Enriching Bézout's Theorem

Stephen McKean (Georgia Tech) June 12th, 2019

PIMS Workshop on Arithmetic Topology

Enriching Bézout's Theorem

Enriching Bézout's Theorem

"It was my lot to plant the harpoon of algebraic topology into the body of the whale of algebraic geometry." - Lefschetz, 1924.

Theorem

Let k be an algebraically closed field. If $f, g \subset \mathbb{P}^2_k$ are generic algebraic curves of degree c, d, respectively, then

$$\sum_{p\in f\cap g}i_p(f,g)=cd.$$

Theorem

Let k be an algebraically closed field. If $f, g \subset \mathbb{P}^2_k$ are generic algebraic curves of degree c, d, respectively, then

$$\sum_{p\in f\cap g}i_p(f,g)=cd.$$

Bézout's Theorem

$$k = \mathbb{R}, \quad f = y - x^3, \quad g = y^2 + x^2 - 1.$$

Bézout's Theorem

$$k = \mathbb{R}, \quad f = y - x^3, \quad g = y^2 + x^2 - 1.$$

\mathbb{A}^1 -Enumerative Geometry

$\mathrm{GW}(\mathbb{C}) \xrightarrow{\mathsf{rank}} \mathbb{Z}$

$$\begin{array}{l} \operatorname{GW}(\mathbb{C}) \xrightarrow[]{\operatorname{rank}} & \mathbb{Z} \\ \\ \operatorname{GW}(\mathbb{R}) \xrightarrow[]{\operatorname{rank} \times \operatorname{sign}} & \mathbb{Z} \times \mathbb{Z} \end{array}$$

 $\begin{array}{l} \operatorname{GW}(\mathbb{C}) \xrightarrow[\operatorname{rank}]{} \mathbb{Z} \\ \operatorname{GW}(\mathbb{R}) \xrightarrow[\operatorname{rank} \times \operatorname{sign}]{} \mathbb{Z} \times \mathbb{Z} \\ \operatorname{GW}(\mathbb{F}_q) \xrightarrow[\operatorname{rank} \times \operatorname{disc}]{} \mathbb{Z} \times \mathbb{F}_q^{\times} / (\mathbb{F}_q^{\times})^2 \end{array}$

$$\begin{array}{l} \operatorname{GW}(\mathbb{C}) \xrightarrow{\operatorname{rank}} \mathbb{Z} \\ \operatorname{GW}(\mathbb{R}) \xrightarrow{\operatorname{rank} \times \operatorname{sign}} \mathbb{Z} \times \mathbb{Z} \\ \operatorname{GW}(\mathbb{F}_q) \xrightarrow{\operatorname{rank} \times \operatorname{disc}} \mathbb{Z} \times \mathbb{F}_q^{\times} / (\mathbb{F}_q^{\times})^2 \end{array}$$

If k is not algebraically closed, we get extra information.

$$\begin{array}{l} \operatorname{GW}(\mathbb{C}) \xrightarrow{\operatorname{\mathsf{rank}}} \mathbb{Z} \\ \operatorname{GW}(\mathbb{R}) \xrightarrow{\operatorname{\mathsf{rank}} \times \operatorname{\mathsf{sign}}} \mathbb{Z} \times \mathbb{Z} \\ \operatorname{GW}(\mathbb{F}_q) \xrightarrow{\operatorname{\mathsf{rank}} \times \operatorname{\mathsf{disc}}} \mathbb{Z} \times \mathbb{F}_q^{\times} / (\mathbb{F}_q^{\times})^2 \end{array}$$

If k is not algebraically closed, we get extra information.

 \mathbb{A}^1 -enumerative geometry: extra information has geometric meaning.

Enriched Bézout's Theorem

Enriched Bézout's Theorem

Look at sections $\sigma = (f,g)$ of $\mathcal{O}(c) \oplus \mathcal{O}(d)$.

Theorem (M.)

Let k be a perfect field and f,g curves of degrees c,d with $f\cap g$ isolated.

Theorem (M.)

Let k be a perfect field and f, g curves of degrees c, d with $f \cap g$ isolated. If c + d is odd, then

$$\sum_{p \in f \cap g} \deg_p^{\mathbb{A}^1}(f,g) = \frac{cd}{2} \cdot \mathbb{H}.$$

Theorem (M.)

Let k be a perfect field and f, g curves of degrees c, d with $f \cap g$ isolated. If c + d is odd, then

$$\sum_{p \in f \cap g} \deg_p^{\mathbb{A}^1}(f,g) = \frac{cd}{2} \cdot \mathbb{H}.$$

$$\deg_p^{\mathbb{A}^1}(f,g) = \begin{cases} \operatorname{Tr}_{k(p)/k}\left(\frac{i_p}{2} \cdot \mathbb{H}\right) & i_p \text{ even}, \\ \operatorname{Tr}_{k(p)/k}\left(\langle a_p \rangle + \frac{i_p - 1}{2} \cdot \mathbb{H}\right) & i_p \text{ odd}. \end{cases}$$

Theorem (M.)

Let k be a perfect field and f, g curves of degrees c, d with $f \cap g$ isolated. If c + d is odd, then

$$\sum_{p \in f \cap g} \deg_p^{\mathbb{A}^1}(f,g) = \frac{cd}{2} \cdot \mathbb{H}.$$

$$\deg_p^{\mathbb{A}^1}(f,g) = \begin{cases} \operatorname{Tr}_{k(p)/k} \left(\frac{i_p}{2} \cdot \mathbb{H} \right) & i_p \text{ even,} \\ \operatorname{Tr}_{k(p)/k} \left(\langle a_p \rangle + \frac{i_p - 1}{2} \cdot \mathbb{H} \right) & i_p \text{ odd.} \end{cases}$$

Enriched Bézout's Theorem

$$k \quad \deg_p^{\mathbb{A}^1}(f,g) \qquad \frac{cd}{2} \cdot \mathbb{H}$$

k	$\deg_p^{\mathbb{A}^1}(f,g)$	$\frac{cd}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_p(f,g)$	cd

k	$\deg_p^{\mathbb{A}^1}(f,g)$	$\frac{cd}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_{\rho}(f,g)$	cd
\mathbb{R}	crossing sign at p	0

k	$\deg_p^{\mathbb{A}^1}(f,g)$	$\frac{cd}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_p(f,g)$	cd
\mathbb{R}	crossing sign at p	0
\mathbb{F}_q	crossing sign at <i>p</i>	$(-1)^{\frac{cd}{2}}$

k	$\deg_p^{\mathbb{A}^1}(f,g)$	$\frac{cd}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_p(f,g)$	cd
\mathbb{R}	crossing sign at p	0
\mathbb{F}_q	crossing sign at <i>p</i>	$(-1)^{\frac{cd}{2}}$

 \bullet Over $\mathbb{C}:$ counts intersection points.

k	$\deg_p^{\mathbb{A}^1}(f,g)$	$\frac{cd}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_p(f,g)$	cd
\mathbb{R}	crossing sign at <i>p</i>	0
\mathbb{F}_q	crossing sign at <i>p</i>	$(-1)^{\frac{cd}{2}}$

- \bullet Over $\mathbb{C}:$ counts intersection points.
- Over \mathbb{R} : equal number of positive/negative crossings.

k	$\deg_p^{\mathbb{A}^1}(f,g)$	$\frac{cd}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_p(f,g)$	cd
\mathbb{R}	crossing sign at <i>p</i>	0
\mathbb{F}_q	crossing sign at <i>p</i>	$(-1)^{\frac{cd}{2}}$

- Over \mathbb{C} : counts intersection points.
- Over \mathbb{R} : equal number of positive/negative crossings.
- Over \mathbb{F}_q : counts crossing types mod 2.

Example

$$k = \mathbb{R}, \quad f = y - x^3, \quad g = y^2 + x^2 - 1.$$

Example

Example

7

Why c + d odd?

Why c + d odd?

Approach uses *motivic Euler class* of $\mathcal{O}(c) \oplus \mathcal{O}(d) \to \mathbb{P}^2$.

Why c + d odd?

Approach uses motivic Euler class of $\mathcal{O}(c)\oplus\mathcal{O}(d)\to\mathbb{P}^2.$

• Only well-defined if c + d odd.
Approach uses *motivic Euler class* of $\mathcal{O}(c) \oplus \mathcal{O}(d) \to \mathbb{P}^2$.

- Only well-defined if c + d odd.
- Potential fix (Larson-Vogt): pick a divisor.

Approach uses *motivic Euler class* of $\mathcal{O}(c) \oplus \mathcal{O}(d) \to \mathbb{P}^2$.

- Only well-defined if c + d odd.
- Potential fix (Larson-Vogt): pick a divisor.
- If c, d even and $\{f \cap g\}|_{\{x_0=0\}} = \emptyset$, Enriched Bézout still works.

Approach uses *motivic Euler class* of $\mathcal{O}(c) \oplus \mathcal{O}(d) \to \mathbb{P}^2$.

- Only well-defined if c + d odd.
- Potential fix (Larson-Vogt): pick a divisor.
- If c, d even and $\{f \cap g\}|_{\{x_0=0\}} = \emptyset$, Enriched Bézout still works.

What's left to do?

Approach uses *motivic Euler class* of $\mathcal{O}(c) \oplus \mathcal{O}(d) \to \mathbb{P}^2$.

- Only well-defined if c + d odd.
- Potential fix (Larson-Vogt): pick a divisor.
- If c, d even and $\{f \cap g\}|_{\{x_0=0\}} = \emptyset$, Enriched Bézout still works.

What's left to do?

• Explicit calculation of a_p when $i_p > 1$.

Approach uses *motivic Euler class* of $\mathcal{O}(c) \oplus \mathcal{O}(d) \to \mathbb{P}^2$.

- Only well-defined if c + d odd.
- Potential fix (Larson-Vogt): pick a divisor.
- If c, d even and $\{f \cap g\}|_{\{x_0=0\}} = \emptyset$, Enriched Bézout still works.

What's left to do?

- Explicit calculation of a_p when $i_p > 1$.
- Address *c*, *d* odd case.

Thanks!

Hurwitz Space Statistics and Dihedral Nichols Algebras

Gregory Michel

PIMS: Workshop in Arithmetic Topology

June 12, 2019

Question

How many number fields K/\mathbb{Q} of degree *n* with discriminant bounded by *X* are there?

Question

How many number fields K/\mathbb{Q} of degree *n* with discriminant bounded by X are there?

Conjecture(Linnik): For all n, this is asymptotically linear in X.

Question

How many number fields K/\mathbb{Q} of degree *n* with discriminant bounded by X are there?

Conjecture(Linnik): For all n, this is asymptotically linear in X.

Theorem (Bhargava-Shankar-Tsimerman)

When n = 3, this number is given by

$$\frac{1}{12\zeta(3)}X + \frac{4\zeta(1/3)}{5\Gamma(2/3)^3\zeta(5/3)}X^{5/6} + (\text{smaller order terms}).$$

$$H_j(Hur^{c}_{G,m},k) \cong Ext^{m-j,m}_{\mathfrak{A}(V)}(k,k),$$

where $\mathfrak{A}(V)$ denotes a quantum shuffle algebra.

$$H_j(Hur_{G,m}^c, k) \cong Ext_{\mathfrak{A}(V)}^{m-j,m}(k, k),$$

where $\mathfrak{A}(V)$ denotes a quantum shuffle algebra.

Goal *(Ambitious)*: Apply G-L to the left hand side of this result to get an Arithmetic Statistic result counting function fields.

$$H_j(Hur_{G,m}^c, k) \cong Ext_{\mathfrak{A}(V)}^{m-j,m}(k, k),$$

where $\mathfrak{A}(V)$ denotes a quantum shuffle algebra.

Goal *(Ambitious)*: Apply G-L to the left hand side of this result to get an Arithmetic Statistic result counting function fields.

There is a subalgebra $\mathfrak{B}(V) \subseteq \mathfrak{A}(V)$ called the *Nichols Algebra*

$$H_j(Hur_{G,m}^c, k) \cong Ext_{\mathfrak{A}(V)}^{m-j,m}(k, k),$$

where $\mathfrak{A}(V)$ denotes a quantum shuffle algebra.

Goal *(Ambitious)*: Apply G-L to the left hand side of this result to get an Arithmetic Statistic result counting function fields.

There is a subalgebra $\mathfrak{B}(V) \subseteq \mathfrak{A}(V)$ called the *Nichols Algebra*

Idea: Replace $\operatorname{Ext}_{\mathfrak{A}(V)}(k,k)$ with $\operatorname{Ext}_{\mathfrak{B}(V)}(k,k)$.

$$H_j(Hur_{G,m}^c, k) \cong Ext_{\mathfrak{A}(V)}^{m-j,m}(k, k),$$

where $\mathfrak{A}(V)$ denotes a quantum shuffle algebra.

Goal *(Ambitious)*: Apply G-L to the left hand side of this result to get an Arithmetic Statistic result counting function fields.

There is a subalgebra $\mathfrak{B}(V) \subseteq \mathfrak{A}(V)$ called the *Nichols Algebra*

Idea: Replace $\operatorname{Ext}_{\mathfrak{A}(V)}(k, k)$ with $\operatorname{Ext}_{\mathfrak{B}(V)}(k, k)$. At the moment, this is completely unjustified.

The Third Fomin-Kirillov Algebra

Definition (Fomin-Kirillov Algebras)

For $n \ge 2$, the n^{th} Fomin-Kirillov algebra FK_n over k is the quadratic algebra with generators x_{ij} for $1 \le i < j \le n$ subject to the relations

•
$$x_{ij}^2 = 0$$
,

- $x_{ij}x_{kl} = x_{kl}x_{ij}$ when i, j, k, l are all distinct,
- $x_{ij}x_{jk} + x_{jk}x_{ki} + x_{ki}x_{ij} = 0$ when i, j, k are distinct.

When $G = S_3$, the corresponding Nichols Algebra \mathfrak{B} is isomorphic to the third Fomin-Kirillov Algebra FK_3 .

The Third Fomin-Kirillov Algebra

Definition (Fomin-Kirillov Algebras)

For $n \ge 2$, the n^{th} Fomin-Kirillov algebra FK_n over k is the quadratic algebra with generators x_{ij} for $1 \le i < j \le n$ subject to the relations

•
$$x_{ij}^2 = 0$$
,

- $x_{ij}x_{kl} = x_{kl}x_{ij}$ when i, j, k, l are all distinct,
- $x_{ij}x_{jk} + x_{jk}x_{ki} + x_{ki}x_{ij} = 0$ when i, j, k are distinct.

When $G = S_3$, the corresponding Nichols Algebra \mathfrak{B} is isomorphic to the third Fomin-Kirillov Algebra FK_3 .

Theorem (Ștefan-Vay (2016))

$$Ext_{\mathfrak{B}}(k,k)\cong \mathfrak{B}^{!}[Z],$$

where $\mathfrak{B}^!$ is generated by three classes A, B, C of degree (1, 1) and Z has degree (4, 6).

When $G = S_3$, apply G-L to $\operatorname{Hur}_{G,m}^c$, naively replacing $\operatorname{Ext}_{\mathfrak{A}(V)}$ with $\operatorname{Ext}_{\mathfrak{B}}$:

When $G = S_3$, apply G-L to $\operatorname{Hur}_{G,m}^c$, naively replacing $\operatorname{Ext}_{\mathfrak{A}(V)}$ with $\operatorname{Ext}_{\mathfrak{B}}$: $A, B, C \in \operatorname{Ext}_{\mathfrak{B}}^{1,1} = H_0(\operatorname{Hur}_1) = H_C^2(\operatorname{Hur}_1)$

$$Z \in Ext_{\mathfrak{B}}^{4,6} = H_2(\mathsf{Hur}_6) = H_C^{10}(\mathsf{Hur}_6)$$

Use Deligne's bounds to approximate the trace of "Frob"

Resulting point count:

When $G = S_3$, apply G-L to $\operatorname{Hur}_{G,m}^c$, naively replacing $\operatorname{Ext}_{\mathfrak{A}(V)}$ with $\operatorname{Ext}_{\mathfrak{B}}$: $A, B, C \in \operatorname{Ext}_{\mathfrak{B}}^{1,1} = H_0(\operatorname{Hur}_1) = H_C^2(\operatorname{Hur}_1)$

$$Z \in Ext_{\mathfrak{B}}^{4,6} = H_2(\mathsf{Hur}_6) = H_C^{10}(\mathsf{Hur}_6)$$

Use Deligne's bounds to approximate the trace of "Frob"

Resulting point count:

 $CX + DX^{5/6}$

Dihedral Nichols Algebras

Let $G = D_{2p}$.

Dihedral Nichols Algebras

Let $G = D_{2p}$.

Theorem (In Progress, M.)

Let B denote the Nichols algebra corresponding to the group D_{2p} . Then

 $Ext_B(k,k) \cong B^![Z],$

where $B^!$ is generated by p classes of degree (1,1) and Z has degree (4,2p).

Dihedral Nichols Algebras

Let $G = D_{2p}$.

Theorem (In Progress, M.)

Let B denote the Nichols algebra corresponding to the group D_{2p} . Then

 $Ext_B(k,k) \cong B^![Z],$

where $B^!$ is generated by p classes of degree (1,1) and Z has degree (4,2p).

Naively applying G-L in this situation yields

$$CX + DX^{\frac{p+2}{2p}}$$

Thank you!

Spaces of Noncollinear Points

Ben O'Connor joint with Ronno Das

University of Chicago

PIMS Workshop on Arithmetic Topology June 12, 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$B_n := \left\{ \{x_1, \dots, x_n\} \in \mathsf{Conf}_n(\mathbb{CP}^2) \,| \, \mathsf{no three} \, x_i \, \mathsf{collinear} ight\}$

・ロト・日本・モト・モート ヨー うへで

$B_n := \{ \{x_1, \dots, x_n\} \in \operatorname{Conf}_n(\mathbb{CP}^2) \mid \text{no three } x_i \text{ collinear} \}$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

 $B_n := \left\{ \{x_1, \dots, x_n\} \in \mathsf{Conf}_n(\mathbb{CP}^2) \,| \, \mathsf{no three} \, x_i \, \mathsf{collinear}
ight\}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• $n = 5 \longrightarrow$ degree 4 del Pezzo surfaces

 $B_n := \{ \{x_1, \dots, x_n\} \in \operatorname{Conf}_n(\mathbb{CP}^2) \mid \text{no three } x_i \text{ collinear} \}$

- $n = 5 \longrightarrow$ degree 4 del Pezzo surfaces
- $n = 6 \longrightarrow$ cubic surfaces with at most one nodal singularity

 $B_n := \{\{x_1, \dots, x_n\} \in \operatorname{Conf}_n(\mathbb{CP}^2) \mid \text{no three } x_i \text{ collinear}\}$

- $n = 5 \longrightarrow$ degree 4 del Pezzo surfaces
- $n = 6 \longrightarrow$ cubic surfaces with at most one nodal singularity

 $B_n := \left\{ \{x_1, \dots, x_n\} \in \mathsf{Conf}_n(\mathbb{CP}^2) \,|\, \mathsf{no three}\,\, x_i \,\, \mathsf{collinear} \right\}$

- $n = 5 \longrightarrow$ degree 4 del Pezzo surfaces
- $n = 6 \longrightarrow$ cubic surfaces with at most one nodal singularity

Goal

Compute $H^*(B_n; \mathbb{Q})$

Ordered cover *F_n*:

$$F_n \\ \downarrow \\ B_n = F_n / S_n$$

Ordered cover *F_n*:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ordered cover *F_n*:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ordered cover *F_n*:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Refined Goal

Compute $H^*(F_n; \mathbb{Q})$

Ordered cover *F_n*:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Refined Goal

Compute $H^*(F_n; \mathbb{Q})$ as an S_n -representation
Ordered Version

Ordered cover *F_n*:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Refined Goal

Compute $H^*(F_n; \mathbb{Q})$ as an S_n -representation

• By transfer, $H^*(B_n; \mathbb{Q}) \cong H^*(F_n; \mathbb{Q})^{S_n}$

• Ordering gives maps $F_n \rightarrow F_{n-1}$ by "forget the last point"

• Ordering gives maps $F_n \rightarrow F_{n-1}$ by "forget the last point"

• Ordering gives maps $F_n \rightarrow F_{n-1}$ by "forget the last point"

• Ordering gives maps $F_n \rightarrow F_{n-1}$ by "forget the last point"

• Ordering gives maps $F_n \rightarrow F_{n-1}$ by "forget the last point"

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• $H^*(\mathbb{F}_n; \mathbb{Q})$ known for n = 2, 3

・ロト・日本・モト・モート ヨー うへで

• $H^*(\mathbb{F}_n; \mathbb{Q})$ known for n = 2, 3

・ロト・日本・モト・モート ヨー うへで

• $F_4 \cong \mathsf{PGL}_3(\mathbb{C})$

- $H^*(\mathbb{F}_n; \mathbb{Q})$ known for n = 2, 3
- $F_4 \cong \mathsf{PGL}_3(\mathbb{C})$
- Finitely presented group surjecting onto $\pi_1(F_n)$ (Moulton)

Theorem (Das-O.)

For $X_5 = F_5 / \text{PGL}_3(\mathbb{C})$, there are isomorphisms of S_5 -representations

$$H^{*}(X_{5};\mathbb{Q})\cong egin{cases} U & if*=0,\ S_{3,2} & if*=1,\ \wedge^{2}V & if*=2,\ 0 & otherwise. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Das-O.)

For $X_6 = F_6 / \text{PGL}_3(\mathbb{C})$, there are isomorphisms of S_6 -representations

 $H^*(X_6; \mathbb{Q}) \cong$

(U	<i>if</i> * = 0,
$S_{3,3} \oplus S_{4,2}$	if * = 1,
$V \oplus \wedge^2 V^{\oplus 2} \oplus \wedge^3 V \oplus S_{3,3} \oplus S_{3,2,1}^{\oplus 2}$	<i>if</i> * = 2,
$V \oplus \wedge^2 V^{\oplus 3} \oplus \wedge^3 V^{\oplus 3} \oplus S_{3,3} \oplus S_{2,2,2} \oplus S_{4,2}^{\oplus 2} \oplus S_{2,2,1,1}^{\oplus 2} \oplus S_{3,2,1}^{\oplus 3}$	<i>if</i> * = 3,
$U \oplus U' \oplus V \oplus V' \oplus \wedge^2 V \oplus \wedge^3 V^{\oplus 2} \oplus S_{3,3}^{\oplus 2} \oplus S_{2,2,2}^{\oplus 3} \oplus S_{4,2}^{\oplus 2} \oplus S_{2,2,1,1} \oplus S_{3,2,1}^{\oplus 3}$	<i>if</i> * = 4,
0	otherwise.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof(?)

Proof(?)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fiber bundle \longrightarrow Serre spectral sequence

Proof(?)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Topology comes up short - what do we do?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Topology comes up short - what do we do?

 F_n (smooth) variety defined over \mathbb{Z}

Topology comes up short - what do we do?

 F_n (smooth) variety defined over \mathbb{Z}

Use point counts and Grothendieck-Lefschetz trace formula

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$B_n(\mathbb{F}_q) \ni p = \{p_1, \ldots, p_n\}$$

$$B_n(\mathbb{F}_q) \ni p = \{p_1, \ldots, p_n\} \longrightarrow |B_n(\mathbb{F}_q)|$$

$$B_n(\mathbb{F}_q) \ni p = \{p_1, \dots, p_n\} \longrightarrow |B_n(\mathbb{F}_q)|$$

 $B_n(\mathbb{F}_q) \ni p = \{p_1, \dots, p_n\}$

$$B_n(\mathbb{F}_q) \ni p = \{p_1, \dots, p_n\} \longrightarrow |B_n(\mathbb{F}_q)|$$

 $B_n(\mathbb{F}_q) \ni p = \{p_1, \dots, p_n\} \bigcirc \operatorname{Frob}_q$

$$B_n(\mathbb{F}_q) \ni p = \{p_1, \dots, p_n\} \longrightarrow |B_n(\mathbb{F}_q)|$$
$$B_n(\mathbb{F}_q) \ni p = \{p_1, \dots, p_n\} \odot \operatorname{Frob}_q \longrightarrow \sigma_p \in S_n$$

$$B_n(\mathbb{F}_q) \ni p = \{p_1, \dots, p_n\} \longrightarrow |B_n(\mathbb{F}_q)|$$
$$B_n(\mathbb{F}_q) \ni p = \{p_1, \dots, p_n\} \odot \operatorname{Frob}_q \longrightarrow \sigma_p \in S_n$$

$$= p \circ \operatorname{Frob}_q \to \sigma_p \in S_5$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $p_{n,C}(q) = |\{p \in B_n(\mathbb{F}_q) \mid \sigma_p \in C\}|$

Example: n = 6, C = (123)(45)

• Choices of a

$$(q-1)^2 q^3 (q+1)$$

• Choices of b

$$(q-1)q(q^2+q+1)$$

• Choices of c

 q^2

・ロト ・ 西ト ・ モト ・ モー ・ つへぐ

$$p_{6,(123)(45)}(q) = rac{1}{6}(q-1)^3 q^6(q+1)(q^2+q+1)$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

▲ロ▶ ▲圖▶ ▲温▶ ▲温▶ 三語 - 釣A(で)

Tables of Point Counts

Class (C)	$p_{5,C}(q)$
e	$\frac{1}{120}(q-3)(q-2)(q-1)^2q^3(q+1)(q^2+q+1)$
(12)	$\frac{1}{12}(q-1)^3q^4(q+1)(q^2+q+1)$
(12)(34)	$\frac{1}{8}(q-2)(q-1)^2q^3(q+1)^2(q^2+q+1)$
(123)	$rac{1}{6}(q-1)^2q^4(q+1)^2(q^2+q+1)$
(123)(45)	$\frac{1}{6}(q-1)^3q^4(q+1)(q^2+q+1)$
(1234)	$\frac{1}{4}(q-1)^2q^4(q+1)^2(q^2+q+1)$
(12345)	$\frac{1}{5}(q-1)^2q^3(q+1)(q^2+1)(q^2+q+1)$

Table: Point counts for $B_5(\mathbb{F}_q)$ twisted by conjugacy classes of S_5 .

Class (C)	$p_{6,C}(q)$
e	$\frac{1}{720}(q-3)(q-2)(q-1)^2q^3(q+1)(q^2+q+1)(q^2-9q+21)$
(12)	$rac{1}{48}(q{-}1)^3q^4(q{+}1)(q^2{+}q{+}1)(q^2{-}3q{+}3)$
(12)(34)	$\frac{1}{6}(q-2)(q-1)^2q^3(q+1)^2(q^2+q+1)(q^2-q-3)$
(12)(34)(56)	$\frac{1}{48}(q-1)^2q^3(q+1)(q^2+q+1)(q^4-6q^2+q+8)$
(123)	$\frac{1}{18}(q-1)^2 q^6(q+1)^2(q^2+q+1)$
(123)(45)	$\frac{1}{6}(q-1)^3q^6(q+1)(q^2+q+1)$
(123)(456)	$\frac{1}{18}(q-1)^2q^3(q+1)(q^2+q+1)(q^4-2q^3-3q+9)$
(1234)	$\frac{1}{8}(q-1)^2q^4(q+1)^2(q^2+q+1)(q^2+q-1)$
(1234)(56)	$\frac{1}{8}(q-1)^2q^3(q+1)(q^2+q+1)(q^4-2q^2-q-2)$
(12345)	$\frac{1}{5}(q-1)^2q^3(q+1)(q^2+1)(q^2+q+1)^2$
(123456)	$rac{1}{6}(q{-}1)^2q^3(q{+}1)(q^2{+}q{+}1)(q^4{+}q{-}1)$

Table: Point counts for $B_6(\mathbb{F}_q)$ twisted by conjugacy classes of S_6

	F
Class (C)	$p_{6,C}(q)$
e	$\frac{1}{720}(q-3)(q-2)(q-1)^2q^3(q+1)(q^2+q+1)(q^2-9q+21)$
(12)	$rac{1}{48}(q{-}1)^3q^4(q{+}1)(q^2{+}q{+}1)(q^2{-}3q{+}3)$
(12)(34)	$\frac{1}{6}(q-2)(q-1)^2q^3(q+1)^2(q^2+q+1)(q^2-q-3)$
(12)(34)(56)	$\frac{1}{48}(q-1)^2q^3(q+1)(q^2+q+1)(q^4-6q^2+q+8)$
(123)	$rac{1}{18}(q{-}1)^2q^6(q{+}1)^2(q^2{+}q{+}1)$
(123)(45)	$\frac{1}{6}(q-1)^3q^6(q+1)(q^2+q+1)$
(123)(456)	$\frac{1}{18}(q-1)^2q^3(q+1)(q^2+q+1)(q^4-2q^3-3q+9)$
(1234)	$\frac{1}{8}(q-1)^2q^4(q+1)^2(q^2+q+1)(q^2+q-1)$
(1234)(56)	$\frac{1}{8}(q-1)^2q^3(q+1)(q^2+q+1)(q^4-2q^2-q-2)$
(12345)	$\frac{1}{5}(q-1)^2q^3(q+1)(q^2+1)(q^2+q+1)^2$
(123456)	$rac{1}{6}(q-1)^2q^3(q+1)(q^2+q+1)(q^4+q-1)$

Table: Point counts for $B_6(\mathbb{F}_q)$ twisted by conjugacy classes of S_6

• Now we cross the bridge back to topology(!)

Grothendieck-Lefschetz Trace Formula

$$\sum_{\mathsf{p}\in X(\mathbb{F}_q)}\mathsf{tr}(\mathsf{Frob}_q\mid \mathcal{V}_p) = \sum_i (-1)^i\,\mathsf{tr}(\mathsf{Frob}_q\colon H^{2n-i}_{\mathrm{\acute{e}t},c}(X;\mathcal{V}))$$

$$\sum_{C} \chi_{V}(C) p_{n,C}(q) = q^{n} \sum_{i,w}^{\downarrow} q^{-w} (-1)^{i} \langle \chi_{V}, \chi_{w}^{i}(F_{n}) \rangle_{S_{n}}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Theorem (Das-O.)

For $X_n = F_n / \text{PGL}_3(\mathbb{C})$, there are isomorphisms of S_n -representations

$$H^{*}(X_{5};\mathbb{Q})\cong egin{cases} U & if*=0,\ S_{3,2} & if*=1,\ \wedge^{2}V & if*=2,\ 0 & otherwise. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thanks for listening!

Theorem (Das-O.)

For $X_n = F_n / \text{PGL}_3(\mathbb{C})$, there are isomorphisms of S_n -representations $H^*(X_6; \mathbb{Q}) \cong$

 $\begin{cases} U & \text{if } * = 0, \\ s_{3,3} \oplus S_{4,2} & \text{if } * = 1, \\ V \oplus \wedge^2 V^{\oplus 2} \oplus \wedge^3 V \oplus S_{3,3} \oplus S_{3,2,1}^{\oplus 2} & \text{if } * = 2, \\ V \oplus \wedge^2 V^{\oplus 3} \oplus \wedge^3 V^{\oplus 3} \oplus S_{3,3} \oplus S_{2,2,2} \oplus S_{4,2}^{\oplus 2} \oplus S_{3,2,1}^{\oplus 2} & \text{if } * = 3, \\ U \oplus U' \oplus V \oplus V' \oplus \wedge^2 V \oplus \wedge^3 V^{\oplus 2} \oplus S_{3,3}^{\oplus 2} \oplus S_{2,2,2}^{\oplus 3} \oplus S_{4,2}^{\oplus 2} \oplus S_{2,2,1,1} \oplus S_{3,2,1}^{\oplus 3} & \text{if } * = 4, \\ 0 & \text{otherwise.} \end{cases}$

Types of Lines on Quintic Threefolds and Beyond

Sabrina Pauli

University of Oslo

June 12, 2019

Sabrina Pauli Types of Lines on Quintic Threefolds and Beyond
Lines on a Cubic Surface

Let $X \subset \mathbb{P}^3$ be a smooth cubic surface.

 k = C: #complex lines on X = 27 (Cayley, Salmon 19th century)

Let $X \subset \mathbb{P}^3$ be a smooth cubic surface.

- k = C: #complex lines on X = 27 (Cayley, Salmon 19th century)
- k = ℝ: There are two types of real lines, called hyperbolic and elliptic (Segre).
- # real hyperbolic lines on X # real elliptic lines on X = 3 (Finashin-Kharlamov, Okonek-Teleman, Horev-Solomon, Benedetti-Silhol)

Let $X \subset \mathbb{P}^3$ be a smooth cubic surface.

- k = C: #complex lines on X = 27 (Cayley, Salmon 19th century)
- k = ℝ: There are two types of real lines, called hyperbolic and elliptic (Segre).
- # real hyperbolic lines on X # real elliptic lines on X = 3 (Finashin-Kharlamov, Okonek-Teleman, Horev-Solomon, Benedetti-Silhol)
- k arbitrary (char(k) ≠ 2): can assign an arithmetic type in k*/(k*)² (Kass-Wickelgren) → can count lines in GW(k): 15 < 1 > +12 < -1 >

Let $L \subset X$ be a line. To each point $p \in L$, there is exactly one other point q such that $T_pX = T_qX$.

Definition

The morphism $i : L \rightarrow L$ that swaps p and q is called Segre *involution*. Its fixed points are called Segre fixed points.

Let $L \subset X$ be a line. To each point $p \in L$, there is exactly one other point q such that $T_pX = T_qX$.

Definition

The morphism $i : L \rightarrow L$ that swaps p and q is called Segre *involution*. Its fixed points are called Segre fixed points.

The Segre fixed points are defined over the field $k(\sqrt{\alpha})$ for some $\alpha \in k^*/(k^*)^2$.

Definition

The type of a line on a cubic surface is $< \alpha > \in GW(k)$.

通 と イ ヨ と イ ヨ と

Local degree

Let Gr(2,4) be the Grassmannian of lines in \mathbb{P}^3 . A homogeneous degree 3 polynomial f defines a section σ_f of the vector bundle $\mathcal{E} := \operatorname{Sym}^3 \mathcal{S}^{\vee} \to \operatorname{Gr}(2,4)$ where \mathcal{S} is the tautological subbundle of $\operatorname{Gr}(4,2)$.

 $\{\text{zeros of } \sigma_f\} \leftrightarrow \{\text{lines on } X = \{f = 0\} \subset \mathbb{P}^3\}$

Local degree

Let Gr(2,4) be the Grassmannian of lines in \mathbb{P}^3 . A homogeneous degree 3 polynomial f defines a section σ_f of the vector bundle $\mathcal{E} := \operatorname{Sym}^3 \mathcal{S}^{\vee} \to \operatorname{Gr}(2,4)$ where \mathcal{S} is the tautological subbundle of $\operatorname{Gr}(4,2)$.

 $\{\text{zeros of } \sigma_f\} \leftrightarrow \{\text{lines on } X = \{f = 0\} \subset \mathbb{P}^3\}$

Locally σ_f is a morphsim $\mathbb{A}^4 \to \mathbb{A}^4$. The local degree of σ_f at a zero is $\langle J \rangle \in \mathrm{GW}(k)$ where J is the determinant of the Jacobian at the zero. We define the Euler number $e(\mathcal{E}) := \sum \text{local degrees.}$

Theorem (Kass-Wickelgren)

The local degree of a zero of σ_f is equal to the type of the corresponding line on $X = \{f = 0\} \subset \mathbb{P}^3$ in GW(k).

lines quintic threefold.jpg degree 4 curve in P2 $P^{1} \simeq 1$ mapa pt on L to its tangent Space

Let $L \subset X \subset \mathbb{P}^4$ be a line on a quintic threefold X.

 There are 3 pairs of points on L with the same tangent space in X (might only be defined over a field extension F/k).

Let $L \subset X \subset \mathbb{P}^4$ be a line on a quintic threefold X.

- There are 3 pairs of points on L with the same tangent space in X (might only be defined over a field extension F/k).
- Let $p, q \in L \otimes F$ be such a pair, i.e., $T := T_p(X \otimes F) = T_q(X \otimes F)$. For $r \in L \otimes F$ there is exactly one other point $s \in L \otimes F$ such that

$$T \cap T_r(X \otimes F) = T \cap T_s(X \otimes F).$$

 \rightsquigarrow 3 Segre involutions $i_j : L \otimes F_j \rightarrow L \otimes F_j$ with fixed points defined over $F_j(\sqrt{\alpha_j})$, j = 1, 2, 3.

Let $L \subset X \subset \mathbb{P}^4$ be a line on a quintic threefold X.

- There are 3 pairs of points on *L* with the same tangent space in *X* (might only be defined over a field extension *F*/*k*).
- Let $p, q \in L \otimes F$ be such a pair, i.e., $T := T_p(X \otimes F) = T_q(X \otimes F)$. For $r \in L \otimes F$ there is exactly one other point $s \in L \otimes F$ such that

$$T \cap T_r(X \otimes F) = T \cap T_s(X \otimes F).$$

 \rightsquigarrow 3 Segre involutions $i_j : L \otimes F_j \rightarrow L \otimes F_j$ with fixed points defined over $F_j(\sqrt{\alpha_j})$, j = 1, 2, 3.

Definition

The type of a line on a quintic threefold is $\langle \prod N_{F_j/k}(\alpha_j) \rangle \in GW(k)$ where the product runs over the Galois orbits of the pairs of points with the same tangent space.

This has been defined for $k=\mathbb{R}$ by Finashin and Kharlamova $\mathfrak{I}_{\mathbb{R}}$

Let f be a homogeneous degree 5 polynomial in 5 variables and σ_f the corresponding section of Sym⁵ $S^{\vee} \to Gr(2,5)$.

 $\{\text{zeros of } \sigma_f\} \leftrightarrow \{\text{lines on } X = \{f = 0\} \subset \mathbb{P}^4\}$

Let f be a homogeneous degree 5 polynomial in 5 variables and σ_f the corresponding section of Sym⁵ $S^{\vee} \to Gr(2,5)$.

$$\{\text{zeros of } \sigma_f\} \leftrightarrow \{\text{lines on } X = \{f = 0\} \subset \mathbb{P}^4\}$$

Theorem (P.)

The local degree of a zero of σ_f is equal to the type of the corresponding line on a $X = \{f = 0\} \subset \mathbb{P}^4$ in GW(k).

ヨッ イヨッ イヨッ

Let f be a homogeneous degree 5 polynomial in 5 variables and σ_f the corresponding section of Sym⁵ $S^{\vee} \to Gr(2,5)$.

$$\{\text{zeros of } \sigma_f\} \leftrightarrow \{\text{lines on } X = \{f = 0\} \subset \mathbb{P}^4\}$$

Theorem (P.)

The local degree of a zero of σ_f is equal to the type of the corresponding line on a $X = \{f = 0\} \subset \mathbb{P}^4$ in GW(k).

The definition of the type of a line can be generalized to lines on degree 2n - 1 hypersurfaces in \mathbb{P}^{n+1} .

通 と イ ヨ と イ ヨ と

Twin Prime Polynomials Joint with Sawin

Mark Shusterman

UW Madison

6/10/2019

Main Result

Main Result

 Theorem (Sawin, S): There exists a prime power q such that for every h ∈ 𝔽_q[T] there exist infinitely many monic irreducible f ∈ 𝔽_q[T] such that f + h is irreducible as well.

Main Result

- Theorem (Sawin, S): There exists a prime power q such that for every h ∈ 𝔽_q[T] there exist infinitely many monic irreducible f ∈ 𝔽_q[T] such that f + h is irreducible as well.
- Actually, we have a quantitative version where the number of such *f* (having a certain degree) is obtained (with a power saving error term).

• Level of Distribution for Primes: Counting primes up to X in a certain residue class, with modulus larger than \sqrt{X} .

- Level of Distribution for Primes: Counting primes up to X in a certain residue class, with modulus larger than \sqrt{X} .
- Parity Problem: How often do both *f* and *f* + *h* have an odd number of prime factors?

- Level of Distribution for Primes: Counting primes up to X in a certain residue class, with modulus larger than \sqrt{X} .
- Parity Problem: How often do both *f* and *f* + *h* have an odd number of prime factors?
- We focus on the second problem.

• Theorem (Sawin, S): For distinict $h_1, \ldots, h_k \in \mathbb{F}_q[T]$ we have

$$\sum_{\deg f \le d} \mu(f+h_1) \cdots \mu(f+h_k) = o(q^d), \quad d \to \infty.$$

• Theorem (Sawin, S): For distinct $h_1, \ldots, h_k \in \mathbb{F}_q[T]$ we have

$$\sum_{\deg f \le d} \mu(f+h_1) \cdots \mu(f+h_k) = o(q^d), \quad d \to \infty.$$

• Idea: Split the sum into subsums over those *f* having the same derivative, and show that (on these subsums) the Möbius function can be mimicked by a multiplicative Dirichlet character.

• Theorem (Sawin, S): For distinct $h_1, \ldots, h_k \in \mathbb{F}_q[T]$ we have

$$\sum_{\deg f \le d} \mu(f+h_1) \cdots \mu(f+h_k) = o(q^d), \quad d \to \infty.$$

- Idea: Split the sum into subsums over those *f* having the same derivative, and show that (on these subsums) the Möbius function can be mimicked by a multiplicative Dirichlet character.
- We are then able to reduce the problem to a short character sum.

• Theorem (Sawin, S): Let $g \in \mathbb{F}_q[T]$ be squarefree, and χ a nonprincipal Dirichlet character mod g. Then

$$\left|\sum_{\substack{h \in \mathbb{F}_q[T] \\ d(h) < t}} \chi(f+h)\right| \le (q^{1/2}+1) \binom{\deg(g)}{t} q^{\frac{t}{2}}$$

for any $f \in \mathbb{F}_q[T]$, and $0 \le t \le \deg(g)$.

• Theorem (Sawin, S): Let $g \in \mathbb{F}_q[T]$ be squarefree, and χ a nonprincipal Dirichlet character mod g. Then

$$\left|\sum_{\substack{h \in \mathbb{F}_q[T] \\ d(h) < t}} \chi(f+h)\right| \le (q^{1/2}+1) \binom{\deg(g)}{t} q^{\frac{t}{2}}$$

for any $f \in \mathbb{F}_q[T]$, and $0 \le t \le \deg(g)$.

• We write down a variety whose \mathbb{F}_q -point count controls the above character sum.

• Theorem (Sawin, S): Let $g \in \mathbb{F}_q[T]$ be squarefree, and χ a nonprincipal Dirichlet character mod g. Then

$$\left|\sum_{\substack{h \in \mathbb{F}_q[T] \\ d(h) < t}} \chi(f+h)\right| \le (q^{1/2}+1) \binom{\deg(g)}{t} q^{\frac{t}{2}}$$

for any $f \in \mathbb{F}_q[T]$, and $0 \le t \le \deg(g)$.

- We write down a variety whose \mathbb{F}_q -point count controls the above character sum.
- Study the geometry (e.g. singularities) of our variety in order to estimate the dimensions of the associated cohomology groups.

• Theorem (Sawin, S): Let $g \in \mathbb{F}_q[T]$ be squarefree, and χ a nonprincipal Dirichlet character mod g. Then

$$\left|\sum_{\substack{h \in \mathbb{F}_q[T] \\ d(h) < t}} \chi(f+h)\right| \le (q^{1/2}+1) \binom{\deg(g)}{t} q^{\frac{t}{2}}$$

for any $f \in \mathbb{F}_q[T]$, and $0 \le t \le \deg(g)$.

- We write down a variety whose \mathbb{F}_q -point count controls the above character sum.
- Study the geometry (e.g. singularities) of our variety in order to estimate the dimensions of the associated cohomology groups.
- Using Deligne's RH and the Grothendieck-Lefschetz trace formula, we are then able to estimate the number of \mathbb{F}_{q} -ponits on our variety.

Euler characteristics for spaces of string links and the modular envelope of \mathcal{L}_∞

Paul Arnaud Songhafouo Tsopméné

University of Regina

(Joint with Victor Turchin)

June 12, 2019

Fix an integer $d \ge 1$, which represents the dimension of the ambient space, and let $r \ge 1, m_1, \cdots, m_r \ge 1$.

Definition

Define $\operatorname{Emb}_{c}(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d})$ to be the space of smooth embeddings $f: \coprod_{i=1}^{r} \mathbb{R}^{m_{i}} \hookrightarrow \mathbb{R}^{d}$ that coincide outside a compact set with a fixed affine embedding ι . Such embeddings are called string links of r strands. Fix an integer $d \ge 1$, which represents the dimension of the ambient space, and let $r \ge 1, m_1, \cdots, m_r \ge 1$.

Definition

Define $\operatorname{Emb}_{c}(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d})$ to be the space of smooth embeddings $f: \coprod_{i=1}^{r} \mathbb{R}^{m_{i}} \hookrightarrow \mathbb{R}^{d}$ that coincide outside a compact set with a fixed affine embedding ι . Such embeddings are called string links of r strands.

For convenience, we consider a variation of that space, denoted $\overline{\mathrm{Emb}}_{c}(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d})$. To be more precise, $\overline{\mathrm{Emb}}_{c}(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d})$ is the homotopy fiber over ι of the obvious inclusion $\mathrm{Emb}_{c}(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d}) \hookrightarrow \mathrm{Imm}_{c}(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d})$, where $\mathrm{Imm}_{c}(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d})$ is the space of smooth immersions $\coprod_{i=1}^{r} \mathbb{R}^{m_{i}} \hookrightarrow \mathbb{R}^{d}$ that coincide outside a compact set with ι .

Figure: A string link of one strand ($r = 1, m_1 = 1$), also called a long knot

Figure: A string link of one strand ($r = 1, m_1 = 1$), also called a long knot

Figure: A string link of two strands ($r = 2, m_1 = m_2 = 1$)

æ

・ロト ・聞 ト ・ ヨト ・ ヨトー

Paul Arnaud Songhafouo Tsopméné
Many people studied $\overline{\text{Emb}}_c(\coprod_{i=1}^r \mathbb{R}^{m_i}, \mathbb{R}^d)$ for various r and m_i :

For r = 1, m₁ = 1, we have the space Emb_c(ℝ, ℝ^d) which has been studied by: V. Turchin (2004, 2013), D. Sinha (2006), P. Salvatore (2006), R. Budney (2007, 2012), K. Sakai (2008), Lambrechts-Volić-Turchin (2010), Dwyer-Hess (2012), P. Songhafouo Tsopméné (2013), S. Moriya (2013), T. Willwacher (2015).

Many people studied $\overline{\text{Emb}}_c(\coprod_{i=1}^r \mathbb{R}^{m_i}, \mathbb{R}^d)$ for various r and m_i :

- For r = 1, m₁ = 1, we have the space Emb_c(ℝ, ℝ^d) which has been studied by: V. Turchin (2004, 2013), D. Sinha (2006), P. Salvatore (2006), R. Budney (2007, 2012), K. Sakai (2008), Lambrechts-Volić-Turchin (2010), Dwyer-Hess (2012), P. Songhafouo Tsopméné (2013), S. Moriya (2013), T. Willwacher (2015).
- For $r \ge 1$, $m_1 = \cdots = m_r = 1$, we have the space $\overline{\text{Emb}}_c(\coprod_{i=1}^r \mathbb{R}, \mathbb{R}^d)$ studied by: Munson-Volić (2014), P. Songhafouo Tsopméné (2015), Burke-Koytcheff (r=2) (2015).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Many people studied $\overline{\text{Emb}}_c(\coprod_{i=1}^r \mathbb{R}^{m_i}, \mathbb{R}^d)$ for various r and m_i :

- For r = 1, m₁ = 1, we have the space Emb_c(ℝ, ℝ^d) which has been studied by: V. Turchin (2004, 2013), D. Sinha (2006), P. Salvatore (2006), R. Budney (2007, 2012), K. Sakai (2008), Lambrechts-Volić-Turchin (2010), Dwyer-Hess (2012), P. Songhafouo Tsopméné (2013), S. Moriya (2013), T. Willwacher (2015).
- For $r \ge 1$, $m_1 = \cdots = m_r = 1$, we have the space $\overline{\text{Emb}}_c(\coprod_{i=1}^r \mathbb{R}, \mathbb{R}^d)$ studied by: Munson-Volić (2014), P. Songhafouo Tsopméné (2015), Burke-Koytcheff (r=2) (2015).
- For r = 1, m₁ ≥ 1, we have the space Emb_c(ℝ^{m₁}, ℝ^d) studied by Arone-Turchin (2014, 2015), Fresse-Turchin-Willwacher(2017), Boavida-Weiss (2018).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Many people studied $\overline{\text{Emb}}_c(\coprod_{i=1}^r \mathbb{R}^{m_i}, \mathbb{R}^d)$ for various r and m_i :

- For r = 1, m₁ = 1, we have the space Emb_c(ℝ, ℝ^d) which has been studied by: V. Turchin (2004, 2013), D. Sinha (2006), P. Salvatore (2006), R. Budney (2007, 2012), K. Sakai (2008), Lambrechts-Volić-Turchin (2010), Dwyer-Hess (2012), P. Songhafouo Tsopméné (2013), S. Moriya (2013), T. Willwacher (2015).
- For $r \ge 1$, $m_1 = \cdots = m_r = 1$, we have the space $\overline{\text{Emb}}_c(\coprod_{i=1}^r \mathbb{R}, \mathbb{R}^d)$ studied by: Munson-Volić (2014), P. Songhafouo Tsopméné (2015), Burke-Koytcheff (r=2) (2015).
- For r = 1, m₁ ≥ 1, we have the space Emb_c(ℝ^{m₁}, ℝ^d) studied by Arone-Turchin (2014, 2015), Fresse-Turchin-Willwacher(2017), Boavida-Weiss (2018).
- For $r \ge 1, m_1, \dots, m_r \ge 1$, we have the space $\overline{\text{Emb}}_c(\coprod_{i=1}^r \mathbb{R}^{m_i}, \mathbb{R}^d)$ sutied by J. Ducoulombier (2018), Songhafouo Tsopméné - Turchin (two papers, 2018).

Right Γ -modules and Right Ω -modules

- Define Γ to be the category whose objects are finite pointed sets n+ = {0, 1, · · · , n}, with 0 as the basepoint, and whose morphisms are pointed maps.
- Let Ω denote the category of finite unpointed sets {1, · · · , n}, n ≥ 0, and surjections. (Some authors denote that category by FI).
- For X = Γ or X = Ω, define a right X-module as a contravariant functor from X to chain complexes.
- For X = Γ or X = Ω, the category of right X-modules is denoted Rmod_X. We endow this category with the projective model structure.
- Given two objects A, B ∈ Rmod_Ω, we write hRmod_Ω(A, B) for the space of derived morphisms from A to B.

Right Γ -modules and Right Ω -modules (continued)

- For k ≥ 0, define C(k, ℝ^d) denotes the configuration space of k labeled points in ℝ^d.
- One can show that the sequence Q ⊗ π_{*}C(•, R^d), d ≥ 3, has a natural structure of a right Γ-module.
- Let cr: $\operatorname{Rmod}_{\Gamma} \longrightarrow \operatorname{Rmod}_{\Omega}$ be the cross-effect functor constructed by Pirashvili. And let $\mathbb{Q} \otimes \widehat{\pi}_* C(\bullet, \mathbb{R}^d)$ denote the cross effect of $\mathbb{Q} \otimes \pi_* C(\bullet, \mathbb{R}^d)$.
- A sequence of r integers s_1, \dots, s_r is written as \vec{s} . Also we write $|\vec{s}|$ for $s_1 + \dots + s_r$, and $\sum_{\vec{s}}$ for $\sum_{s_1} \times \dots \times \sum_{s_r}$. If x_1, \dots, x_r is another sequence, we write $\vec{s} \cdot \vec{x}$ for $s_1x_1 + \dots + s_rx_r$, and $\vec{x}^{\vec{s}}$ for $\prod_i x_i^{s_i}$.
- Let $Q_{\vec{s}}^{\vec{m}}$ be the right Ω -module defined by

$$Q_{\vec{s}}^{\vec{m}}(k) = \begin{cases} 0 & \text{if } k \neq |\vec{s}|;\\ \mathsf{Ind}_{\Sigma_{\vec{s}}}^{\Sigma_k} \widetilde{H}_*(S^{\vec{s} \cdot \vec{m}}; \mathbb{Q}) & \text{if } k = |\vec{s}|. \end{cases}$$

伺 ト イヨト イヨト

Homotopy groups of $\overline{\text{Emb}}_{c}(\coprod_{i=1}^{r} \mathbb{R}^{m_{i}}, \mathbb{R}^{d})$

Theorem (S.T.-Turchin, 2018)

For $d > 2max\{m_i : 1 \le i \le r\} + 1$, there is an isomorphism

$$\mathbb{Q} \otimes \pi_*(\overline{Emb}_c(\coprod_{i=1}^r \mathbb{R}^{m_i}, \mathbb{R}^d)) \cong \bigoplus_{\vec{s}, t} hRmod_{\Omega}\left(Q_{\vec{s}}^{\vec{m}}, \mathbb{Q} \otimes \widehat{\pi}_{t(d-2)+1}C(\bullet, \mathbb{R}^d)\right)$$

We also have the homology version of this.

The functions $\mu(-), E_i(-), S_i(-)$, and $F_i(-)$

- Let $\mu(-)$ denote the standard Möbius function.
- Given a variable x and an integer $l \ge 1$, let $E_l(x)$ denote the sum $E_l(x) = \frac{1}{l} \sum_{p \mid l} \mu(p) x^{\frac{l}{p}}$.
- Let B_p denote the *p*th Bernoulli number, so that $\sum_{n\geq 0} \frac{B_p x^p}{n!} = \frac{x}{e^x - 1}$. Recall that $B_{2n+1} = 0$, $n \geq 1$. Bernoulli's summation formula equates $1^j + 2^j + \cdots + n^j$ with $S_i(n)$ where $S_j(x) = \frac{1}{i+1} \sum_{p=0}^{j} (-1)^p {j+1 \choose p} B_p x^{j+1-p}, j \ge 1.$
- Define $F_l(u)$ by $F_l(u) = lu^l E_l(\frac{1}{u})$.

Euler characteristics for $\overline{\text{Emb}}_c(\prod_{i=1}^r \mathbb{R}^{m_i}, \mathbb{R}^d)$

For $\vec{s} \ge 0$ and $t \ge 0$, let $\mathcal{X}_{\vec{s},t}$ be the Euler characteristic of the summand of the previous theorem indexed by \vec{s}, t . The associated generating function is $F^{\pi}_{\vec{m},d}(x_1, \cdots, x_r, u) = \sum_{\vec{s},t>0} \mathcal{X}_{\vec{s},t} \cdot u^t \vec{x}^{\vec{s}}$.

Theorem (S.T.-Turchin, 2018)

The generating function $F^{\pi}_{\vec{m},d}(x_1,\cdots,x_r,u)$ is given by the formula

$$F_{\vec{m},d}^{\pi}(x_1,\cdots,x_r,u) = \sum_{k,l,j\geq 1} \frac{\mu(k)}{kj} S_j \left(\sum_{i=1}^r (-1)^{m_i-1} E_l(x_i^k) \right) \left(\frac{(-1)^{d-1} l u^{kl}}{F_l(u^k)} \right)^j - \sum_{k,l\geq 1} \sum_{i=1}^r \frac{\mu(k)}{k} (-1)^{m_i-1} E_l(x_i^k) \ln(F_l(u^k)),$$

We also have the homology version of this.

• Very roughly, an operad is an algebraic structure consisting of an object of *n*-ary operations for all *n*. The compositions of operations are encoded by a certain category of trees.

- Very roughly, an operad is an algebraic structure consisting of an object of *n*-ary operations for all *n*. The compositions of operations are encoded by a certain category of trees.
- When dealing with moduli spaces $\overline{M}_{g,n}$ of stable marked complex curves, one encounters general graphs (of certain genus), the case of trees corresponding to curves of genus 0. So one can consider a "higher genus" analogue of the theory of operads, in which graphs replace trees. The resulting object, introduced by E. Getzler and M. Kapranov, is called modular operad.

- Very roughly, an operad is an algebraic structure consisting of an object of *n*-ary operations for all *n*. The compositions of operations are encoded by a certain category of trees.
- When dealing with moduli spaces $\overline{M}_{g,n}$ of stable marked complex curves, one encounters general graphs (of certain genus), the case of trees corresponding to curves of genus 0. So one can consider a "higher genus" analogue of the theory of operads, in which graphs replace trees. The resulting object, introduced by E. Getzler and M. Kapranov, is called modular operad.
- A cyclic operad is a usual symmetric operad for which the output of its elements has the same role as the inputs.

- Very roughly, an operad is an algebraic structure consisting of an object of *n*-ary operations for all *n*. The compositions of operations are encoded by a certain category of trees.
- When dealing with moduli spaces $\overline{M}_{g,n}$ of stable marked complex curves, one encounters general graphs (of certain genus), the case of trees corresponding to curves of genus 0. So one can consider a "higher genus" analogue of the theory of operads, in which graphs replace trees. The resulting object, introduced by E. Getzler and M. Kapranov, is called modular operad.
- A cyclic operad is a usual symmetric operad for which the output of its elements has the same role as the inputs.
- One has an adjunction **Mod**: CycOp *⇒* ModOp: **Cyc** between the categories of cyclic and modular operads.

- Very roughly, an operad is an algebraic structure consisting of an object of *n*-ary operations for all *n*. The compositions of operations are encoded by a certain category of trees.
- When dealing with moduli spaces M_{g,n} of stable marked complex curves, one encounters general graphs (of certain genus), the case of trees corresponding to curves of genus 0. So one can consider a "higher genus" analogue of the theory of operads, in which graphs replace trees. The resulting object, introduced by E. Getzler and M. Kapranov, is called modular operad.
- A cyclic operad is a usual symmetric operad for which the output of its elements has the same role as the inputs.
- One has an adjunction **Mod**: CycOp ≓ ModOp: **Cyc** between the categories of cyclic and modular operads.
- Let L_∞ be the operad for homotopy Lie algebras. We consider the modular operad Mod(L_∞) = {Mod(L_∞)((g, n))}_{g,n}.

Let $M = (\bigoplus_i M_i, \partial)$ be a finite dimensional chain complex of Σ_k -modules over a ground field \mathbb{K} of characteristic 0.

- By the supercharacter we understand the character of the Σ_k action on the virtual representation $\mathcal{X}M$ defined as $\mathcal{X}M := \sum_i (-1)^i M_i$. The latter virtual representation is similar to the Euler characteristic in the sense that $\mathcal{X}M \simeq \mathcal{X}(H_*M)$, that's why we use this notation.
- Let Z_{M_i} denote the cycle index sum of M_i . The cycle index sum encoding the supercharacter of the Σ_k action on M can be defined as $Z_{\mathcal{X}M} = \sum_i (-1)^i Z_{M_i}$,

For a symmetric sequence of chain complexes $M = \{M(k)\}_{k \ge 0}$, we similarly define $Z_{\mathcal{X}M} := \sum_{k \ge 0} Z_{\mathcal{X}M(k)}$.

The supercharacter of the symmetric group action on $Mod(\mathcal{L}_{\infty})$

For any stable collection $\{M((g, n))\}$ define a symmetric sequence $M((\bullet)) = \{\bigoplus_g M(g, n), n \ge 0\}.$

Theorem (S.T. - Turchin, 2018)

The supercharacter of the symmetric group action on the modular envelope of $\{Mod(\mathcal{L}_{\infty})((k))\}_{k\geq 0}$ of \mathcal{L}_{∞} is described by the cycle index sum

$$Z_{\mathcal{X}\mathsf{Mod}(\mathcal{L}_{\infty})((\bullet))}(w; p_1, p_2, p_3, \cdots) = w \sum_{k,l,j\geq 1} \frac{\mu(k)}{kj} S_j \left(\frac{1}{l} \sum_{a|l} \mu\left(\frac{l}{a}\right) \frac{p_{ak}}{w^{ak}}\right) \left(\frac{lw^{kl}}{F_l(w^k)}\right)^j - w \sum_{k,l\geq 1} \frac{\mu(k)}{kl} \left(\sum_{a|l} \mu\left(\frac{l}{a}\right) \frac{p_{ak}}{w^{ak}}\right) \ln(F_l(w^k))$$

The proof of this theorem relies on

- the formula we obtained for the generating function $F^{\pi}_{\vec{m},d}(x_1,\cdots,x_r,u)$, and
- certain graph complexes introduced by M. Kontsevich.

Thanks for listening!

Paul Arnaud Songhafouo Tsopméné

Incidence strata of affine varieties with complex multiplicities

Hunter Spink, joint with Dennis Tseng

Consider 4 unordered points in \mathbb{A}^1

Consider 4 unordered points in \mathbb{A}^1

Consider 4 unordered points in \mathbb{A}^1

 $\text{Sym}^4 \mathbb{A}^1 = \mathbb{A}^4$ freely parametrizes coefficients a, b, c, d of

 $(z - x_1)(z - x_2)(z - x_3)(z - x_4) = z^4 + az^3 + bz^2 + cz + d$

Consider 4 unordered points in \mathbb{A}^1

 $\text{Sym}^4 \mathbb{A}^1 = \mathbb{A}^4$ freely parametrizes coefficients a, b, c, d of

 $(z - x_1)(z - x_2)(z - x_3)(z - x_4) = z^4 + az^3 + bz^2 + cz + d$

Consider 4 unordered points in \mathbb{A}^1 Sym⁴ $\mathbb{A}^1 = \mathbb{A}^4$ freely parametrizes coefficients a, b, c, d of $(z - x_1)(z - x_2)(z - x_3)(z - x_4) = z^4 + az^3 + bz^2 + cz + d$

Partitions of [4] are in bijection with <u>closed incidence strata</u>, the closure of the set of configurations where the multiplicities are exactly given by the partition.

Consider 4 unordered points in \mathbb{A}^1

 $\text{Sym}^4 \mathbb{A}^1 = \mathbb{A}^4$ freely parametrizes coefficients a, b, c, d of

 $(z - x_1)(z - x_2)(z - x_3)(z - x_4) = z^4 + az^3 + bz^2 + cz + d$

Partitions of [4] are in bijection with <u>closed incidence strata</u>, the closure of the set of configurations where the multiplicities are exactly given by the partition.

[2,1,1]

Discriminant hypersurface $= \{(z - x_1)^2(z - x_2)(z - x_3)\} \subset \{z^4 + ax^3 + bx^2 + cx + d\} = \text{Sym}^4 \mathbb{A}^1 = \mathbb{A}^4$ $= \text{Spec}\mathbb{C}[e_1(x_1, x_1, x_2, x_3), e_2(x_1, x_1, x_2, x_3), e_3(x_1, x_1, x_2, x_3), e_4(x_1, x_1, x_2, x_3)]$

[r,s,t]

[2,1,1] $= \{(z - x_1)^2(z - x_2)(z - x_3)\} \subset \{z^4 + ax^3 + bx^2 + cx + d\} = \text{Sym}^4 \mathbb{A}^1 = \mathbb{A}^4$ Discriminant hypersurface $= \text{Spec}\mathbb{C}[e_1(x_1, x_1, x_2, x_3), e_2(x_1, x_1, x_2, x_3), e_3(x_1, x_1, x_2, x_3), e_4(x_1, x_1, x_2, x_3)]$

[r,s,t]

$$= \{(z - x_1)^r (z - x_2)^s (z - x_3)^t\} \subset \text{Sym}^{r+s+t} \mathbb{A}^1 = \mathbb{A}^{r+s+t}$$

$$= \{(z - x_1)^r (z - x_2)^s (z - x_3)^t\} \subset \text{Sym}^{r+s+t} \mathbb{A}^1 = \mathbb{A}^{r+s+t}$$
$$= \text{Spec}\mathbb{C}[\{e_i(\underbrace{x_1, \dots, x_1}_{r}, \underbrace{x_2, \dots, x_2}_{s}, \underbrace{x_3, \dots, x_3}_{t})\}_{1 \le i \le r+s+t}]$$

[2,1,1] $= \{(z - x_1)^2(z - x_2)(z - x_3)\} \subset \{z^4 + ax^3 + bx^2 + cx + d\} = \text{Sym}^4 \mathbb{A}^1 = \mathbb{A}^4$ $= \text{Spec}\mathbb{C}[e_1(x_1, x_1, x_2, x_3), e_2(x_1, x_1, x_2, x_3), e_3(x_1, x_1, x_2, x_3), e_4(x_1, x_1, x_2, x_3)]$ [r,s,t]

$$= \{(z - x_1)^r (z - x_2)^s (z - x_3)^t\} \subset \text{Sym}^{r+s+t} \mathbb{A}^1 = \mathbb{A}^{r+s+t}$$

= Spec $\mathbb{C}[\{e_i(\underbrace{x_1, \dots, x_1}_r, \underbrace{x_2, \dots, x_2}_s, \underbrace{x_3, \dots, x_3}_t)\}_{1 \le i \le r+s+t}]$
 $e_i(\underbrace{x_1, \dots, x_1}_r, \underbrace{x_2, \dots, x_2}_s, \underbrace{x_3, \dots, x_3}_t) = \sum_{i_1 + i_2 + i_3 = i} \binom{r}{i_1} \binom{s}{i_2} \binom{t}{i_3} x_1^{i_1} x_2^{i_2} x_3^{i_3}$

[2,1,1] $= \{(z - x_1)^2(z - x_2)(z - x_3)\} \subset \{z^4 + ax^3 + bx^2 + cx + d\} = \text{Sym}^4 \mathbb{A}^1 = \mathbb{A}^4$ $= \text{Spec}\mathbb{C}[e_1(x_1, x_1, x_2, x_3), e_2(x_1, x_1, x_2, x_3), e_3(x_1, x_1, x_2, x_3), e_4(x_1, x_1, x_2, x_3)]$ [r,s,t]

$$= \{(z - x_1)^r (z - x_2)^s (z - x_3)^t\} \subset \text{Sym}^{r+s+t} \mathbb{A}^1 = \mathbb{A}^{r+s+t}$$

= Spec $\mathbb{C}[\{e_i(\underbrace{x_1, \dots, x_1}_r, \underbrace{x_2, \dots, x_2}_s, \underbrace{x_3, \dots, x_3}_t)\}_{1 \le i \le r+s+t}]$
 $e_i(\underbrace{x_1, \dots, x_1}_r, \underbrace{x_2, \dots, x_2}_s, \underbrace{x_3, \dots, x_3}_t) = \sum_{i_1 + i_2 + i_3 = i} \binom{r}{i_1} \binom{s}{i_2} \binom{t}{i_3} x_1^{i_1} x_2^{i_2} x_3^{i_3}$

Idea: Let r,s,t be arbitrary complex numbers, obtain continuous family of ``C -incidence strata"

$[2,1,1] = \{(z-x_1)^2(z-x_2)(z-x_3)\} \subset \{z^4 + ax^3 + bx^2 + cx + d\} = \text{Sym}^4 \mathbb{A}^1 = \mathbb{A}^4$ Discriminant hypersurface = $\text{Spec}\mathbb{C}[e_1(x_1, x_1, x_2, x_3), e_2(x_1, x_1, x_2, x_3), e_3(x_1, x_1, x_2, x_3), e_4(x_1, x_1, x_2, x_3)]$ $[r,s,t] = \{(z-x_1)^r(z-x_2)^s(z-x_3)^r\} \subset \text{Sym}^{r+s+t} \mathbb{A}^1 = \mathbb{A}^{r+s+t}$ = $\text{Spec}\mathbb{C}[\{e_i(\underline{x_1, \dots, x_1, x_2, \dots, x_2, x_3, \dots, x_3)\}_{1 \le i \le r+s+t}]$ $e_i(\underline{x_1, \dots, x_1, x_2, \dots, x_2, x_3, \dots, x_3)} = \sum_{i_1+i_2+i_3=i} {r \choose i_1} {s \choose i_2} {t \choose i_3} x_1^{i_1} x_2^{i_2} x_3^{i_3}$

Idea: Let r,s,t be arbitrary complex numbers, obtain continuous family of \mathbb{C} -incidence strata"

Problem: $\mathbb{C}[r, s, t, \{e_i(\underbrace{x_1, \dots, x_1}_r, \underbrace{x_2, \dots, x_2}_s, \underbrace{x_3, \dots, x_3}_t)\}_{i \in \mathbb{N}}]$ isn't finitely generated.
$[2,1,1] = \{(z-x_1)^2(z-x_2)(z-x_3)\} \subset \{z^4 + ax^3 + bx^2 + cx + d\} = \text{Sym}^4 \mathbb{A}^1 = \mathbb{A}^4$ Discriminant hypersurface = Spec $\mathbb{C}[e_1(x_1, x_1, x_2, x_3), e_2(x_1, x_1, x_2, x_3), e_3(x_1, x_1, x_2, x_3), e_4(x_1, x_1, x_2, x_3)]$ [r,s,t] = $\{(z-x_1)^r(z-x_2)^s(z-x_3)^t\} \subset \text{Sym}^{r+s+t} \mathbb{A}^1 = \mathbb{A}^{r+s+t}$

$$= \operatorname{Spec}\mathbb{C}[\{e_{i}(\underbrace{x_{1}, \dots, x_{1}}_{r}, \underbrace{x_{2}, \dots, x_{2}}_{s}, \underbrace{x_{3}, \dots, x_{3}}_{t})\}_{1 \le i \le r+s+t}]$$
$$e_{i}(\underbrace{x_{1}, \dots, x_{1}}_{r}, \underbrace{x_{2}, \dots, x_{2}}_{s}, \underbrace{x_{3}, \dots, x_{3}}_{t}) = \sum_{i_{1}+i_{2}+i_{3}=i} \binom{r}{i_{1}} \binom{s}{i_{2}} \binom{t}{i_{3}} x_{1}^{i_{1}} x_{2}^{i_{2}} x_{3}^{i_{3}}$$

Idea: Let r,s,t be arbitrary complex numbers, obtain continuous family of \mathbb{C} -incidence strata"

Problem: $\mathbb{C}[r, s, t, \{e_i(\underbrace{x_1, \ldots, x_1}_r, \underbrace{x_2, \ldots, x_2}_s, \underbrace{x_3, \ldots, x_3}_t)\}_{i \in \mathbb{N}}]$ isn't finitely generated. **Other possible obstruction:** If we have a sequence of varieties X_1, X_2, \ldots then a necessary condition for them to be fibers of a finite-type family is that their ``affine embedding dimensions'' $\min\{n \mid X \hookrightarrow \mathbb{A}^n\}$ are bounded.

Solution: (Etingof, Rains, Sam) It's finite-type after inverting

 r^{-1} , s^{-1} , t^{-1} , $(r + s)^{-1}$, $(r + t)^{-1}$, $(s + t)^{-1}$, $(r + s + t)^{-1}$ (i.e. we avoid all collisions which would cause a point of multiplicity 0).

Solution: (Etingof, Rains, Sam) It's finite-type after inverting

 $r^{-1}, s^{-1}, t^{-1}, (r+s)^{-1}, (r+t)^{-1}, (s+t)^{-1}, (r+s+t)^{-1}$

(i.e. we avoid all collisions which would cause a point of multiplicity 0).

Concretely: There exists a threshold N such that for all i > N we may find a polynomial expression for $e_i(\underbrace{x_1, \ldots, x_1}_{r}, \underbrace{x_2, \ldots, x_2}_{s}, \underbrace{x_3, \ldots, x_3}_{t})$ in terms of $e_j(\underbrace{x_1, \ldots, x_1}_{r}, \underbrace{x_2, \ldots, x_2}_{s}, \underbrace{x_3, \ldots, x_3}_{t})$ with $j \le N$ and coefficients in $\mathbb{C}[r, s, t][r^{-1}, s^{-1}, t^{-1}, (r+s)^{-1}, (r+t)^{-1}, (s+t)^{-1}, (r+s+t)^{-1}]$

Solution: (Etingof, Rains, Sam) It's finite-type after inverting

 $r^{-1}, s^{-1}, t^{-1}, (r+s)^{-1}, (r+t)^{-1}, (s+t)^{-1}, (r+s+t)^{-1}$

(i.e. we avoid all collisions which would cause a point of multiplicity 0).

Concretely: There exists a threshold N such that for all i > N we may find a polynomial expression for $e_i(\underbrace{x_1, \ldots, x_1}_r, \underbrace{x_2, \ldots, x_2}_s, \underbrace{x_3, \ldots, x_3}_t)$ in terms of $e_j(\underbrace{x_1, \ldots, x_1}_r, \underbrace{x_2, \ldots, x_2}_s, \underbrace{x_3, \ldots, x_3}_t)$ with $j \le N$ and coefficients in $\mathbb{C}[r, s, t][r^{-1}, s^{-1}, t^{-1}, (r+s)^{-1}, (r+t)^{-1}, (s+t)^{-1}, (r+s+t)^{-1}]$

Question: Does something similar work for other affine varieties?

Solution: (Etingof, Rains, Sam) It's finite-type after inverting

 $r^{-1}, s^{-1}, t^{-1}, (r+s)^{-1}, (r+t)^{-1}, (s+t)^{-1}, (r+s+t)^{-1}$

(i.e. we avoid all collisions which would cause a point of multiplicity 0).

Concretely: There exists a threshold N such that for all i > N we may find a polynomial expression for $e_i(\underbrace{x_1, \ldots, x_1}_r, \underbrace{x_2, \ldots, x_2}_s, \underbrace{x_3, \ldots, x_3}_t)$ in terms of $e_j(\underbrace{x_1, \ldots, x_1}_r, \underbrace{x_2, \ldots, x_2}_s, \underbrace{x_3, \ldots, x_3}_t)$ with $j \le N$ and coefficients in $\mathbb{C}[r, s, t][r^{-1}, s^{-1}, t^{-1}, (r+s)^{-1}, (r+t)^{-1}, (s+t)^{-1}, (r+s+t)^{-1}]$

Question: Does something similar work for other affine varieties?

Theorem(S, Tseng): There is a functor Δ^k from affine varieties X to affine varieties over $\mathbb{C}[m_1, ..., m_k][\{(\sum_{i \in A} m_i)^{-1}\}_{A \subset \{1,...,k\}}\}]$ such that the fiber of $\Delta^r(X)$ over any $(m_1, ..., m_k) \in \mathbb{N}^k$ is precisely the k part incidence strata of $\operatorname{Sym}^{m_1+...+m_k}X$ associated to $(m_1, ..., m_k)$.

Solution: (Etingof, Rains, Sam) It's finite-type after inverting

 $r^{-1}, s^{-1}, t^{-1}, (r+s)^{-1}, (r+t)^{-1}, (s+t)^{-1}, (r+s+t)^{-1}$

(i.e. we avoid all collisions which would cause a point of multiplicity 0).

Concretely: There exists a threshold N such that for all i > N we may find a polynomial expression for $e_i(\underbrace{x_1, \ldots, x_1}_r, \underbrace{x_2, \ldots, x_2}_s, \underbrace{x_3, \ldots, x_3}_t)$ in terms of $e_j(\underbrace{x_1, \ldots, x_1}_r, \underbrace{x_2, \ldots, x_2}_s, \underbrace{x_3, \ldots, x_3}_t)$ with $j \le N$ and coefficients in $\mathbb{C}[r, s, t][r^{-1}, s^{-1}, t^{-1}, (r+s)^{-1}, (r+t)^{-1}, (s+t)^{-1}, (r+s+t)^{-1}]$

Question: Does something similar work for other affine varieties?

Theorem(S, Tseng): There is a functor Δ^k from affine varieties X to affine varieties over $\mathbb{C}[m_1, ..., m_k][\{(\sum_{i \in A} m_i)^{-1}\}_{A \subset \{1,...,k\}}\}]$ such that the fiber of $\Delta^r(X)$ over any $(m_1, ..., m_k) \in \mathbb{N}^k$ is precisely the k part incidence strata of $\operatorname{Sym}^{m_1+...+m_k}X$ associated to $(m_1, ..., m_k)$.

Theorem(S, Tseng): By explicit elimination, if we use **power sum polynomials** instead of elementary symmetric sums, this works over any ring (e.g. ring of integers).

Why power sums?

 $p_i(\underbrace{x_1, \dots, x_1}_{r}, \underbrace{x_2, \dots, x_2}_{s}, \underbrace{x_3, \dots, x_3}_{t}) = rx_1^i + sx_2^i + tx_3^i$

Theorem (S, Tseng): Deligne category construction agrees with ad hoc construction, and via the following ring-theoretic construction:

Why power sums? $p_i(\underbrace{x_1, \dots, x_1}_{r}, \underbrace{x_2, \dots, x_2}_{s}, \underbrace{x_3, \dots, x_3}_{t}) = rx_1^i + sx_2^i + tx_3^i$

Theorem (S, Tseng): Deligne category construction agrees with ad hoc construction, and via the following ring-theoretic construction:

 $\begin{array}{l} (m_1,\ldots,m_k) \text{ -incidence strata in } \operatorname{Spec}(R) \\ = \operatorname{Spec}(\operatorname{subalgebra} \text{ of } R^{\otimes k} \text{ generated by } \{m_1r_1+\ldots+m_kr_k\}_{r\in R}) \\ \text{ where } r_i := 1 \otimes \ldots \otimes 1 \otimes r \otimes 1 \otimes \ldots \otimes 1 \in R^{\otimes k} \end{array}$

Why power sums? $p_i(\underbrace{x_1, \dots, x_1}_{r}, \underbrace{x_2, \dots, x_2}_{s}, \underbrace{x_3, \dots, x_3}_{t}) = rx_1^i + sx_2^i + tx_3^i$

Theorem (S, Tseng): Deligne category construction agrees with ad hoc construction, and via the following ring-theoretic construction:

 $\begin{array}{l} (m_1,\ldots,m_k) \text{ -incidence strata in } \operatorname{Spec}(R) \\ = \operatorname{Spec}(\operatorname{subalgebra} \text{ of } R^{\otimes k} \text{ generated by } \{m_1r_1+\ldots+m_kr_k\}_{r\in R}) \\ \text{ where } r_i := 1 \otimes \ldots \otimes 1 \otimes r \otimes 1 \otimes \ldots \otimes 1 \in R^{\otimes k} \end{array}$

For $X = \mathbb{A}^1$, difference between $(m_1, ..., m_k)$ -incidence strata in Sym^{$m_1+...+m_k$} \mathbb{A}^1 and

$$\{\frac{m_1}{z-x_1}+\ldots+\frac{m_k}{z-x_k}\mid x_i\in\mathbb{A}^1\}$$

Idea: Study point configurations statistics where # of points is an algebraic number.

Idea: Study point configurations statistics where # of points is an algebraic number.

Consider the $(1,\alpha)$ incidence strata, $\alpha \in \overline{\mathbb{Q}}$ algebraic integer, in an affine variety X over \mathbb{Z}

Idea: Study point configurations statistics where # of points is an algebraic number.

Consider the $(1,\alpha)$ incidence strata, $\alpha \in \overline{\mathbb{Q}}$ algebraic integer, in an affine variety X over \mathbb{Z}

E.g. when $X = \mathbb{A}^1$ this is Spec $\mathbb{Z}[\alpha, \alpha^{-1}][x + \alpha y, x^2 + \alpha y^2, x^3 + \alpha y^3]$

Idea: Study point configurations statistics where # of points is an algebraic number.

Consider the $(1,\alpha)$ incidence strata, $\alpha \in \overline{\mathbb{Q}}$ algebraic integer, in an affine variety X over \mathbb{Z}

E.g. when $X = \mathbb{A}^1$ this is Spec $\mathbb{Z}[\alpha, \alpha^{-1}][x + \alpha y, x^2 + \alpha y^2, x^3 + \alpha y^3]$

This is the symmetric quotient of the union of planes in $\mathbb{A}^{1+\alpha}$ where all but one coord. is equal.

Idea: Study point configurations statistics where # of points is an algebraic number.

Consider the $(1,\alpha)$ incidence strata, $\alpha \in \overline{\mathbb{Q}}$ algebraic integer, in an affine variety X over \mathbb{Z}

E.g. when $X = \mathbb{A}^1$ this is Spec $\mathbb{Z}[\alpha, \alpha^{-1}][x + \alpha y, x^2 + \alpha y^2, x^3 + \alpha y^3]$

This is the symmetric quotient of the union of planes in $\mathbb{A}^{1+\alpha}$ where all but one coord. is equal.

This doesn't make sense obviously, but over some \mathbb{F}_p it does...

Idea: Study point configurations statistics where # of points is an algebraic number.

Consider the $(1,\alpha)$ incidence strata, $\alpha \in \overline{\mathbb{Q}}$ algebraic integer, in an affine variety X over \mathbb{Z}

E.g. when $X = \mathbb{A}^1$ this is Spec $\mathbb{Z}[\alpha, \alpha^{-1}][x + \alpha y, x^2 + \alpha y^2, x^3 + \alpha y^3]$

This is the symmetric quotient of the union of planes in $\mathbb{A}^{1+\alpha}$ where all but one coord. is equal.

This doesn't make sense obviously, but over some \mathbb{F}_p it does...

In particular: If *p* totally splits in $\mathbb{Z}[\alpha]$ this yields deg(α) incidence strata(1, α_1), ..., (1, α_k) where $\alpha_i \in \mathbb{N}$, $0 < \alpha_i < p$.

Idea: Study point configurations statistics where # of points is an algebraic number.

Consider the $(1,\alpha)$ incidence strata, $\alpha \in \overline{\mathbb{Q}}$ algebraic integer, in an affine variety X over \mathbb{Z}

E.g. when $X = \mathbb{A}^1$ this is Spec $\mathbb{Z}[\alpha, \alpha^{-1}][x + \alpha y, x^2 + \alpha y^2, x^3 + \alpha y^3]$

This is the symmetric quotient of the union of planes in $\mathbb{A}^{1+\alpha}$ where all but one coord. is equal. This doesn't make sense obviously, but over some \mathbb{F}_p it does...

In particular: If *p* totally splits in $\mathbb{Z}[\alpha]$ this yields deg(α) incidence strata(1, α_1), ..., (1, α_k) where $\alpha_i \in \mathbb{N}$, $0 < \alpha_i < p$.

This relates incidence strata with different numbers of points over different primes.

Idea: Study point configurations statistics where # of points is an algebraic number.

Consider the $(1,\alpha)$ incidence strata, $\alpha \in \overline{\mathbb{Q}}$ algebraic integer, in an affine variety X over \mathbb{Z}

E.g. when $X = \mathbb{A}^1$ this is Spec $\mathbb{Z}[\alpha, \alpha^{-1}][x + \alpha y, x^2 + \alpha y^2, x^3 + \alpha y^3]$

This is the symmetric quotient of the union of planes in $\mathbb{A}^{1+\alpha}$ where all but one coord. is equal. This doesn't make sense obviously, but over some \mathbb{F}_p it does...

In particular: If *p* totally splits in $\mathbb{Z}[\alpha]$ this yields deg(α) incidence strata(1, α_1), ..., (1, α_k) where $\alpha_i \in \mathbb{N}$, $0 < \alpha_i < p$.

This relates incidence strata with different numbers of points over different primes.

THANK YOU

Arithmetic groups and characteristic classes of manifold bundles

Bena Tshishiku Workshop on arithmetic topology June 2019

 $SO_{g,g} = \{A \in SL_{2g}(\mathbb{C}) : A^{t}JA = J\}$

$$\mathrm{SO}_{g,g} = \{A \in \mathrm{SL}_{2g}(\mathbb{C}) : A^{\mathrm{t}}JA = J\} \qquad J = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$$

$$\mathrm{SO}_{g,g} = \{A \in \mathrm{SL}_{2g}(\mathbf{C}) : A^{\mathrm{t}}JA = J\} \qquad J = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$$

Theorem (T, 2017). $g \geq 3$ odd. Given N > 0, there exists finite-index $\Gamma < SO_{g,g}(\mathbb{Z})$ with dim $H^g(\Gamma; \mathbb{Q}) \geq N$.

$H^*(B\Gamma; \mathbf{Q})$

 $\mathbf{0}$

$$\mathrm{SO}_{g,g} = \{A \in \mathrm{SL}_{2g}(\mathbb{C}) : A^{\mathrm{t}}JA = J\} \qquad J = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$$

$$\mathrm{SO}_{g,g} = \{A \in \mathrm{SL}_{2g}(\mathbb{C}) : A^{\mathrm{t}}JA = J\} \qquad J = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$$

$$\mathrm{SO}_{g,g} = \{A \in \mathrm{SL}_{2g}(\mathbb{C}) : A^{\mathrm{t}}JA = J\} \qquad J = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$$

Characteristic class construction

Characteristic class construction

Characteristic class construction \mathbb{R}^{2g}, J \downarrow W \downarrow B

Characteristic class construction \mathbb{R}^{2g}, J \downarrow W \downarrow B $\mathbb{SO}_{q,q}(\mathbb{Z}) \leq \mathbb{SO}_{q,q}(\mathbb{R})$

Characteristic class construction

vector bundle, structure group $SO_{g,g}(\mathbb{Z}) \leq SO_{g,g}(\mathbb{R})$

Characteristic class construction

vector bundle, structure group $SO_{g,g}(\mathbb{Z}) \leq SO_{g,g}(\mathbb{R}) \sim S(O_g \times O_g)$

Characteristic class construction

Characteristic class construction

Given $\lambda \in \mathbb{Z}^{2g}$, $\lambda \cdot \lambda < 0$, does there exist U so that $\lambda \notin U^{\perp}$ in each fiber?

Characteristic class construction

Given $\lambda \in \mathbb{Z}^{2g}$, $\lambda \cdot \lambda < 0$, does there exist U so that $\lambda \notin U^{\perp}$ in each fiber?

 \rightarrow characteristic class obstruction $c \in \mathrm{H}^{g}(\mathrm{B}\Gamma; \mathbb{Q})$
Theorem. $g \geq 3$ odd. Given N > 0, there exists finite-index $\Gamma < SO_{g,g}(\mathbb{Z})$ with dim $H^g(B\Gamma; \mathbb{Q}) \geq N$.

Characteristic class construction

Given $\lambda \in \mathbb{Z}^{2g}$, $\lambda \cdot \lambda < 0$, does there exist U so that $\lambda \notin U^{\perp}$ in each fiber?

→ characteristic class obstruction $c \in \mathrm{H}^{g}(\mathrm{B}\Gamma; \mathbb{Q})$ nontrivial: detected by periodic flats in $\Gamma \backslash \mathrm{SO}_{g,g}(\mathbb{R})/\mathrm{K}$ **Theorem.** There are $SO_{g,g}(\mathbb{Z})$ bundles $E \rightarrow B^g$ where these characteristic classes are nonzero.

Characteristic class construction

Given $\lambda \in \mathbb{Z}^{2g}$, $\lambda \cdot \lambda < 0$, does there exist U so that $\lambda \notin U^{\perp}$ in each fiber?

→ characteristic class obstruction $c \in \mathrm{H}^{g}(\mathrm{B}\Gamma; \mathbb{Q})$ nontrivial: detected by periodic flats in $\Gamma \backslash \mathrm{SO}_{g,g}(\mathbb{R})/\mathrm{K}$

$$W_g^{4k} = (S^{2\,k} imes S^{2\,k}) \# \ .. \ \# (S^{2\,k} imes S^{2\,k})$$

$$W_g^{4k} = (S^{2k} \times S^{2k}) # \dots # (S^{2k} \times S^{2k})$$

Diff $(W_g) \longrightarrow \operatorname{Aut}(\operatorname{H}_{2k}(W_g)) \simeq \operatorname{SO}_{g,g}(\mathbb{Z})$

$$W_g^{4k} = (S^{2k} \times S^{2k}) \# \dots \# (S^{2k} \times S^{2k})$$

Diff $(W_g) \longrightarrow \operatorname{Aut}(\operatorname{H}_{2k}(W_g)) \simeq \operatorname{SO}_{g,g}(\mathbb{Z})$

(Berglund-Madsen, 2013). For $g \leq 2k$, the characteristic classes $c \in \mathrm{H}^{g}(\Gamma; \mathbb{Q})$ are realized/detected by bundles $W_{g} \to E \to B^{g}$.

$$W_g^{4k} = (S^{2k} \times S^{2k}) \# ... \# (S^{2k} \times S^{2k})$$

 $\operatorname{Diff}(W_g) \longrightarrow \operatorname{Aut}(\operatorname{H}_{2k}(W_g)) \simeq \operatorname{SO}_{g,g}(\mathbb{Z})$

(Berglund-Madsen, 2013). For $g \leq 2k$, the characteristic classes $c \in \mathrm{H}^{g}(\Gamma; \mathbb{Q})$ are realized/detected by bundles $W_{g} \to E \to B^{g}$. Corollary. New unstable characteristic classes for W_{q} -bundles.

$$W_g^{4k} = (S^{2k} \times S^{2k}) \# \dots \# (S^{2k} \times S^{2k})$$
$$\text{Diff}(W_g) \longrightarrow \text{Aut}(\text{H}_{2k}(W_g)) \approx \text{SO}_{g,g}(\mathbb{Z})$$

(Berglund-Madsen, 2013). For $g \leq 2k$, the characteristic classes $c \in \mathrm{H}^{g}(\Gamma; \mathbb{Q})$ are realized/detected by bundles $W_{g} \to E \to B^{g}$. <u>Corollary</u>. New unstable characteristic classes for W_{q} -bundles.

 $\mathrm{H}^*(\mathrm{BDiff}(W_g);\mathbf{Q})$

$$W_g^{4k} = (S^{2k} \times S^{2k}) \# \dots \# (S^{2k} \times S^{2k})$$
$$\text{Diff}(W_g) \longrightarrow \text{Aut}(\text{H}_{2k}(W_g)) \simeq \text{SO}_{g,g}(\mathbb{Z})$$

(Berglund-Madsen, 2013). For $g \leq 2k$, the characteristic classes $c \in \mathrm{H}^{g}(\Gamma; \mathbb{Q})$ are realized/detected by bundles $W_{g} \to E \to B^{g}$. Corollary. New unstable characteristic classes for W_{g} -bundles.

 $\mathrm{H}^*(\mathrm{BDiff}(W_g); \mathbf{Q})$

$$W_g^{4k} = (S^{2k} \times S^{2k}) \# \dots \# (S^{2k} \times S^{2k})$$
$$\text{Diff}(W_g) \longrightarrow \text{Aut}(\text{H}_{2k}(W_g)) \approx \text{SO}_{g,g}(\mathbb{Z})$$

(Berglund-Madsen, 2013). For $g \leq 2k$, the characteristic classes $c \in \mathrm{H}^{g}(\Gamma; \mathbb{Q})$ are realized/detected by bundles $W_{g} \to E \to B^{g}$. Corollary. New unstable characteristic classes for W_{g} -bundles.

 $\mathrm{H}^*(\mathrm{BDiff}(W_g);\mathbf{Q})$

Cohomology in the mapping class group of a K3 surface.

$$M \text{ K3 surface}, M \approx \{ x^4 + y^4 + z^4 + w^4 = 0 \} \subset \mathbb{C}\text{P}^3$$

 $\text{Diff}(M) \to \text{SO}_{3,19}(\mathbb{Z})$

Input: Global Torelli theorem for Einstein metrics.

Further direction

<u>Problem</u>. Study $Mod(S_g) \to Sp_{2g}(\mathbb{Z})$ on $H^*(\cdot)$ outside the stable range.

Further direction

<u>Problem</u>. Study $Mod(S_g) \to Sp_{2g}(\mathbb{Z})$ on $H^*(\cdot)$ outside the stable range.

Thank you.

An enriched count of bitangents to a smooth plane quartic (based on joint work with Hannah Larson)

Isabel Vogt

Stanford University

June 12, 2019

(demonstrating types of lines)

Thanks to Kirsten Wickelgren, Jesse Kass, and AWS!

A D M A

— cubic surface

or: How I learned to stop worrying and "love" the lack of orientations (based on joint work with Hannah Larson)

Isabel Vogt

Stanford University

June 12, 2019

(demonstrating types of lines)

Thanks to Kirsten Wickelgren, Jesse Kass, and AWS!

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

— cubic surface

odd degree:

Warmup: Signed count of real zeros of a real polynomial

even degree:

signed count = 0

leading coefficient positive

signed count = +1

leading coefficient negative

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

signed count = -1

The \mathbb{A}^1 -enumerative package for bitangents (after Kass-Wickelgren)

- $X = \{(L, Z) : Z \subset L \subset \mathbb{P}^2, \text{ degree 2 subscheme of a line}\}$
- \mathscr{E} vector bundle on X such that

$$\mathscr{E}|_{(L,Z)} = \frac{\{\text{degree 4 polynomials on L}\}}{\text{equation of } Z^2}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The \mathbb{A}^1 -enumerative package for bitangents (after Kass-Wickelgren)

- $X = \{(L, Z) : Z \subset L \subset \mathbb{P}^2, \text{ degree 2 subscheme of a line}\}$
- \mathscr{E} vector bundle on X such that

$$\mathscr{E}|_{(L,Z)} = \frac{\{\text{degree 4 polynomials on L}\}}{\text{equation of } Z^2}$$

- A quartic polynomial f induces a section σ_f of & that vanishes at (L, Z) precisely when L is a bitangent to V(f) at the points of Z
- Weight zeros of σ_f by A¹-degree of induced map A⁴_k → A⁴_k (in appropriate local coordinates) := ind_(L,Z) σ_f

(日) (同) (目) (日) (日) (の) (の)

The \mathbb{A}^1 -enumerative package for bitangents (after Kass-Wickelgren)

- $X = \{(L, Z) : Z \subset L \subset \mathbb{P}^2, \text{ degree 2 subscheme of a line}\}$
- \mathscr{E} vector bundle on X such that

$$\mathscr{E}|_{(L,Z)} = \frac{\{\text{degree 4 polynomials on L}\}}{\text{equation of } Z^2}$$

- A quartic polynomial f induces a section σ_f of & that vanishes at (L, Z) precisely when L is a bitangent to V(f) at the points of Z
- Weight zeros of σ_f by A¹-degree of induced map A⁴_k → A⁴_k (in appropriate local coordinates) := ind_(L,Z) σ_f

Hope

$$\sum_{(L,Z) \text{ zero of } \sigma_f} \operatorname{ind}_{(L,Z)} \sigma_f = \text{fixed count in } \mathrm{GW}(k)$$

But...

• & is not relatively orientable, so we lose independence on choice of section!

But...

• ${\mathscr E}$ is not relatively orientable, so we lose independence on choice of section!

• Fix a line
$$L_\infty \subseteq \mathbb{P}^2$$
, let

$$D_{\infty} := \{(L,Z) : Z \cap L_{\infty} \neq \emptyset\} \subset X$$

• $\mathscr E$ is relatively orientable relative to the divisor D_∞ , i.e.,

$$\mathcal{H}om(\det T_X,\det \mathscr{E})\simeq \mathscr{L}^2\otimes \mathcal{O}_X(D_\infty)$$

But...

• ${\mathscr E}$ is not relatively orientable, so we lose independence on choice of section!

• Fix a line
$$L_\infty \subseteq \mathbb{P}^2$$
, let

(I

$$D_{\infty} := \{(L,Z) : Z \cap L_{\infty} \neq \emptyset\} \subset X$$

• ${\mathscr E}$ is relatively orientable relative to the divisor $D_\infty,$ i.e.,

$$\mathcal{H}om(\det T_X,\det \mathscr{E})\simeq \mathscr{L}^2\otimes \mathcal{O}_X(D_\infty)$$

A new hope

Fix any L_{∞} in \mathbb{P}^2_k , then if σ_f has no zeros in D_{∞} , can we understand

$$\sum_{(L,Z) ext{ zero of } \sigma_f} \operatorname{\mathsf{ind}}_{(L,Z)}^{L_\infty} \sigma_f \in \mathsf{GW}(k)?$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Geometric information in $\operatorname{ind}_{(L,Z)}^{L_{\infty}} \sigma_f$:

- ∂_L is a derivation determined by L
- f some affine equation for the quartic in $\mathbb{P}^2\smallsetminus L_\infty=\mathbb{A}^2$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Define the type of *L*:

$$\mathsf{Qtype}_{L_{\infty}}(L) := \mathsf{ind}_{(L,Z)}^{L_{\infty}} \sigma_f = \langle \partial_L f(z_1) \cdot \partial_L f(z_2) \rangle$$

▲□▶▲□▶▲目▶▲目▶ 目 のへぐ

A new hope

Fix any L_{∞} in \mathbb{P}^2_k , then if σ_f has no zeros in D_{∞} , can we understand

$$\sum_{(L,Z) \text{ zero of } \sigma_f} \operatorname{ind}_{(L,Z)}^{L_{\infty}} \sigma_f \in \operatorname{GW}(k)?$$

Theorem (Hannah Larson-V.)

Let L_{∞} be a **bitangent** of the quartic Q. Relative to this,

$$\sum_{\substack{\text{Lines L bitangent to } Q\\ L \neq L_{\infty}}} \mathsf{Tr}_{k(L)/k} \, \mathsf{Qtype}_{L_{\infty}}(L) = 15\langle 1 \rangle + 12\langle -1 \rangle \in \mathsf{GW}(k).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof Sketch:

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• When $k = \mathbb{R}$, compute

$$\sum_{\mathsf{Tr}_{\mathbb{R}(L)/\mathbb{R}}} \mathsf{Tr}_{\mathbb{R}(L)/\mathbb{R}} \mathsf{Qtype}_{L_{\infty}}(L)$$

lines L bitan to Q

for all possible choices of L_{∞}

• When $k = \mathbb{R}$, compute

$$\sum_{\text{lines } L \text{ bitan to } Q} \mathsf{Tr}_{\mathbb{R}(L)/\mathbb{R}} \, \mathsf{Qtype}_{L_{\infty}}(L)$$

for all possible choices of L_∞

• It seems to always be one of:

$$\begin{split} &18\langle 1\rangle + 10\langle -1\rangle,\\ &17\langle 1\rangle + 11\langle -1\rangle,\\ &16\langle 1\rangle + 12\langle -1\rangle,\\ &15\langle 1\rangle + 13\langle -1\rangle,\\ &14\langle 1\rangle + 14\langle -1\rangle \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• When $k = \mathbb{R}$, compute

$$\sum_{\text{lines } L \text{ bitan to } Q} \mathsf{Tr}_{\mathbb{R}(L)/\mathbb{R}} \, \mathsf{Qtype}_{L_{\infty}}(L)$$

for all possible choices of L_∞

• It seems to always be one of:

$$\begin{split} &18\langle 1\rangle + 10\langle -1\rangle,\\ &17\langle 1\rangle + 11\langle -1\rangle,\\ &16\langle 1\rangle + 12\langle -1\rangle,\\ &15\langle 1\rangle + 13\langle -1\rangle,\\ &14\langle 1\rangle + 14\langle -1\rangle \end{split}$$

 $\Delta_{\infty} =$

{quartics with bitangent along L_{∞} }

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• When $k = \mathbb{R}$, compute

$$\sum_{\text{lines } L \text{ bitan to } Q} \mathsf{Tr}_{\mathbb{R}(L)/\mathbb{R}} \, \mathsf{Qtype}_{L_{\infty}}(L)$$

for all possible choices of L_∞

• It seems to always be one of:

$$\begin{split} &18\langle 1\rangle + 10\langle -1\rangle,\\ &17\langle 1\rangle + 11\langle -1\rangle,\\ &16\langle 1\rangle + 12\langle -1\rangle,\\ &15\langle 1\rangle + 13\langle -1\rangle,\\ &14\langle 1\rangle + 14\langle -1\rangle \end{split}$$

 $\Delta_\infty =$ {quartics with bitangent along L_∞ }

WHY??