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The Setup

Consider

a dynamical system (X , T ), where X is a compact metrizable
space and T : X → X is continuous

M(X , T ) the space of all Borel probabilities on X which are
invariant under T

htop(T ) the topological entropy of T , and h : M(X , T ) → [0,∞] the
entropy function on invariant measures.

We will always assume htop(T ) < ∞.
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The Setup

Recall that M(X , T ) is always a metrizable Choquet simplex, i.e. it

is a compact convex metrizable subspace of a locally convex
topological vector space and

has the property that each point can be written uniquely as a
convex (harmonic) combination of the extreme points (given by
the ergodic decomposition).

We denote Choquet simplices by M or K , and always assume that
they are metrizable.
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Symbolic Extensions

Definition
Let (Y , S) be a subshift of a (two-sided) full shift on a finite
alphabet. (Y , S) is called a symbolic extension of the dynamical
system (X , T ) if there exists a continuous surjection π : Y → X
such that πS = Tπ.

Y
S

//

π

��

Y

π

��

X
T

// X

Given a symbolic extension (Y , S) of (X , T ), we define the
extension entropy function hπ

ext : M(X , T ) → [0,∞) by

hπ
ext(µ) = sup{h(ν) : ν ∈ M(Y , S), πν = µ}.
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Symbolic Extension Entropy and Residual Entropy

In order to analyze how well a dynamical system (X , T ) can be
approximated by subshifts, we consider the symbolic extension entropy
(abbreviated as sex entropy) and the residual entropy functions:

at the topological level, let

hsex(T ) = inf{htop(S) : (Y , S) is a symbolic extension of (X , T )}

hres(T ) = hsex(T ) − htop(T )

and at the level of measures, let

hsex(µ) = inf{hπ
ext(µ) : π is a symbolic extension of (X , T )}

hres(µ) = hsex (µ) − h(µ).
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Entropy Structure

Boyle and Downarowicz (in [BD]) exposed a remarkable functional
analytic characterization of all of these quantities. The concept of
entropy structure, an idea developed in great generality by
Downarowicz, lies at the heart of their approach.

Definition
Given a dynamical system (X , T ), an entropy structure H = (hk ) of
(X , T ) is an allowable, non-decreasing sequence of nonnegative
functions on M(X , T ) such that limk hk = h.

The term allowable is made precise by the notion of uniform
equivalence [D], which is an equivalence relation on non-decreasing
sequences of nonnegative functions which converge to the same limit.
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Entropy Structure

Definition
Given a dynamical system (X , T ), an entropy structure H = (hk ) is an
allowable, non-decreasing sequence of nonnegative functions on
M(X , T ) such that limk hk = h.

Almost all general approaches to entropy give rise to an entropy
structure.

In this way, entropy structure provides a grand unification of the
theory of entropy.

Entropy structure reflects precisely how entropy emerges at
refining scales.

Entropy structure is an invariant of topological conjugacy, and it
determines almost all previously known entropy invariants.
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The Transfinite Sequence

Given an entropy structure H on a Choquet simplex K , we define an
associated transfinite sequence of functions on K :

Definition
Let τk = h − hk . Then the transfinite sequence U = (uα) associated to
H is given by

u0 ≡ 0

uα+1 = limk ũα + τk

uα = ˜supβ<α uβ for any limit ordinal α.

A positive value at any of the these functions reflects non-uniform
convergence of hk to h, and is related to the defect of upper
semi-continuity of h.
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Sex Entropy and the Transfinite Sequence

Theorem (BD)
If H is an entropy structure for (X , T ), then

1 there exists a countable ordinal α such that uα = uα+1, and
2 uα = uα+1 if and only if hsex = h + uα.

The least ordinal α such that uα = uα+1 is called the order of
accumulation of the entropy structure H or of the dynamical system.
We write α0(H) or just α0 for the order of accumulation.

Note that by this theorem, hres = uα0 .

With this theorem, along with the rest of the work of Boyle,
Downarowicz, and Serafin, questions about symbolic extensions and
entropy can be translated into questions of a purely functional analytic
nature.
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Downarowicz-Serafin Realization Theorem

Question
Given a space X and a regularity class C of self-mappings of X, which
entropy structures can be realized by a function in C?

At the level of topological dynamics, this question was answered by
Downarowicz and Serafin:

Theorem (DS)
An candidate sequence H on a Choquet simplex K is (up to affine
homeomorphism) an entropy structure for some dynamical system if
and only if it is uniformly equivalent to a non-increasing sequence of
nonnegative, upper semi-continous functions with upper
semi-continuous differences.
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Which Possible Orders of Accumulation are Realized?

In this work we investigate the following questions:

Question
Given a Choquet simplex K , which countable ordinals can be realized
as the order of accumulation of an entropy structure on K ?

In [BD], Boyle and Downarowicz created explicit simplices and entropy
structures realizing all finite orders of accumulation. In [D],
Downarowicz expressed his firm belief that all countable ordinals
should be realized.
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Which Possible Orders of Accumulation are Realized?

Question
Which countable ordinals can be realized as the order of accumulation
of a continuous map of the interval?

David Burguet has produced examples of C r interval maps with infinite
orders of accumulation, but his bounds do not allow one to know
exactly which orders of accumulation are achieved.
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Background on Cantor-Bendixson Rank

In order to answer the first question, we recall:

For a topological space X , the derived set X ′ is the set of all
accumulation points of X .

Given a topological space X , we may use transfinite induction to
define X0 = X , Xα+1 = X ′

α and Xα = ∩β<αXβ.

The Cantor-Bendixson rank of X , |X |CB , is defined to be the least
ordinal α such that Xα = Xα+1.

Any Polish space X has countable Cantor-Bendixson rank.

Any Polish space can be written as a disjoint union of a countable
set and a perfect set.

For a Choquet simplex K , ex(K ) is a Borel subset of K (Gδ in
fact), and E is a Polish space iff E is homeomorphic to ex(K ) for
some K (Choquet).
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This concludes the introduction. We now set out to answer

Question
Given a Choquet simplex K , which countable ordinals can be realized
as the order of accumulation of an entropy structure on K ?
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Accumulation on Bauer Simplices

Facts

A Choquet simplex K is called Bauer if the set of extreme points
ex(K ) is closed in K .

If M = M(X , T ) is a Bauer simplex, then all the elements of the
transfinite sequence U are harmonic on M.

Therefore if M is a Bauer simplex, in order to compute U one need
only consider the entropy structure restricted to the extreme points
of M, compute U at the extreme points, and use the harmonic
extension. This suggests that only the topology of the extreme
points is relevant to the accumulation of sex entropy.
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Accumulation on Bauer Simplices

Theorem
Let K be any Bauer simplex.

1 If ex(K ) is countable, then
{α0(H) on K} = [0, | ex(K )|CB − 1] if | ex(K )|CB is finite, and
{α0(H) on K} = [0, | ex(K )|CB] if | ex(K )|CB is infinite.

2 If ex(K ) is uncountable, then for every countable β, there exists an
entropy structure Hβ on K such that α0(Hβ) = β.

Combining this result with the realization theorem of Downarowicz and
Serafin, we obtain

Corollary
Every countable ordinal α is realized as the order of accumulation of a
dynamical system.
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Accumulation on Choquet Simplices

In the general case, ex(M(X , T )) = Merg(X , T ) need not be closed in
M(X , T ). In this case the functions in the transfinite sequence are not
necessarily harmonic; they need only be concave.

Notation.

If E is a Polish space, let ρ(E) = sup{|F |CB : F is compact in E}

If K is a Choquet simplex, let
β(K ) = sup{γ : there exists an H on K such that α0(H) = γ}.

These definitions allow for the theorems...

Kevin McGoff ( University of Maryland ) Accumulation of Symbolic Extension Entropy August 5, 2008 18 / 28



Accumulation on Choquet Simplices: Topological
Bounds

Notation.

If E is a Polish space, let ρ(E) = sup{|F |CB : F is compact in E}

If K is a Choquet simplex, let
β(K ) = sup{γ : there exists an H on K such that α0(H) = γ}.

Theorem
Let K be a Choquet simplex. Then

If ex(K ) is countable, then ρ(ex(K )) ≤ β(K ).

If ex(K ) is countable, then β(K ) ≤ ρ(ex(K )).

Note that if ex(K ) is countable, then so is ex(K ), and we obtain

ρ(ex(K )) ≤ β(K ) ≤ ρ(ex(K )).
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Accumulation on Choquet Simplices

Notation. Consider a pair (E , E), where E is a Polish space and E is
some compactification of E . For two such pairs (E1, E1) and (E2, E2),
we write (E1, E1) ' (E2, E2) to mean that there is a homeomorphism
g : E1 → E2 which restricts to a bijection from E1 to E2.
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Accumulation on Choquet Simplices: Optimality of
Bounds

Theorem

Let E be a Polish space and E a compactification of E. Then
1 If both E and E are countable, then for all β in [ρ(E), ρ(E)], there

exists a Choquet simplex K with (ex(K ), ex(K )) ' (E , E) and
β(K ) = β.

2 If E is countable and E is uncountable, then for all β ≥ ρ(E), there
exists a Choquet simplex K with (ex(K ), ex(K )) ' (E , E) and
β(K ) = β.

3 If E is uncountable, then for all Choquet simplices K with
(ex(K ), ex(K )) ' (E , E), every countable ordinal is realized as the
order of accumulation of an entropy structure on K .
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Now we turn to a related but much more concrete question:

Question
Which countable ordinals can be realized as the order of accumulation
of a continuous map of the interval?

Kevin McGoff ( University of Maryland ) Accumulation of Symbolic Extension Entropy August 5, 2008 22 / 28



Accumulation on the Unit Interval

Theorem
For every countable ordinal α, there exists a continuous map
fα : [0, 1] → [0, 1] such that the order of accumulation of ([0, 1], fα) is α.

Just for illustration, how can we even get α0 = 1?

To get a map f : [0, 1] → [0, 1] with α0 = 1, recall the map T3:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
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Accumulation on the Unit Interval: α0 = 1

Let f be the continuous map with a copy of T3 on each interval
In = [2−(n+1), 2−n].

On each In, there is a measure µn of maximal entropy h(µn) = 3.

The measures µn converge in the weak∗ topology to the point
mass at 0, δ0.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
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Accumulation on the Unit Interval: α0 = 1

Then
Choose an entropy structure (hk ) corresponding to the decreasing
sequence of scales εk > 0.
For each k , there are infinitely many intervals In with `(In) < εk .
Thus, for each k , there are infinitely many n such that
h(µn) − hk(µn) = 3.
Taking the upper semi-continuous envelope at δ0, we see that
(h − hk )e(δ0) = 3.
Letting k tend to infinity gives that u1(δ0) = 3.
Another argument shows that u1 ≡ u2, and so α0 = 1.
The key point is that for every finite scale ε, there are measures
arbitrarily close to δ0 whose entropy cannot be observed with
precision ε.
To get arbitrary orders of accumulation, one must build nested
versions of this scenario, which is done using a more complicated
iterative construction.

Kevin McGoff ( University of Maryland ) Accumulation of Symbolic Extension Entropy August 5, 2008 25 / 28



Thank You

Thank you to the University of Victoria and PIMS for hosting this
meeting.

Thank you to Mike Boyle for his wise and patient advice.

Thank you to Karl Petersen for giving direction, encouragement
and inspiration to so many people.
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