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Enriching Bézout’s Theorem

“It was my lot to plant the harpoon

of algebraic topology into the body of

the whale of algebraic geometry.”

– Lefschetz, 1924.
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Bézout’s Theorem

Theorem

Let k be an algebraically closed field. If f , g ⊂ P2
k are generic algebraic

curves of degree c , d , respectively, then∑
p∈f∩g

ip(f , g) = cd .

What if k is not algebraically closed?
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Bézout’s Theorem

What if k is not algebraically closed?

k = R, f = y − x3, g = y2 + x2 − 1.
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A1-Enumerative Geometry

GW(k) gives us richer counts than Z:

GW(C)
rank−−−−−−→ Z

GW(R)
rank×sign−−−−−−→ Z× Z

GW(Fq)
rank×disc−−−−−−→ Z× F×q /(F×q )2

If k is not algebraically closed, we get extra information.

A1-enumerative geometry: extra information has geometric meaning.
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Enriched Bézout’s Theorem

Look at sections σ = (f , g) of O(c)⊕O(d).

Theorem (M.)

Let k be a perfect field and f , g curves of degrees c , d with f ∩ g

isolated. If c + d is odd, then∑
p∈f∩g

degA
1

p (f , g) =
cd

2
·H.

degA
1

p (f , g) =

Trk(p)/k

(
ip
2 ·H

)
ip even,

Trk(p)/k

(
〈ap〉+

ip−1
2 ·H

)
ip odd.

degA
1

p (f , g) is determined by geometric information.
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Enriched Bézout’s Theorem

degA
1

p (f , g) is determined by geometric information:

k degA
1

p (f , g)
cd

2
·H

• Over C: counts intersection points.

• Over R: equal number of positive/negative crossings.

• Over Fq: counts crossing types mod 2.
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Example

k = R, f = y − x3, g = y2 + x2 − 1.
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Example

k = R, f = y − x3, g = y2 + x2 − 1.

+

-
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Relative Orientability

Why c + d odd?

Approach uses motivic Euler class of O(c)⊕O(d)→ P2.

• Only well-defined if c + d odd.

• Potential fix (Larson-Vogt): pick a divisor.

• If c , d even and {f ∩ g}|{x0=0} = ∅, Enriched Bézout still works.

What’s left to do?

• Explicit calculation of ap when ip > 1.

• Address c , d odd case.
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Thanks!
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Hurwitz Space Statistics and Dihedral Nichols Algebras

Gregory Michel

PIMS: Workshop in Arithmetic Topology
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Number Theory

Question

How many number fields K/Q of degree n with discriminant bounded by
X are there?

Conjecture(Linnik): For all n, this is asymptotically linear in X .

Theorem (Bhargava-Shankar-Tsimerman)

When n = 3, this number is given by

1

12ζ(3)
X +

4ζ(1/3)

5Γ(2/3)3ζ(5/3)
X 5/6 + (smaller order terms).
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Quantum Shuffle Algebras

Theorem (Ellenberg-Tran-Westerland (2017))

Hj(HurcG ,m, k) ∼= Extm−j ,m
A(V ) (k, k),

where A(V ) denotes a quantum shuffle algebra.

Goal (Ambitious): Apply G-L to the left hand side of this result to get an
Arithmetic Statistic result counting function fields.

There is a subalgebra B(V ) ⊆ A(V ) called the Nichols Algebra

Idea: Replace ExtA(V )(k, k) with ExtB(V )(k , k). At the moment, this is
completely unjustified.
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The Third Fomin-Kirillov Algebra

Definition (Fomin-Kirillov Algebras)

For n ≥ 2, the nth Fomin-Kirillov algebra FKn over k is the quadratic
algebra with generators xij for 1 ≤ i < j ≤ n subject to the relations

x2ij = 0,

xijxkl = xklxij when i , j , k , l are all distinct,

xijxjk + xjkxki + xkixij = 0 when i , j , k are distinct.

When G = S3, the corresponding Nichols Algebra B is isomorphic to the
third Fomin-Kirillov Algebra FK3.

Theorem (Ştefan-Vay (2016))

ExtB(k , k) ∼= B![Z ],

where B! is generated by three classes A,B,C of degree (1, 1) and Z has
degree (4, 6).
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Hurwitz Space Statistics

When G = S3, apply G-L to HurcG ,m, naively replacing ExtA(V ) with ExtB:

A,B,C ∈ Ext1,1B = H0(Hur1) = H2
C (Hur1)

Z ∈ Ext4,6B = H2(Hur6) = H10
C (Hur6)

Use Deligne’s bounds to approximate the trace of “Frob”

Resulting point count:

CX + DX 5/6
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Dihedral Nichols Algebras

Let G = D2p.

Theorem (In Progress, M.)

Let B denote the Nichols algebra corresponding to the group D2p. Then

ExtB(k , k) ∼= B ![Z ],

where B ! is generated by p classes of degree (1, 1) and Z has degree
(4, 2p).

Naively applying G-L in this situation yields

CX + DX
p+2
2p
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Thank you!
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Spaces of Noncollinear Points

Ben O’Connor
joint with Ronno Das

University of Chicago

PIMS Workshop on Arithmetic Topology
June 12, 2019



Bn :=
{
{x1, . . . , xn} ∈ Confn(CP2) | no three xi collinear

}

∈ B5

n = 5 −→ degree 4 del Pezzo surfaces

n = 6 −→ cubic surfaces with at most one nodal singularity

Goal

Compute H∗(Bn;Q)
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Ordered Version

Ordered cover Fn:

Fn

Bn = Fn/Sn

4

2
1

3

5

∈ F5

Refined Goal

Compute H∗(Fn;Q) as an Sn-representation
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∼= PGL3(C)

Finitely presented group surjecting onto π1(Fn) (Moulton)
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Theorem (Das-O.)

For X5 = F5/PGL3(C), there are isomorphisms of
S5-representations

H∗(X5;Q) ∼=


U if ∗ = 0,

S3,2 if ∗ = 1,

∧2V if ∗ = 2,

0 otherwise.



Theorem (Das-O.)

For X6 = F6/PGL3(C), there are isomorphisms of
S6-representations

H∗(X6;Q) ∼=



U if ∗ = 0,

S3,3⊕S4,2 if ∗ = 1,

V⊕∧2V⊕2⊕∧3V⊕S3,3⊕S⊕2
3,2,1 if ∗ = 2,

V⊕∧2V⊕3⊕∧3V⊕3⊕S3,3⊕S2,2,2⊕S⊕2
4,2⊕S⊕2

2,2,1,1⊕S⊕3
3,2,1 if ∗ = 3,

U⊕U′⊕V⊕V ′⊕∧2V⊕∧3V⊕2⊕S⊕2
3,3⊕S⊕3

2,2,2⊕S⊕2
4,2⊕S2,2,1,1⊕S⊕3

3,2,1 if ∗ = 4,

0 otherwise.
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Proof(?)

F5

F4

S5

S4

Topology comes up short - what do we do?

Fn (smooth) variety defined over Z

Use point counts and Grothendieck-Lefschetz trace formula
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Example: n = 6,C = (123)(45)

Choices of a

(q − 1)2q3(q + 1)

Choices of b

(q − 1)q(q2 + q + 1)

Choices of c

q2

a

bc



p6,(123)(45)(q) =
1

6
(q − 1)3q6(q + 1)(q2 + q + 1)
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a4

a3



a1

a2

a4

a3

a(2)
f(a)ℓ1

b1

ℓ2ℓ3

b2

ℓ4

b′

a

f(a)

f 3(a)
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b′
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f(a)
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b2

b3
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ℓ1f(a2)

a2

ℓ2

b′′′

b′

b′′
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f 2(a)
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f 3(a)
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b1
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f(a)

f 3(a)

f 2(a)

a′

b′
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Tables of Point Counts

Class (C) p5,C (q)

e 1
120 (q − 3)(q − 2)(q − 1)2q3(q + 1)(q2 + q + 1)

(12) 1
12 (q − 1)3q4(q + 1)(q2 + q + 1)

(12)(34) 1
8 (q − 2)(q − 1)2q3(q + 1)2(q2 + q + 1)

(123) 1
6 (q − 1)2q4(q + 1)2(q2 + q + 1)

(123)(45) 1
6 (q − 1)3q4(q + 1)(q2 + q + 1)

(1234) 1
4 (q − 1)2q4(q + 1)2(q2 + q + 1)

(12345) 1
5 (q − 1)2q3(q + 1)(q2 + 1)(q2 + q + 1)

Table: Point counts for B5(Fq) twisted by conjugacy classes of S5.



Class (C) p6,C (q)

e 1
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48

(q−1)2q3(q+1)(q2+q+1)(q4−6q2+q+8)
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18
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6

(q−1)3q6(q+1)(q2+q+1)

(123)(456) 1
18

(q−1)2q3(q+1)(q2+q+1)(q4−2q3−3q+9)

(1234) 1
8

(q−1)2q4(q+1)2(q2+q+1)(q2+q−1)

(1234)(56) 1
8

(q−1)2q3(q+1)(q2+q+1)(q4−2q2−q−2)

(12345) 1
5

(q−1)2q3(q+1)(q2+1)(q2+q+1)2

(123456) 1
6

(q−1)2q3(q+1)(q2+q+1)(q4+q−1)

Table: Point counts for B6(Fq) twisted by conjugacy classes of S6

Now we cross the bridge back to topology(!)
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Grothendieck-Lefschetz Trace Formula∑
p∈X (Fq)

tr(Frobq | Vp) =
∑
i

(−1)i tr(Frobq : H2n−i
ét,c (X ;V))

↓∑
C

χV (C )pn,C (q) = qn
∑
i ,w

q−w (−1)i 〈χV , χ
i
w (Fn)〉Sn



Theorem (Das-O.)

For Xn = Fn/PGL3(C), there are isomorphisms of
Sn-representations

H∗(X5;Q) ∼=


U if ∗ = 0,

S3,2 if ∗ = 1,

∧2V if ∗ = 2,

0 otherwise.



Thanks for listening!
Theorem (Das-O.)

For Xn = Fn/PGL3(C), there are isomorphisms of
Sn-representations

H∗(X6;Q) ∼=



U if ∗ = 0,

S3,3⊕S4,2 if ∗ = 1,

V⊕∧2V⊕2⊕∧3V⊕S3,3⊕S⊕2
3,2,1 if ∗ = 2,

V⊕∧2V⊕3⊕∧3V⊕3⊕S3,3⊕S2,2,2⊕S⊕2
4,2⊕S⊕2

2,2,1,1⊕S⊕3
3,2,1 if ∗ = 3,

U⊕U′⊕V⊕V ′⊕∧2V⊕∧3V⊕2⊕S⊕2
3,3⊕S⊕3

2,2,2⊕S⊕2
4,2⊕S2,2,1,1⊕S⊕3

3,2,1 if ∗ = 4,

0 otherwise.



Types of Lines on Quintic Threefolds and Beyond

Sabrina Pauli

University of Oslo

June 12, 2019

Sabrina Pauli Types of Lines on Quintic Threefolds and Beyond



Lines on a Cubic Surface

Let X ⊂ P3 be a smooth cubic surface.

k = C: #complex lines on X = 27
(Cayley, Salmon 19th century)

k = R: There are two types of real lines,
called hyperbolic and elliptic (Segre).

# real hyperbolic lines on X − # real
elliptic lines on X = 3
(Finashin–Kharlamov, Okonek–Teleman,
Horev-Solomon, Benedetti-Silhol)

k arbitrary (char(k) 6= 2): can assign an
arithmetic type in k∗/(k∗)2

(Kass-Wickelgren)  can count lines in
GW(k): 15 < 1 > +12 < −1 >
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The Type of a Line on a Cubic Surface.

Let L ⊂ X be a line. To each point p ∈ L, there is exactly one
other point q such that TpX = TqX .

Definition

The morphism i : L→ L that swaps p and q is called Segre
involution. Its fixed points are called Segre fixed points.

The Segre fixed points are defined over the field k(
√
α) for

some α ∈ k∗/(k∗)2.

Definition

The type of a line on a cubic surface is < α >∈ GW(k).

Sabrina Pauli Types of Lines on Quintic Threefolds and Beyond



The Type of a Line on a Cubic Surface.

Let L ⊂ X be a line. To each point p ∈ L, there is exactly one
other point q such that TpX = TqX .

Definition

The morphism i : L→ L that swaps p and q is called Segre
involution. Its fixed points are called Segre fixed points.

The Segre fixed points are defined over the field k(
√
α) for

some α ∈ k∗/(k∗)2.

Definition

The type of a line on a cubic surface is < α >∈ GW(k).

Sabrina Pauli Types of Lines on Quintic Threefolds and Beyond



Local degree

Let Gr(2, 4) be the Grassmannian of lines in P3. A
homogeneous degree 3 polynomial f defines a section σf of
the vector bundle E := Sym3 S∨ → Gr(2, 4) where S is the
tautological subbundle of Gr(4, 2).

{zeros of σf } ↔ {lines on X = {f = 0} ⊂ P3}

Locally σf is a morphsim A4 → A4. The local degree of σf at
a zero is < J >∈ GW(k) where J is the determinant of the
Jacobian at the zero. We define the Euler number
e(E) :=

∑
local degrees.

Theorem (Kass-Wickelgren)

The local degree of a zero of σf is equal to the type of the
corresponding line on X = {f = 0} ⊂ P3 in GW(k).
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The Type of a Line on a Quintic Threefold

lines quintic threefold.jpg
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The Type of a Line on a Quintic Threefold

Let L ⊂ X ⊂ P4 be a line on a quintic threefold X .

There are 3 pairs of points on L with the same tangent space
in X (might only be defined over a field extension F/k).

Let p, q ∈ L⊗ F be such a pair, i.e.,
T := Tp(X ⊗ F ) = Tq(X ⊗ F ). For r ∈ L⊗ F there is exactly
one other point s ∈ L⊗ F such that

T ∩ Tr (X ⊗ F ) = T ∩ Ts(X ⊗ F ).

 3 Segre involutions ij : L⊗ Fj → L⊗ Fj with fixed points
defined over Fj(

√
αj), j = 1, 2, 3.

Definition

The type of a line on a quintic threefold is
<

∏
NFj/k(αj) >∈ GW(k) where the product runs over the Galois

orbits of the pairs of points with the same tangent space.

This has been defined for k = R by Finashin and Kharlamov.
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My Theorem

Let f be a homogeneous degree 5 polynomial in 5 variables
and σf the corresponding section of Sym5 S∨ → Gr(2, 5).

{zeros of σf } ↔ {lines on X = {f = 0} ⊂ P4}

Theorem (P.)

The local degree of a zero of σf is equal to the type of the
corresponding line on a X = {f = 0} ⊂ P4 in GW(k).

The definition of the type of a line can be generalized to lines
on degree 2n − 1 hypersurfaces in Pn+1.
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Main Result

Theorem (Sawin, S): There exists a prime power q such that for
every h ∈ Fq[T ] there exist infinitely many monic irreducible
f ∈ Fq[T ] such that f + h is irreducible as well.

Actually, we have a quantitative version where the number of
such f (having a certain degree) is obtained (with a power
saving error term).
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Two Main Sub-Problems

Level of Distribution for Primes: Counting primes up to X in a
certain residue class, with modulus larger than

√
X.

Parity Problem: How often do both f and f + h have an odd
number of prime factors?

We focus on the second problem.
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Chowla Conjecture

Theorem (Sawin, S): For distinict h1, . . . , hk ∈ Fq[T ] we have∑
deg f≤d

µ(f + h1) · · ·µ(f + hk) = o(qd), d→∞.

Idea: Split the sum into subsums over those f having the same
derivative, and show that (on these subsums) the Möbius
function can be mimicked by a multiplicative Dirichlet character.

We are then able to reduce the problem to a short character sum.
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Improving the Burgess Bound

Theorem (Sawin, S): Let g ∈ Fq[T ] be squarefree, and χ a
nonprincipal Dirichlet character mod g. Then∣∣∣∣∣∣∣∣∣

∑
h∈Fq [T ]
d(h)<t

χ(f + h)

∣∣∣∣∣∣∣∣∣ ≤ (q1/2 + 1)

(
deg(g)

t

)
q

t
2

for any f ∈ Fq[T ], and 0 ≤ t ≤ deg(g).

We write down a variety whose Fq-point count controls the
above character sum.

Study the geometry (e.g. singularities) of our variety in order to
estimate the dimensions of the associated cohomology groups.

Using Deligne’s RH and the Grothendieck-Lefschetz trace
formula, we are then able to estimate the number of Fq-ponits
on our variety.
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Definition of the space of string links

Fix an integer d ≥ 1, which represents the dimension of the
ambient space, and let r ≥ 1,m1, · · · ,mr ≥ 1.

Definition

Define Embc(
∐r

i=1 Rmi ,Rd) to be the space of smooth
embeddings f :

∐r
i=1 Rmi ↪→ Rd that coincide outside a compact

set with a fixed affine embedding ι. Such embeddings are called
string links of r strands.

For convenience, we consider a variation of that space, denoted
Embc(

∐r
i=1 Rmi ,Rd). To be more precise, Embc(

∐r
i=1 Rmi ,Rd) is

the homotopy fiber over ι of the obvious inclusion
Embc(

∐r
i=1 Rmi ,Rd) ↪→ Immc(

∐r
i=1 Rmi ,Rd), where

Immc(
∐r

i=1 Rmi ,Rd) is the space of smooth immersions∐r
i=1 Rmi # Rd that coincide outside a compact set with ι.
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Examples

Figure: A string link of one strand (r = 1,m1 = 1), also called a long knot

Figure: A string link of two strands (r = 2,m1 = m2 = 1)
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Literature Review

Many people studied Embc(
∐r

i=1 Rmi ,Rd) for various r and mi :

• For r = 1,m1 = 1, we have the space Embc(R,Rd) which has
been studied by: V. Turchin (2004, 2013), D. Sinha (2006),
P. Salvatore (2006), R. Budney (2007, 2012), K. Sakai
(2008), Lambrechts-Volić-Turchin (2010), Dwyer-Hess (2012),
P. Songhafouo Tsopméné (2013), S. Moriya (2013), T.
Willwacher (2015).

• For r ≥ 1, m1 = · · · = mr = 1, we have the space
Embc(

∐r
i=1 R,Rd) studied by: Munson-Volić (2014), P.

Songhafouo Tsopméné (2015), Burke-Koytcheff (r=2) (2015).

• For r = 1,m1 ≥ 1, we have the space Embc(Rm1 ,Rd) studied
by Arone-Turchin (2014, 2015),
Fresse-Turchin-Willwacher(2017), Boavida-Weiss (2018).

• For r ≥ 1,m1, · · · ,mr ≥ 1, we have the space
Embc(

∐r
i=1 Rmi ,Rd) sutied by J. Ducoulombier (2018),

Songhafouo Tsopméné - Turchin (two papers, 2018).
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Songhafouo Tsopméné (2015), Burke-Koytcheff (r=2) (2015).

• For r = 1,m1 ≥ 1, we have the space Embc(Rm1 ,Rd) studied
by Arone-Turchin (2014, 2015),
Fresse-Turchin-Willwacher(2017), Boavida-Weiss (2018).

• For r ≥ 1,m1, · · · ,mr ≥ 1, we have the space
Embc(

∐r
i=1 Rmi ,Rd) sutied by J. Ducoulombier (2018),
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Right Γ-modules and Right Ω-modules

• Define Γ to be the category whose objects are finite pointed
sets n+ = {0, 1, · · · , n}, with 0 as the basepoint, and whose
morphisms are pointed maps.

• Let Ω denote the category of finite unpointed sets
{1, · · · , n}, n ≥ 0, and surjections. (Some authors denote that
category by FI).

• For X = Γ or X = Ω, define a right X -module as a
contravariant functor from X to chain complexes.

• For X = Γ or X = Ω, the category of right X -modules is
denoted RmodX . We endow this category with the projective
model structure.

• Given two objects A,B ∈ RmodΩ, we write hRmodΩ(A,B) for
the space of derived morphisms from A to B.
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Right Γ-modules and Right Ω-modules (continued)

• For k ≥ 0, define C (k ,Rd) denotes the configuration space of
k labeled points in Rd .

• One can show that the sequence Q⊗ π∗C (•,Rd), d ≥ 3, has
a natural structure of a right Γ-module.

• Let cr : RmodΓ −→ RmodΩ be the cross-effect functor
constructed by Pirashvili. And let Q⊗ π̂∗C (•,Rd) denote the
cross effect of Q⊗ π∗C (•,Rd).

• A sequence of r integers s1, · · · , sr is written as ~s. Also we
write |~s| for s1 + · · ·+ sr , and Σ~s for Σs1 × · · · × Σsr . If
x1, · · · , xr is another sequence, we write ~s · ~x for
s1x1 + · · ·+ srxr , and ~x~s for

∏
i x

si
i .

• Let Q ~m
~s be the right Ω-module defined by

Q ~m
~s (k) =

{
0 if k 6= |~s|;
IndΣk

Σ~s
H̃∗(S

~s· ~m;Q) if k = |~s|.
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Homotopy groups of Embc(
∐r

i=1 Rmi ,Rd)

Theorem (S.T.-Turchin, 2018)

For d > 2max{mi : 1 ≤ i ≤ r}+ 1, there is an isomorphism

Q⊗π∗(Embc(
r∐

i=1

Rmi ,Rd)) ∼=
⊕
~s,t

hRmodΩ

(
Q ~m
~s ,Q⊗ π̂t(d−2)+1C (•,Rd)

)

We also have the homology version of this.
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The functions µ(−),El(−), Sj(−), and Fl(−)

• Let µ(−) denote the standard Möbius function.

• Given a variable x and an integer l ≥ 1, let El(x) denote the

sum El(x) = 1
l

∑
p|l µ(p)x

l
p .

• Let Bp denote the pth Bernoulli number, so that∑
p≥0

Bpxp

p! = x
ex−1 . Recall that B2n+1 = 0, n ≥ 1. Bernoulli’s

summation formula equates 1j + 2j + · · ·+ nj with Sj(n)

where Sj(x) = 1
j+1

∑j
p=0(−1)p

(j+1
p

)
Bpx

j+1−p, j ≥ 1.

• Define Fl(u) by Fl(u) = lulEl(
1
u ).
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Euler characteristics for Embc(
∐r

i=1 Rmi ,Rd)

For ~s ≥ 0 and t ≥ 0, let X~s,t be the Euler characteristic of the
summand of the previous theorem indexed by ~s, t. The associated
generating function is F π~m,d(x1, · · · , xr , u) =

∑
~s,t≥0

X~s,t · ut~x~s .

Theorem (S.T.-Turchin, 2018)

The generating function Fπ~m,d(x1, · · · , xr , u) is given by the formula

Fπ~m,d(x1, · · · , xr , u) =
∑

k,l,j≥1

µ(k)

kj
Sj

(
r∑

i=1

(−1)mi−1El(x
k
i )

)(
(−1)d−1lukl

Fl(uk)

)j

−
∑
k,l≥1

r∑
i=1

µ(k)

k
(−1)mi−1El(x

k
i ) ln(Fl(u

k)),

We also have the homology version of this.
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Modular operads and Modular envelope of L∞

• Very roughly, an operad is an algebraic structure consisting of
an object of n-ary operations for all n. The compositions of
operations are encoded by a certain category of trees.

• When dealing with moduli spaces Mg ,n of stable marked
complex curves, one encounters general graphs (of certain
genus), the case of trees corresponding to curves of genus 0.
So one can consider a “higher genus” analogue of the theory
of operads, in which graphs replace trees. The resulting
object, introduced by E. Getzler and M. Kapranov, is called
modular operad.

• A cyclic operad is a usual symmetric operad for which the
output of its elements has the same role as the inputs.

• One has an adjunction Mod : CycOp� ModOp : Cyc
between the categories of cyclic and modular operads.

• Let L∞ be the operad for homotopy Lie algebras. We consider
the modular operad Mod(L∞) = {Mod(L∞)((g , n))}g ,n.
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The notion of supercharacter

Let M = (⊕iMi , ∂) be a finite dimensional chain complex of
Σk -modules over a ground field K of characteristic 0.

• By the supercharacter we understand the character of the Σk

action on the virtual representation XM defined as
XM :=

∑
i (−1)iMi . The latter virtual representation is

similar to the Euler characteristic in the sense that
XM ' X (H∗M), that’s why we use this notation.

• Let ZMi
denote the cycle index sum of Mi . The cycle index

sum encoding the supercharacter of the Σk action on M can
be defined as ZXM =

∑
i (−1)iZMi

,

For a symmetric sequence of chain complexes M = {M(k)}k≥0, we
similarly define ZXM :=

∑
k≥0 ZXM(k).
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The supercharacter of the symmetric group action on
Mod(L∞)

For any stable collection {M((g , n))} define a symmetric sequence
M((•)) = {⊕gM(g , n), n ≥ 0}.

Theorem (S.T. - Turchin, 2018)

The supercharacter of the symmetric group action on the modular
envelope of {Mod(L∞)((k))}k≥0 of L∞ is described by the cycle
index sum

ZXMod(L∞)((•))(w ; p1, p2, p3, · · · ) =

w
∑

k,l ,j≥1

µ(k)

kj
Sj

1

l

∑
a|l

µ

(
l

a

)
pak
wak

( lwkl

Fl(wk)

)j

−

w
∑
k,l≥1

µ(k)

kl

∑
a|l

µ

(
l

a

)
pak
wak

 ln(Fl(w
k))
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The proof of this theorem relies on...

The proof of this theorem relies on

• the formula we obtained for the generating function
F π~m,d(x1, · · · , xr , u), and

• certain graph complexes introduced by M. Kontsevich.
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Thanks!

Thanks for listening!
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Incidence strata of affine varieties 
with complex multiplicities
Hunter Spink, joint with Dennis Tseng
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Idea: Let r,s,t be arbitrary complex numbers, obtain continuous family of ``   -incidence strata’’ℂ

         Other possible obstruction: If we have a sequence of varieties                  then a

                                                         necessary condition for them to be fibers of a finite-type

                                                          family is that their ``affine embedding dimensions’’

                                                                                    are bounded.
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Question: Does something similar work for other affine varieties? 

Theorem(S, Tseng): By explicit elimination, if we use power sum polynomials instead of 
elementary symmetric sums, this works over any ring (e.g. ring of integers).
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t

) = rxi
1 + sxi

2 + txi
3

(m1, …, mk) For              difference between                 -incidence strata in                         and Symm1+…+mk𝔸1X = 𝔸1,

{
m1

z − x1
+ … +

mk

z − xk
∣ xi ∈ 𝔸1}
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THANK YOU

This relates incidence strata with different numbers of points over different primes.
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Given λ ∈ ℤ2g, λ⋅λ <0, does there exist U so that λ ∈ U⊥ in 
each fiber?

⤳ characteristic class obstruction c ∈ Hg(BΓ;ℚ) 
nontrivial: detected by periodic flats in Γ\SOg,g(ℝ)/K

Theorem.  There are SOg,g(ℤ) bundles E→Bg where these 
characteristic classes are nonzero. 

⊃ U
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Application 2

M K3 surface, M ≃ { x 4+y 4+z 4+w 4 =0 } ⊂ ℂP3 

Cohomology in the mapping class group of a K3 surface. 

Diff(M) → SO3,19(ℤ)

Input: Global Torelli theorem for Einstein metrics. 
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Problem. Study Mod(Sg) → Sp2g(ℤ) on H*(⋅) outside 
the stable range. 

Thank you.
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Warmup:
Signed count of real zeros
of a real polynomial

even degree:

signed count = 0

odd degree:

leading coefficient positive

signed count = +1

leading coefficient negative

signed count = -1



The A1-enumerative package for bitangents (after Kass-Wickelgren)

• X = {(L,Z ) : Z ⊂ L ⊂ P2, degree 2 subscheme of a line}
• E vector bundle on X such that

E |(L,Z) =
{degree 4 polynomials on L}

equation of Z 2

• A quartic polynomial f induces a section σf of E that
vanishes at (L,Z ) precisely when L is a bitangent to V (f ) at
the points of Z

• Weight zeros of σf by A1-degree of induced map A4
k → A4

k

(in appropriate local coordinates) := ind(L,Z) σf

Hope

∑
(L,Z) zero of σf

ind(L,Z) σf = fixed count in GW(k)
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But...

• E is not relatively orientable, so we lose independence on
choice of section!

• Fix a line L∞ ⊆ P2, let

D∞ := {(L,Z ) : Z ∩ L∞ 6= ∅} ⊂ X

• E is relatively orientable relative to the divisor D∞, i.e.,

Hom(detTX , det E ) ' L 2 ⊗OX (D∞)

A new hope

Fix any L∞ in P2
k , then if σf has no zeros in D∞, can we

understand ∑
(L,Z) zero of σf

indL∞
(L,Z) σf ∈ GW(k)?



But...

• E is not relatively orientable, so we lose independence on
choice of section!

• Fix a line L∞ ⊆ P2, let

D∞ := {(L,Z ) : Z ∩ L∞ 6= ∅} ⊂ X

• E is relatively orientable relative to the divisor D∞, i.e.,

Hom(detTX , det E ) ' L 2 ⊗OX (D∞)

A new hope

Fix any L∞ in P2
k , then if σf has no zeros in D∞, can we

understand ∑
(L,Z) zero of σf

indL∞
(L,Z) σf ∈ GW(k)?



But...

• E is not relatively orientable, so we lose independence on
choice of section!

• Fix a line L∞ ⊆ P2, let

D∞ := {(L,Z ) : Z ∩ L∞ 6= ∅} ⊂ X

• E is relatively orientable relative to the divisor D∞, i.e.,

Hom(detTX , det E ) ' L 2 ⊗OX (D∞)

A new hope

Fix any L∞ in P2
k , then if σf has no zeros in D∞, can we

understand ∑
(L,Z) zero of σf

indL∞
(L,Z) σf ∈ GW(k)?



Geometric information in indL∞
(L,Z) σf :

• ∂L is a derivation
determined by L

• f some affine equation for
the quartic in P2 r L∞ = A2

L

∂L

L∞

z1 z2• •
Z

Define the type of L:

QtypeL∞(L) := indL∞
(L,Z) σf = 〈∂Lf (z1) · ∂Lf (z2)〉



Over R:

L

L∞

• •

QtypeL∞(L) = 〈1〉

L

L∞

• •

QtypeL∞(L) = 〈−1〉



A new hope

Fix any L∞ in P2
k , then if σf has no zeros in D∞, can we

understand ∑
(L,Z) zero of σf

indL∞
(L,Z) σf ∈ GW(k)?



Theorem (Hannah Larson-V.)

Let L∞ be a bitangent of the quartic Q. Relative to this,∑
lines L bitangent to Q

L 6=L∞

Trk(L)/k QtypeL∞(L) = 15〈1〉+ 12〈−1〉 ∈ GW(k).



Proof Sketch:

27 lines

signed count:

15〈1〉+ 12〈−1〉

56 lines

27 bitangents + L∞

signed count rel to L∞:

15〈1〉+ 12〈−1〉



What about other choices of L∞?

• When k = R, compute∑
lines L bitan to Q

TrR(L)/R QtypeL∞(L)

for all possible choices of L∞

• It seems to always be one of:

18〈1〉+ 10〈−1〉,
17〈1〉+ 11〈−1〉,
16〈1〉+ 12〈−1〉,
15〈1〉+ 13〈−1〉,
14〈1〉+ 14〈−1〉

∆∞ =

{quartics with bitangent along L∞}

WHY??
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