=\operatorname{Spec} \mathbb{C}\left[e_{1}\left(x_{1}, x_{1}, x_{2}, x_{3}\right), e_{2}\left(x_{1}, x_{1}, x_{2}, x_{3}\right), e_{3}\left(x_{1}, x_{1}, x_{2}, x_{3}\right), e_{4}\left(x_{1}, x_{1}, x_{2}, x_{3}\right)\right]
$$

$[r, s, t]$

$$
\begin{aligned}
\mathcal{O}= & \left\{\left(z-x_{1}\right)^{r}\left(z-x_{2}\right)^{s}\left(z-x_{3}\right)^{t}\right\} \subset \operatorname{Sym}^{r+s+t} \mathbb{A}^{1}=\mathbb{A}^{r+s+t} \\
= & \operatorname{Spec} \mathbb{C}[\{e_{i}(\underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})\}_{1 \leq i \leq r+s+t}] \\
& e_{i}(\underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})=\sum_{i_{1}+i_{2}+i_{3}=i}\binom{r}{i_{1}}\binom{s}{i_{2}}\binom{t}{i_{3}} x_{1}^{i_{1} x_{2}^{i_{2}} x_{3}^{i_{3}}}
\end{aligned}
$$

Idea: Let r, s, t be arbitrary complex numbers, obtain continuous family of "C -incidence strata"
Problem: $\mathbb{C}[r, s, t,\{e_{i}(\underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})\}_{i \in \mathbb{N}}]$ isn't finitely generated.
Other possible obstruction: If we have a sequence of varieties X_{1}, X_{2}, \ldots then a necessary condition for them to be fibers of a finite-type family is that their "affine embedding dimensions" $\min \left\{n \mid X \hookrightarrow \mathbb{A}^{n}\right\}$ are bounded.

Incidence Strata in A^{1}

Solution: (Etingof, Rains, Sam) It's finite-type after inverting
$r^{-1}, s^{-1}, t^{-1},(r+s)^{-1},(r+t)^{-1},(s+t)^{-1},(r+s+t)^{-1}$
(i.e. we avoid all collisions which would cause a point of multiplicity 0).

Incidence Strata in A^{1}

Solution: (Etingof, Rains, Sam) It's finite-type after inverting
$r^{-1}, s^{-1}, t^{-1},(r+s)^{-1},(r+t)^{-1},(s+t)^{-1},(r+s+t)^{-1}$
(i.e. we avoid all collisions which would cause a point of multiplicity 0).

Concretely: There exists a threshold N such that for all $i>N$ we may find a polynomial expression for $e_{i}(\underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})$ in terms of $e_{j}(\underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})$ with
$j \leq N$ and coefficients in $\mathbb{C}[r, s, t]\left[r^{-1}, s^{-1}, t^{-1},(r+s)^{-1},(r+t)^{-1},(s+t)^{-1},(r+s+t)^{-1}\right]$

Incidence Strata in A^{1}

Solution: (Etingof, Rains, Sam) It's finite-type after inverting

$$
r^{-1}, s^{-1}, t^{-1},(r+s)^{-1},(r+t)^{-1},(s+t)^{-1},(r+s+t)^{-1}
$$

(i.e. we avoid all collisions which would cause a point of multiplicity 0).

Concretely: There exists a threshold N such that for all $i>N$ we may find a polynomial expression for $e_{i}(\underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})$ in terms of $e_{j}(\underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})$ with
$j \leq N$ and coefficients in $\mathbb{C}[r, s, t]\left[r^{-1}, s^{-1}, t^{-1},(r+s)^{-1},(r+t)^{-1},(s+t)^{-1},(r+s+t)^{-1}\right]$

Question: Does something similar work for other affine varieties?

Incidence Strata in A^{1}

Solution: (Etingof, Rains, Sam) It's finite-type after inverting

$$
r^{-1}, s^{-1}, t^{-1},(r+s)^{-1},(r+t)^{-1},(s+t)^{-1},(r+s+t)^{-1}
$$

(i.e. we avoid all collisions which would cause a point of multiplicity 0).

Concretely: There exists a threshold N such that for all $i>N$ we may find a polynomial expression for $e_{i}(\underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})$ in terms of $e_{j}(\underbrace{\left(x_{1}, \ldots, x_{1}\right.}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})$ with
$j \leq N$ and coefficients in $\mathbb{C}[r, s, t]\left[r^{-1}, s^{-1}, t^{-1},(r+s)^{-1},(r+t)^{-1},(s+t)^{-1},(r+s+t)^{-1}\right]$

Question: Does something similar work for other affine varieties?

Theorem(S, Tseng): There is a functor Δ^{k} from affine varieties X to affine varieties over $\left.\mathbb{C}\left[m_{1}, \ldots, m_{k}\right]\left[\left\{\left(\sum_{i \in A} m_{i}\right)^{-1}\right\}_{A \subset\{1, \ldots, k\}}\right\}\right]$ such that the fiber of $\Delta^{r}(X)$ over any $\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}^{k}$ is precisely the k part incidence strata of $\operatorname{Sym}^{m_{1}+\ldots+m_{k}} X$ associated to $\left(m_{1}, \ldots, m_{k}\right)$.

Incidence Strata in A^{1}

Solution: (Etingof, Rains, Sam) It's finite-type after inverting

$$
r^{-1}, s^{-1}, t^{-1},(r+s)^{-1},(r+t)^{-1},(s+t)^{-1},(r+s+t)^{-1}
$$

(i.e. we avoid all collisions which would cause a point of multiplicity 0).

Concretely: There exists a threshold N such that for all $i>N$ we may find a polynomial expression for $e_{i}(\underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})$ in terms of $e_{j}(\underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})$ with
$j \leq N$ and coefficients in $\mathbb{C}[r, s, t]\left[r^{-1}, s^{-1}, t^{-1},(r+s)^{-1},(r+t)^{-1},(s+t)^{-1},(r+s+t)^{-1}\right]$

Question: Does something similar work for other affine varieties?

Theorem(S, Tseng): There is a functor Δ^{k} from affine varieties X to affine varieties over $\left.\mathbb{C}\left[m_{1}, \ldots, m_{k}\right]\left[\left\{\left(\sum_{i \in A} m_{i}\right)^{-1}\right\}_{A \subset\{1, \ldots, k\}}\right\}\right]$ such that the fiber of $\Delta^{r}(X)$ over any $\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}^{k}$ is precisely the k part incidence strata of $\operatorname{Sym}^{m_{1}+\ldots+m_{k}} X$ associated to $\left(m_{1}, \ldots, m_{k}\right)$.

Theorem(S, Tseng): By explicit elimination, if we use power sum polynomials instead of elementary symmetric sums, this works over any ring (e.g. ring of integers).

Why power sums?
 $$
p_{1}^{4}=1
$$

Why power sums? yn

Theorem (S, Tseng): Deligne category construction agrees with ad hoc construction, and via the following ring-theoretic construction:

 $$
p_{i}(\underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})=r x_{1}^{i}+s x_{2}^{i}+t x_{3}^{i}
$$

Theorem (S, Tseng): Deligne category construction agrees with ad hoc construction, and via the following ring-theoretic construction:

$$
\begin{aligned}
& \left(m_{1}, \ldots, m_{k}\right) \text {-incidence strata in } \operatorname{Spec}(R) \\
= & \text { Spec }\left(\text { subalgebra of } R^{\otimes k} \text { generated by }\left\{m_{1} r_{1}+\ldots+m_{k} r_{k}\right\}_{r \in R}\right) \\
& \text { where } r_{i}:=1 \otimes \ldots \otimes 1 \otimes r \otimes 1 \otimes \ldots \otimes 1 \in R^{\otimes k}
\end{aligned}
$$

 $$
p_{i}(\underbrace{x_{1}, \ldots, x_{1}}_{r}, \underbrace{x_{2}, \ldots, x_{2}}_{s}, \underbrace{x_{3}, \ldots, x_{3}}_{t})=r x_{1}^{i}+s x_{2}^{i}+t x_{3}^{i}
$$

Theorem (S, Tseng): Deligne category construction agrees with ad hoc construction, and via the following ring-theoretic construction:

$$
\begin{aligned}
& \left(m_{1}, \ldots, m_{k}\right) \text {-incidence strata in } \operatorname{Spec}(R) \\
= & \text { Spec }\left(\text { subalgebra of } R^{\otimes k} \text { generated by }\left\{m_{1} r_{1}+\ldots+m_{k} r_{k}\right\}_{r \in R}\right) \\
& \text { where } r_{i}:=1 \otimes \ldots \otimes 1 \otimes r \otimes 1 \otimes \ldots \otimes 1 \in R^{\otimes k}
\end{aligned}
$$

$$
\left\{\left.\frac{m_{1}}{z-x_{1}}+\ldots+\frac{m_{k}}{z-x_{k}} \right\rvert\, x_{i} \in \mathbb{A}^{1}\right\}
$$

Vague idea for future work

Vague idea for future work

Idea: Study point configurations statistics where \# of points is an algebraic number.

Vague idea for future work

Idea: Study point configurations statistics where \# of points is an algebraic number.

Consider the (1, α) incidence strata, $\alpha \in \overline{\mathbb{Q}}$ algebraic integer, in an affine variety X over \mathbb{Z}

Vague idea for future work

Idea: Study point configurations statistics where \# of points is an algebraic number.

Consider the (1, α) incidence strata, $\alpha \in \overline{\mathbb{Q}}$ algebraic integer, in an affine variety X over \mathbb{Z}
E.g. when $X=\mathbb{A}^{1}$ this is $\operatorname{Spec} \mathbb{Z}\left[\alpha, \alpha^{-1}\right]\left[x+\alpha y, x^{2}+\alpha y^{2}, x^{3}+\alpha y^{3}\right]$

Vague idea for future work

Idea: Study point configurations statistics where \# of points is an algebraic number.

Consider the (1, α) incidence strata, $\alpha \in \overline{\mathbb{Q}}$ algebraic integer, in an affine variety X over \mathbb{Z}
E.g. when $X=A^{1}$ this is $\operatorname{Spec} \mathbb{Z}\left[\alpha, \alpha^{-1}\right]\left[x+\alpha y, x^{2}+\alpha y^{2}, x^{3}+\alpha y^{3}\right]$

This is the symmetric quotient of the union of planes in $\mathbb{A}^{1+\alpha}$ where all but one coord. is equal.

Vague idea for future work

Idea: Study point configurations statistics where \# of points is an algebraic number.

Consider the (1, α) incidence strata, $\alpha \in \overline{\mathbb{Q}}$ algebraic integer, in an affine variety X over \mathbb{Z}
E.g. when $X=\mathbb{A}^{1}$ this is $\operatorname{Spec} \mathbb{Z}\left[\alpha, \alpha^{-1}\right]\left[x+\alpha y, x^{2}+\alpha y^{2}, x^{3}+\alpha y^{3}\right]$

This is the symmetric quotient of the union of planes in $\mathbb{A}^{1+\alpha}$ where all but one coord. is equal.
This doesn't make sense obviously, but over some \mathbb{F}_{p} it does...

Vague idea for future work

Idea: Study point configurations statistics where \# of points is an algebraic number.

Consider the (1, α) incidence strata, $\alpha \in \overline{\mathbb{Q}}$ algebraic integer, in an affine variety X over \mathbb{Z}
E.g. when $X=\mathbb{A}^{1}$ this is $\operatorname{Spec} \mathbb{Z}\left[\alpha, \alpha^{-1}\right]\left[x+\alpha y, x^{2}+\alpha y^{2}, x^{3}+\alpha y^{3}\right]$

This is the symmetric quotient of the union of planes in $\mathbb{A}^{1+\alpha}$ where all but one coord. is equal.
This doesn't make sense obviously, but over some \mathbb{F}_{p} it does...
In particular: If p totally splits in $\mathbb{Z}[\alpha]$ this yields $\operatorname{deg}(\alpha)$ incidence $\operatorname{strata}\left(1, \alpha_{1}\right), \ldots,\left(1, \alpha_{k}\right)$ where $\alpha_{i} \in \mathbb{N}, 0<\alpha_{i}<p$.

Vague idea for future work

Idea: Study point configurations statistics where \# of points is an algebraic number.

Consider the (1, α) incidence strata, $\alpha \in \overline{\mathbb{Q}}$ algebraic integer, in an affine variety X over \mathbb{Z}
E.g. when $X=\mathbb{A}^{1}$ this is $\operatorname{Spec} \mathbb{Z}\left[\alpha, \alpha^{-1}\right]\left[x+\alpha y, x^{2}+\alpha y^{2}, x^{3}+\alpha y^{3}\right]$

This is the symmetric quotient of the union of planes in $\mathbb{A}^{1+\alpha}$ where all but one coord. is equal.
This doesn't make sense obviously, but over some \mathbb{F}_{p} it does...
In particular: If p totally splits in $\mathbb{Z}[\alpha]$ this yields $\operatorname{deg}(\alpha)$ incidence $\operatorname{strata}\left(1, \alpha_{1}\right), \ldots,\left(1, \alpha_{k}\right)$ where $\alpha_{i} \in \mathbb{N}, 0<\alpha_{i}<p$.

This relates incidence strata with different numbers of points over different primes.

Vague idea for future work

Idea: Study point configurations statistics where \# of points is an algebraic number.

Consider the (1, α) incidence strata, $\alpha \in \overline{\mathbb{Q}}$ algebraic integer, in an affine variety X over \mathbb{Z}
E.g. when $X=\mathbb{A}^{1}$ this is $\operatorname{Spec} \mathbb{Z}\left[\alpha, \alpha^{-1}\right]\left[x+\alpha y, x^{2}+\alpha y^{2}, x^{3}+\alpha y^{3}\right]$

This is the symmetric quotient of the union of planes in $\mathbb{A}^{1+\alpha}$ where all but one coord. is equal.
This doesn't make sense obviously, but over some \mathbb{F}_{p} it does...
In particular: If p totally splits in $\mathbb{Z}[\alpha]$ this yields $\operatorname{deg}(\alpha)$ incidence $\operatorname{strata}\left(1, \alpha_{1}\right), \ldots,\left(1, \alpha_{k}\right)$ where $\alpha_{i} \in \mathbb{N}, 0<\alpha_{i}<p$.

This relates incidence strata with different numbers of points over different primes.

THANK YOU

Arithmetic groups and characteristic classes of manifold bundles

Bena Tshishiku Workshop on arithmetic topology

$$
\text { June } 2019
$$

Main Theorem

Main Theorem

$$
\mathrm{SO}_{g, g}=\left\{A \in \mathrm{SL}_{2 g}(\mathbb{C}): A^{\mathrm{t}} J A=J\right\} \quad J=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)
$$

Main Theorem

$$
\mathrm{SO}_{g, g}=\left\{A \in \mathrm{SL}_{2 g}(\mathbb{C}): A^{\dagger} J A=J\right\} \quad J=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)
$$

Theorem (T, 2017). $g \geq 3$ odd. Given $N>0$, there exists finite-index $\Gamma<\mathrm{SO}_{g, g}(\mathbb{Z})$ with $\operatorname{dim} \mathrm{H}^{g}(\Gamma ; \mathbb{Q}) \geq N$.

Main Theorem

$$
\mathrm{SO}_{g, g}=\left\{A \in \mathrm{SL}_{2 g}(\mathbb{C}): A^{\dagger} J A=J\right\} \quad J=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)
$$

Theorem (T, 2017). $g \geq 3$ odd. Given $N>0$, there exists finite-index $\Gamma<\mathrm{SO}_{g, g}(\mathbb{Z})$ with $\operatorname{dim} \mathrm{H}^{g}(\Gamma ; \mathbb{Q}) \geq N$.
$\mathrm{H}^{*}(\mathrm{~B} \mathrm{\Gamma} ; \mathbb{Q})$

Main Theorem

$$
\mathrm{SO}_{g, g}=\left\{A \in \mathrm{SL}_{2 g}(\mathbb{C}): A^{\dagger} J A=J\right\} \quad J=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)
$$

Theorem (T, 2017). $g \geq 3$ odd. Given $N>0$, there exists finite-index $\Gamma<\mathrm{SO}_{g, g}(\mathbb{Z})$ with $\operatorname{dim} \mathrm{H}^{g}(\Gamma ; \mathbb{Q}) \geq N$.

Borel's

Main Theorem

$$
\mathrm{SO}_{g, g}=\left\{A \in \mathrm{SL}_{2 g}(\mathbb{C}): A^{\mathrm{\dagger}} J A=J\right\} \quad J=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)
$$

Theorem (T, 2017). $g \geq 3$ odd. Given $N>0$, there exists finite-index $\Gamma<\mathrm{SO}_{g, g}(\mathbb{Z})$ with $\operatorname{dim} \mathrm{H}^{g}(\Gamma ; \mathbb{Q}) \geq N$.

$\mathrm{H}^{*}(\mathrm{~B} \mathrm{\Gamma} ; \mathbb{Q})$

Main Theorem

$$
\mathrm{SO}_{g, g}=\left\{A \in \mathrm{SL}_{2 g}(\mathbb{C}): A^{\natural} J A=J\right\} \quad J=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)
$$

Theorem (T, 2017). $g \geq 3$ odd. Given $N>0$, there exists finite-index $\Gamma<\mathrm{SO}_{g, g}(\mathbb{Z})$ with $\operatorname{dim} \mathrm{H}^{g}(\Gamma ; \mathbb{Q}) \geq N$.

$\mathrm{H}^{*}(\mathrm{~B} \mathrm{\Gamma} ; \mathbb{Q})$

Characteristic class construction

Theorem. $g \geq 3$ odd. Given $N>0$, there exists finite-index $\Gamma<\mathrm{SO}_{g, g}(\mathbb{Z})$ with $\operatorname{dim} \mathrm{H}^{g}(\mathrm{~B} \Gamma ; \mathbb{Q}) \geq N$.

Characteristic class construction

Theorem. $g \geq 3$ odd. Given $N>0$, there exists finite-index $\Gamma<\mathrm{SO}_{g, g}(\mathbb{Z})$ with $\operatorname{dim} \mathrm{H}^{g}(\mathrm{~B} \Gamma ; \mathbb{Q}) \geq N$.

Characteristic class construction

$$
\begin{aligned}
& \mathbb{R}^{2 g}, J \\
& \stackrel{\downarrow}{W} \\
& \stackrel{1}{b} \\
& B
\end{aligned}
$$

Theorem. $g \geq 3$ odd. Given $N>0$, there exists finite-index $\Gamma<\mathrm{SO}_{g, g}(\mathbb{Z})$ with $\operatorname{dim} \mathrm{H}^{g}(\mathrm{~B} \Gamma ; \mathbb{Q}) \geq N$.

Characteristic class construction

vector bundle, structure group

$$
\mathrm{SO}_{g, g}(\mathbb{Z}) \leq \mathrm{SO}_{g, g}(\mathbb{R})
$$

Theorem. $g \geq 3$ odd. Given $N>0$, there exists finite-index $\Gamma<\mathrm{SO}_{g, g}(\mathbb{Z})$ with $\operatorname{dim} \mathrm{H}^{g}(\mathrm{~B} \Gamma ; \mathbb{Q}) \geq N$.

Characteristic class construction

vector bundle, structure group

$$
\mathrm{SO}_{g, g}(\mathbb{Z}) \leq \mathrm{SO}_{g, g}(\mathbb{R})
$$

Theorem. $g \geq 3$ odd. Given $N>0$, there exists finite-index $\Gamma<\mathrm{SO}_{g, g}(\mathbb{Z})$ with $\operatorname{dim} \mathrm{H}^{g}(\mathrm{~B} \Gamma ; \mathbb{Q}) \geq N$.

Characteristic class construction

vector bundle, structure group

$$
\mathrm{SO}_{g, g}(\mathbb{Z}) \leq \mathrm{SO}_{g, g}(\mathbb{R}) \sim \mathrm{S}\left(\mathrm{O}_{g} \times \mathrm{O}_{g}\right)
$$

Theorem. $g \geq 3$ odd. Given $N>0$, there exists finite-index $\Gamma<\mathrm{SO}_{g, g}(\mathbb{Z})$ with $\operatorname{dim} \mathrm{H}^{g}(\mathrm{~B} \Gamma ; \mathbb{Q}) \geq N$.

Characteristic class construction

$\mathbb{Z}^{2 g} \quad \mathbb{R}^{2 g}, J$
$\downarrow \downarrow$ rank- g positive subbundle
vector bundle, structure group

$$
\mathrm{SO}_{g, g}(\mathbb{Z}) \leq \mathrm{SO}_{g, g}(\mathbb{R}) \sim \mathrm{S}\left(\mathrm{O}_{g} \times \mathrm{O}_{g}\right)
$$

Theorem. $g \geq 3$ odd. Given $N>0$, there exists finite-index $\Gamma<\mathrm{SO}_{g, g}(\mathbb{Z})$ with $\operatorname{dim} \mathrm{H}^{g}(\mathrm{~B} \Gamma ; \mathbb{Q}) \geq N$.

Characteristic class construction

$$
\begin{aligned}
& \mathbb{Z}^{2 g} \quad \mathbb{R}^{2 g}, J \\
& \downarrow \downarrow \curvearrowleft \text { rank- } g \text { positive subbundle } \\
& \Lambda \rightarrow W \text { ว U } \\
& \text { vector bundle, structure group } \\
& \mathrm{SO}_{g, g}(\mathbb{Z}) \leq \mathrm{SO}_{g, g}(\mathbb{R}) \sim \mathrm{S}\left(\mathrm{O}_{g} \times \mathrm{O}_{g}\right)
\end{aligned}
$$

Given $\lambda \in \mathbb{Z}^{2 g}, \lambda \cdot \lambda<0$, does there exist U so that $\lambda \notin \mathrm{U}^{\perp}$ in each fiber?

Theorem. $g \geq 3$ odd. Given $N>0$, there exists finite-index $\Gamma<\mathrm{SO}_{g, g}(\mathbb{Z})$ with $\operatorname{dim} \mathrm{H}^{g}(\mathrm{~B} \Gamma ; \mathbb{Q}) \geq N$.

Characteristic class construction

$$
\begin{aligned}
& \mathbb{Z}^{2 g} \quad \mathbb{R}^{2 g}, J \\
& \downarrow \downarrow \curvearrowleft \text { rank- } g \text { positive subbundle } \\
& \Lambda \rightarrow W \supset \mathrm{U} \\
& \text { vector bundle, structure group } \\
& \mathrm{SO}_{g, g}(\mathbb{Z}) \leq \mathrm{SO}_{g, g}(\mathbb{R}) \sim \mathrm{S}\left(\mathrm{O}_{g} \times \mathrm{O}_{g}\right)
\end{aligned}
$$

Given $\lambda \in \mathbb{Z}^{2 g}, \lambda \cdot \lambda<0$, does there exist U so that $\lambda \notin \mathrm{U}^{\perp}$ in each fiber?
\leadsto characteristic class obstruction $c \in \mathrm{H}^{g}(\mathrm{~B} \mathrm{\Gamma} ; \mathbb{Q})$

Theorem. $g \geq 3$ odd. Given $N>0$, there exists finite-index $\Gamma<\mathrm{SO}_{g, g}(\mathbb{Z})$ with $\operatorname{dim} \mathrm{H}^{g}(\mathrm{~B} \Gamma ; \mathbb{Q}) \geq N$.

Characteristic class construction

$\mathbb{Z}^{2 g} \quad \mathbb{R}^{2 g}, J$
$\downarrow \downarrow$ rank- g positive subbundle
$\Lambda \rightarrow W$ ว U
vector bundle, structure group

$$
\mathrm{SO}_{g, g}(\mathbb{Z}) \leq \mathrm{SO}_{g, g}(\mathbb{R}) \sim \mathrm{S}\left(\mathrm{O}_{g} \times \mathrm{O}_{g}\right)
$$

Given $\lambda \in \mathbb{Z}^{2 g}, \lambda \cdot \lambda<0$, does there exist U so that $\lambda \notin \mathrm{U}^{\perp}$ in each fiber?
\rightarrow characteristic class obstruction $c \in \mathrm{H}^{g}(\mathrm{~B} \mathrm{\Gamma} ; \mathbb{Q})$ nontrivial: detected by periodic flats in $\Gamma \backslash \mathrm{SO}_{g, g}(\mathbb{R}) / \mathrm{K}$

Theorem. There are $\mathrm{SO}_{g, g}(\mathbb{Z})$ bundles $E \rightarrow B^{g}$ where these characteristic classes are nonzero.

Characteristic class construction

$$
\begin{aligned}
& \mathbb{Z}^{2 g} \\
& \downarrow \\
& \vdots \\
& \begin{array}{l}
\mathbb{R}^{2 g}, J \\
\vdots \\
\vdots \\
\vdots
\end{array} \\
& \vdots
\end{aligned} \begin{gathered}
\text { rank- } g \text { positive subbundle } \\
\text { vector bundle, structure group } \\
\mathrm{SO}_{g, g}(\mathbb{Z}) \leq \mathrm{SO}_{g, g}(\mathbb{R}) \sim \mathrm{S}\left(\mathrm{O}_{g} \times \mathrm{O}_{g}\right)
\end{gathered}
$$

Given $\lambda \in \mathbb{Z}^{2 g}, \lambda \cdot \lambda<0$, does there exist U so that $\lambda \notin \mathrm{U}^{\perp}$ in each fiber?
\leadsto characteristic class obstruction $c \in \mathrm{H}^{g}(\mathrm{~B} \mathrm{\Gamma} ; \mathbb{Q})$ nontrivial: detected by periodic flats in $\Gamma \backslash \mathrm{SO}_{g, g}(\mathbb{R}) / \mathrm{K}$

Application 1

$$
W_{g}^{4 k}=\left(S^{2 k} \times S^{2 k}\right) \# . . \#\left(S^{2 k} \times S^{2 k}\right)
$$

Application 1

$$
W_{g}^{4 k}=\left(S^{2 k} \times S^{2 k}\right) \# . . \#\left(S^{2 k} \times S^{2 k}\right)
$$

$\operatorname{Diff}\left(W_{g}\right) \longrightarrow \operatorname{Aut}\left(\mathrm{H}_{2 k}\left(W_{g}\right)\right) \simeq \mathrm{SO}_{g, g}(\mathbb{Z})$

Application 1

$$
\begin{aligned}
& W_{g}^{4 k}=\left(S^{2 k} \times S^{2 k}\right) \# . . \#\left(S^{2 k} \times S^{2 k}\right) \\
& \operatorname{Diff}\left(W_{g}\right) \longrightarrow \operatorname{Aut}\left(\mathrm{H}_{2 k}\left(W_{g}\right)\right) \simeq \mathrm{SO}_{g, g}(\mathbb{Z})
\end{aligned}
$$

(Berglund-Madsen, 2013). For $g \leq 2 k$, the characteristic classes $c \in \mathrm{H}^{g}(\Gamma ; \mathbb{Q})$ are realized/detected by bundles $W_{g} \rightarrow E \rightarrow B^{g}$.

Application 1

$$
\begin{aligned}
& W_{g}^{4 k}=\left(S^{2 k} \times S^{2 k}\right) \# . . \#\left(S^{2 k} \times S^{2 k}\right) \\
& \operatorname{Diff}\left(W_{g}\right) \longrightarrow \operatorname{Aut}\left(\mathrm{H}_{2 k}\left(W_{g}\right)\right) \simeq \mathrm{SO}_{g, g}(\mathbb{Z})
\end{aligned}
$$

(Berglund-Madsen, 2013). For $g \leq 2 k$, the characteristic classes $c \in \mathrm{H}^{g}(\Gamma ; \mathbb{Q})$ are realized/detected by bundles $W_{g} \rightarrow E \rightarrow B^{g}$.

Corollary. New unstable characteristic classes for W_{g}-bundles.

Application 1

$$
\begin{aligned}
& W_{g}^{4 k}=\left(S^{2 k} \times S^{2 k}\right) \# . . \#\left(S^{2 k} \times S^{2 k}\right) \\
& \operatorname{Diff}\left(W_{g}\right) \longrightarrow \operatorname{Aut}\left(\mathrm{H}_{2 k}\left(W_{g}\right)\right) \simeq \operatorname{SO}_{g, g}(\mathbb{Z})
\end{aligned}
$$

(Berglund-Madsen, 2013). For $g \leq 2 k$, the characteristic classes $c \in \mathrm{H}^{g}(\Gamma ; \mathbb{Q})$ are realized/detected by bundles $W_{g} \rightarrow E \rightarrow B^{g}$.

Corollary. New unstable characteristic classes for W_{g}-bundles.

$\mathrm{H}^{*}\left(\operatorname{BDiff}\left(W_{g}\right) ; \mathbb{Q}\right)$

Application 1

$$
\begin{aligned}
& W_{g}^{4 k}=\left(S^{2 k} \times S^{2 k}\right) \# . . \#\left(S^{2 k} \times S^{2 k}\right) \\
& \operatorname{Diff}\left(W_{g}\right) \longrightarrow \operatorname{Aut}\left(\mathrm{H}_{2 k}\left(W_{g}\right)\right) \simeq \mathrm{SO}_{g, g}(\mathbb{Z})
\end{aligned}
$$

(Berglund-Madsen, 2013). For $g \leq 2 k$, the characteristic classes $c \in \mathrm{H}^{g}(\Gamma ; \mathbb{Q})$ are realized/detected by bundles $W_{g} \rightarrow E \rightarrow B^{g}$.

Corollary. New unstable characteristic classes for W_{g}-bundles.

$\mathrm{H}^{*}\left(\operatorname{BDiff}\left(W_{g}\right) ; \mathbb{Q}\right)$

Application 1

$$
\begin{aligned}
& W_{g}^{4 k}=\left(S^{2 k} \times S^{2 k}\right) \# . . \#\left(S^{2 k} \times S^{2 k}\right) \\
& \operatorname{Diff}\left(W_{g}\right) \longrightarrow \operatorname{Aut}\left(\mathrm{H}_{2 k}\left(W_{g}\right)\right) \simeq \mathrm{SO}_{g, g}(\mathbb{Z})
\end{aligned}
$$

(Berglund-Madsen, 2013). For $g \leq 2 k$, the characteristic classes $c \in \mathrm{H}^{g}(\Gamma ; \mathbb{Q})$ are realized/detected by bundles $W_{g} \rightarrow E \rightarrow B^{g}$.

Corollary. New unstable characteristic classes for W_{g}-bundles.
$\mathrm{H}^{*}\left(\operatorname{BDiff}\left(W_{g}\right) ; \mathbb{Q}\right)$

Application 2

Cohomology in the mapping class group of a K3 surface.
$M \mathrm{~K} 3$ surface, $M \simeq\left\{x^{4}+y^{4}+z^{4}+w^{4}=0\right\} \subset \mathbb{C} P^{3}$
$\operatorname{Diff}(M) \rightarrow \mathrm{SO}_{3,19}(\mathbb{Z})$

Input: Global Torelli theorem for Einstein metrics.

Further direction

Problem. Study $\operatorname{Mod}\left(S_{g}\right) \rightarrow \operatorname{Sp}_{2 g}(\mathbb{Z})$ on $\mathrm{H}^{*}(\cdot)$ outside the stable range.

Further direction

Problem. Study $\operatorname{Mod}\left(S_{g}\right) \rightarrow \operatorname{Sp}_{2 g}(\mathbb{Z})$ on $\mathrm{H}^{*}(\cdot)$ outside the stable range.

Thank you.

An enriched count of bitangents to a smooth plane quartic

(based on joint work with Hannah Larson)

Isabel Vogt

Stanford University
June 12, 2019

Hannah Larson \longrightarrow

Thanks to Kirsten Wickelgren, Jesse Kass, and AWS!
(demonstrating types of lines)

or: How I learned to stop worrying and "love" the lack of orientations

(based on joint work with Hannah Larson)

Isabel Vogt

Stanford University

June 12, 2019

Hannah Larson \longrightarrow
(demonstrating types of lines)

Thanks to Kirsten Wickelgren, Jesse Kass, and AWS!
\longleftarrow cubic surface

odd degree:

Warmup:
Signed count of real zeros of a real polynomial
$\underline{\text { even degree: }}$

signed count $=0$
leading coefficient positive

signed count $=+1$
leading coefficient negative

signed count $=-1$

The \mathbb{A}^{1}-enumerative package for bitangents (after Kass-Wickelgren)

- $X=\left\{(L, Z): Z \subset L \subset \mathbb{P}^{2}\right.$, degree 2 subscheme of a line $\}$
- \mathscr{E} vector bundle on X such that

$$
\left.\mathscr{E}\right|_{(L, Z)}=\frac{\{\text { degree } 4 \text { polynomials on } L\}}{\text { equation of } Z^{2}}
$$

The \mathbb{A}^{1}-enumerative package for bitangents (after Kass-Wickelgren)

- $X=\left\{(L, Z): Z \subset L \subset \mathbb{P}^{2}\right.$, degree 2 subscheme of a line $\}$
- \mathscr{E} vector bundle on X such that

$$
\left.\mathscr{E}\right|_{(L, Z)}=\frac{\{\text { degree } 4 \text { polynomials on } L\}}{\text { equation of } Z^{2}}
$$

- A quartic polynomial f induces a section σ_{f} of \mathscr{E} that vanishes at (L, Z) precisely when L is a bitangent to $V(f)$ at the points of Z
- Weight zeros of σ_{f} by \mathbb{A}^{1}-degree of induced map $\mathbb{A}_{k}^{4} \rightarrow \mathbb{A}_{k}^{4}$ (in appropriate local coordinates) $:=\operatorname{ind}_{(L, Z)} \sigma_{f}$

The \mathbb{A}^{1}-enumerative package for bitangents (after Kass-Wickelgren)

- $X=\left\{(L, Z): Z \subset L \subset \mathbb{P}^{2}\right.$, degree 2 subscheme of a line $\}$
- \mathscr{E} vector bundle on X such that

$$
\left.\mathscr{E}\right|_{(L, Z)}=\frac{\{\text { degree } 4 \text { polynomials on } \mathrm{L}\}}{\text { equation of } Z^{2}}
$$

- A quartic polynomial f induces a section σ_{f} of \mathscr{E} that vanishes at (L, Z) precisely when L is a bitangent to $V(f)$ at the points of Z
- Weight zeros of σ_{f} by \mathbb{A}^{1}-degree of induced map $\mathbb{A}_{k}^{4} \rightarrow \mathbb{A}_{k}^{4}$ (in appropriate local coordinates) $:=\operatorname{ind}_{(L, Z)} \sigma_{f}$

Hope

$$
\sum_{(L, Z) \text { zero of } \sigma_{f}} \operatorname{ind}_{(L, Z)} \sigma_{f}=\text { fixed count in } \operatorname{GW}(k)
$$

But...

- \mathscr{E} is not relatively orientable, so we lose independence on choice of section!

But...

- \mathscr{E} is not relatively orientable, so we lose independence on choice of section!
- Fix a line $L_{\infty} \subseteq \mathbb{P}^{2}$, let

$$
D_{\infty}:=\left\{(L, Z): Z \cap L_{\infty} \neq \emptyset\right\} \subset X
$$

- \mathscr{E} is relatively orientable relative to the divisor D_{∞}, i.e.,

$$
\mathcal{H o m}\left(\operatorname{det} T_{X}, \operatorname{det} \mathscr{E}\right) \simeq \mathscr{L}^{2} \otimes \mathcal{O}_{X}\left(D_{\infty}\right)
$$

But...

- \mathscr{E} is not relatively orientable, so we lose independence on choice of section!
- Fix a line $L_{\infty} \subseteq \mathbb{P}^{2}$, let

$$
D_{\infty}:=\left\{(L, Z): Z \cap L_{\infty} \neq \emptyset\right\} \subset X
$$

- \mathscr{E} is relatively orientable relative to the divisor D_{∞}, i.e.,

$$
\mathcal{H o m}\left(\operatorname{det} T_{X}, \operatorname{det} \mathscr{E}\right) \simeq \mathscr{L}^{2} \otimes \mathcal{O}_{X}\left(D_{\infty}\right)
$$

A new hope

Fix any L_{∞} in \mathbb{P}_{k}^{2}, then if σ_{f} has no zeros in D_{∞}, can we understand

$$
\sum_{(L, Z) \text { zero of } \sigma_{f}} \operatorname{ind}_{(L, Z)}^{L_{\infty}} \sigma_{f} \in \mathrm{GW}(k) ?
$$

Geometric information in ind ${ }_{(L, Z)}^{L_{\infty}} \sigma_{f}$:

- ∂_{L} is a derivation determined by L
- f some affine equation for the quartic in $\mathbb{P}^{2} \backslash L_{\infty}=\mathbb{A}^{2}$

Define the type of L :

$$
\text { Qtype }_{L_{\infty}}(L):=\operatorname{ind}_{(L, Z)}^{L_{\infty}} \sigma_{f}=\left\langle\partial_{L} f\left(z_{1}\right) \cdot \partial_{L} f\left(z_{2}\right)\right\rangle
$$

Over \mathbb{R} :

$\operatorname{Qtype}_{L_{\infty}}(L)=\langle 1\rangle$

$\operatorname{Qtype}_{L_{\infty}}(L)=\langle-1\rangle$

A new hope

Fix any L_{∞} in \mathbb{P}_{k}^{2}, then if σ_{f} has no zeros in D_{∞}, can we understand

$$
\sum_{(L, Z) \text { zero of } \sigma_{f}} \operatorname{ind}_{(L, Z)}^{L_{\infty}} \sigma_{f} \in \mathrm{GW}(k) ?
$$

Theorem (Hannah Larson-V.)

Let L_{∞} be a bitangent of the quartic Q. Relative to this,

$$
\sum \operatorname{Tr}_{k(L) / k} \operatorname{Qtype}_{L_{\infty}}(L)=15\langle 1\rangle+12\langle-1\rangle \in \mathrm{GW}(k)
$$

lines L bitangent to Q

$$
L \neq L_{\infty}
$$

Proof Sketch:

What about other choices of L_{∞} ?

- When $k=\mathbb{R}$, compute

$$
\sum_{1} \operatorname{Tr}_{\mathbb{R}(L) / \mathbb{R}} \text { Qtype }_{L_{\infty}}(L)
$$

lines L bitan to Q
for all possible choices of L_{∞}

What about other choices of L_{∞} ?

- When $k=\mathbb{R}$, compute

$$
\sum \operatorname{Tr}_{\mathbb{R}(L) / \mathbb{R}} \text { Qtype }_{L_{\infty}}(L)
$$

lines L bitan to Q
for all possible choices of L_{∞}

- It seems to always be one of:

$$
\begin{aligned}
& 18\langle 1\rangle+10\langle-1\rangle, \\
& 17\langle 1\rangle+11\langle-1\rangle, \\
& 16\langle 1\rangle+12\langle-1\rangle, \\
& 15\langle 1\rangle+13\langle-1\rangle, \\
& 14\langle 1\rangle+14\langle-1\rangle
\end{aligned}
$$

What about other choices of L_{∞} ?

- When $k=\mathbb{R}$, compute

$$
\sum \operatorname{Tr}_{\mathbb{R}(L) / \mathbb{R}} Q \operatorname{type}_{L_{\infty}}(L)
$$

lines L bitan to Q
for all possible choices of L_{∞}

- It seems to always be one of:

$$
\begin{aligned}
& 18\langle 1\rangle+10\langle-1\rangle, \\
& 17\langle 1\rangle+11\langle-1\rangle, \\
& 16\langle 1\rangle+12\langle-1\rangle, \\
& 15\langle 1\rangle+13\langle-1\rangle, \\
& 14\langle 1\rangle+14\langle-1\rangle
\end{aligned}
$$

$\Delta_{\infty}=$
\{quartics with bitangent along L_{∞} \}

What about other choices of L_{∞} ?

- When $k=\mathbb{R}$, compute

$$
\sum \operatorname{Tr}_{\mathbb{R}(L) / \mathbb{R}} Q \operatorname{type}_{L_{\infty}}(L)
$$

lines L bitan to Q
for all possible choices of L_{∞}

- It seems to always be one of:

$$
\begin{aligned}
& 18\langle 1\rangle+10\langle-1\rangle, \\
& 17\langle 1\rangle+11\langle-1\rangle, \\
& 16\langle 1\rangle+12\langle-1\rangle, \\
& 15\langle 1\rangle+13\langle-1\rangle, \\
& 14\langle 1\rangle+14\langle-1\rangle
\end{aligned}
$$

$\Delta_{\infty}=$
\{quartics with bitangent along L_{∞} \}

