

PIMS Workshop on Math and Clean Energy

Hot Topics in the renewable industry

Younghun Kim, Ph.D., Director of Data Science, Utopus Insights

Page 1 / © Utopus Insights 2019

Agenda

- Introduction
- Wind Power Forecasting
- Component Failure Prediction
- Conclusion

Our Vision

Be the leading analytics solution provider for a sustainable, reliable and cost-effective energy future

Page 3 / © Utopus Insights 2019

Our lineage

- Built from 15+ years of collaboration and innovation at IBM. lacksquare
- Backed by industry-leading forces and partnerships. \bullet
- *Vestas*-owned, independently operated.

Our Products

SEE	PREDICT	MANAGE	ORCHESTRATE
Scipher V×	Scipher F×	Scipher R×	Scipher Ox
Intuitive and customizable visualization of time-series data; KPIs and alerts	Accurate hyperlocal renewable energy and weather forecasting, powered by	Leverage data patterns to predict failures and optimize asset maintenance	New intelligence to orchestrate the electric grid
Descriptive analytics	Predictive analytics	Prescriptive analytics	Orchestration analytics

Extensible hybrid SaaS/On-Premise/IoT energy analytics platform

Utopus Insights with Big Data in Renewables

Page 6 / © Utopus Insights 2019

Trend in the renewable industry

Renewable assets are commodity

- O&M is the biggest cost
- Vintage year goes beyond 30 years

Failure Prediction/Cost Optimization

Favorable regulation is phasing out

- Traditional subsidy phase out
- Various penalty rules being introduced (e.g. India – deviation charge)

Reliable Power Forecasting

https://mercomindia.com/gujarat-regulations-solar-wind-deviation/

Complexity of Wind Power Forecasting

Weather data ingestion

Multi-dimensional data assimilation

Weather-energy correlation

Energy curve modeling

Spatio-temporal energy forecasting

Sources

Quality Forecasting Gr²

Power

Wind

Granularity

Geography

Wind specific insights Wind customization

Wind ramp

Temporal granularity

Domain selection

Forecast window

Non-linear modeling

Seasonality modeling

Shoulder season

Farm topology

modeling

modeling

Wake effect

Design vs. actual

Wind direction and speed

Loss modeling

Turbine failures

Turbine level

Spatial aggregation

Temporal granularity

Curtailment modeling

Bidding optimization

Role of Big Data in Wind Power Forecasting

 $20 \le W_{g}$ $15 \le W_{g}$ $10 \le W_{g}$ $5 \le W_{g}$ $0 < W_{e}$

Wake modeling using CFD

Wind speed variability

- Billion
 Billion
- Computational methodology to pick a subset from various modeling

Yaw Control Variability between two nearby turbines

Scipher Fx

Weather forecasting: impact of high resolution

NOAA/NCEP GFS

BARB VECTORS: FULL BARB = 5 m $\rm s^{-1}$

Wx 1-km Resolution

BARB VECTORS: FULL BARB = 5 m s⁻¹

High resolution grids more accurately resolve the topology/landuse and delivers more accurate forecasts, especially for winds.

Hyper local wind forecasting is a must

Wind Power Forecasting

- Wind speeds among turbines vary significantly
- For example, during the ramp events, the range spans between 13 to 6 m/s which result in the production 600kW to 3000kW (5x difference)

- Uses **hyperlocal weather forecasts** together with historical data from assets to precisely predict power from **wind and solar assets**.
- **Predicts available power production** at both farm and asset level within an hour-ahead to 48-hour forecast time horizon.
- Compares actual production with predicted production to calculate the **accuracy of the forecast**.
- Powerful tool to **optimize power bidding strategies**, with the addition of an advanced user interface to visualize forecast data.
- Forecast data delivered via sFTP, FTP and email with granularity of 5, 10, 15, or 60 minutes at user-defined schedule.

Far	m fore	ecast							
Tech Asse	chnologies: Wind sets: 35 assets		Countries (fa Capacity: OEM (models)	Countries (farms): Denmark(II), Germany(3), USA(8), 4 more Capacity: 140.3MW OEM (models): Vestas(3), Gamesa(2), Siemens(1)				fig. Fore Fore Fore	
Me	an Absolute	Error (MAE)	Root	Mean Square	d Error (RMSE		Mean Absol	ute Percent
Yes 6	terday .4 %		4.4% MTD 6.6% Last month	Yester 4.8	^{aday}	5. 4.	5% MTD 5% Last month	Yesterday 8.2 %	
For	oduction Fr	ty: 60 mins/1	Forecast Revision Freque	ncy: Twice a day					
Pr	oduction Act	ual vs. Fore	-18 hr	-12 hr	-ó hr	0 hr	+6 hr	+12 hr	+18 hr
Pr	oduction Act 45 40	-24 hr	-18 hr	-12 hr	-6 hr	0 hr Revision 1	+6 hr Now	+12 hr	+18 hr
Pro	45 40 30	-24 hr	-18 hr	-12 hr	-ó hr	0 hr Revision 1	+6 hr Now	+12 hr	+18 hr
Production (WW)	45 40 30 20 10	-24 hr	-18 hr	-12 hr	-6 hr	0 hr Revision 1	+6 hr Now	+12 hr	+18 hr

Problem 1: Minimize Regulation Imposed Penalty

- Power Forecasting is an Accuracy Game
- If we are to choose a forecasting, which one do we want to choose?
 - Option 1 or Option 2?

Day ahead wind power forecasting

Problem 1: Minimize Regulation Imposed Penalty

Minimize (Mean Absolute Error)

s.t. physical constraints

Minimize (Cost) s.t. physical constraints where Cost = 0 if error is <=12% Cost = error*tier1 if error is >12% & <=24% Cost = error*tier2 if error >24% ** https://mercomindia.com/gujarat-regulations-solar-wind-deviation/

Problem 2: Exploring 100s of variables with the potential to overfit

- When p >> n, tuning the lasso method or other feature selection method is difficult
- As a starting point, we tend to sub-select features that are relevant to the forecasting (e.g. wind speed)
- But, in this data rich situation, every feature seems to be relevant with minor difference
- Robust numerical methods (possibly dense) going beyond a Lasso regression is needed

Why Predictive Analytics? – Distilling insights from big data

Traditional approach

indicator

Traditional Failure Prediction Approach and Challenges

- Expensive model tuning
- <u>Early indication of failure can be easily</u> <u>overlooked if its nominal operating mode</u> <u>is loosely defined</u>

Our solution: domain knowledge meets machine learning

Page 18 / © Utopus Insights 2019

Scipher Rx

R× ASSET HEALTH

- Advanced predictive maintenance tool for wind assets with an **ability to predict failures at the component level**
- Powerful predictions in an intuitive user interface
 reduces time employees use on manual analytics and unnecessary inspections
- Plan (instead of react) to save time and resources

Gearbox Generator HSS IMS **Bearing** Slip ring **Blades Blade bearing Pitch accumulator Pitch cylinder Proportional valve** Hydraulic unit motor Main bearing Yaw motor Yaw gear **Cooling system motor**

Problem 3: Fix it or wait?

- Failure forecasting is good
- 'God knows when'
- Extremely uncomfortable to make a call to fix it

- 1. Should we minimize the cost associated with the up-keep of the system?
- 2. What is the definition of optimality?

Concluding Remarks

F×

FORECASTING

- On fine-resolution weather forecasting
- On fine-resolution measurement
- Scalability in model training and scoring

ASSET HEALTH

- Application of domain knowledge
- Rich historical failure records
- Exploiting computational efficiency and scalable framework for multi-OEMs
 (~ 200 high performance compute cluster)

Exploiting Big Data Means

- Rapid exploration of multiple data sources for accurate model building
- Canonical procedure to evaluate vast number of models (1 million models evaluated)
- Changes from an engineering driven approach to a data driven approach

Younghun Kim, Ph.D.

kimy@utopusinsights.com

