# A homology theory for basic sets 

Ian F. Putnam,
University of Victoria

## Smale spaces: hyperbolic topological systems

1. basic sets for Axiom A systems
2. hyperbolic toral automorphisms
3. solenoids (R. Williams)
4. shifts of finite type (SFT's)

Shifts of finite type

1. zero-dimensional Smale spaces
2. universal property (Bowen's Theorem)
3. Krieger's dimension group invariant

Goal: Extend Krieger's invariant to Smale spaces

Smale spaces (D. Ruelle)
( $X, d$ ) compact metric space,
$\varphi: X \rightarrow X$ homeomorphism with canonical coordinates: there is a constant $0<\lambda<1$, and for $x$ in $X$ and $\epsilon>0$ and small, there are sets $X^{s}(x, \epsilon)$ and $X^{u}(x, \epsilon)$ :

1. $X^{s}(x, \epsilon) \times X^{u}(x, \epsilon)$ is homeomorphic to a neighbourhood of $x$,
2. $\varphi$-invariance,
3. 

$$
\begin{aligned}
d(\varphi(y), \varphi(z)) & \leq \lambda d(y, z), \quad y, z \in X^{s}(x, \epsilon), \\
d\left(\varphi^{-1}(y), \varphi^{-1}(z)\right) & \leq \lambda d(y, z), \quad y, z \in X^{u}(x, \epsilon),
\end{aligned}
$$

That is, we have a local picture:


Actual definition: existence of [,] satisfying some axioms. $[x, y]$ is the intersection of $X^{s}(x, \epsilon)$ and $X^{u}(y, \epsilon)$.

Stable and unstable equivalence:

$$
\begin{aligned}
& R^{s}=\left\{\left.(x, y)\right|_{n \rightarrow+\infty} d\left(\varphi^{n}(x), \varphi^{n}(y)\right)=0\right\} \\
& R^{u}=\left\{\left.(x, y)\right|_{n \rightarrow+\infty} d\left(\varphi^{-n}(x), \varphi^{-n}(y)\right)=0\right\}
\end{aligned}
$$

$R^{s}(x), R^{u}(x)$ denote equivalence classes.

## Factor maps

Let $\pi:(Y, \psi) \rightarrow(X, \varphi)$ be a factor map between Smale spaces. For every $y$ in $Y, \pi$ : $R^{s}(y) \rightarrow R^{s}(\pi(y))$.

- $\pi$ is s-resolving if $\pi: R^{s}(y) \rightarrow R^{s}(\pi(y))$ is injective, for all $y$.
- $\pi$ is $s$-bijective if $\pi: R^{s}(y) \rightarrow R^{s}(\pi(y))$ is bijective, for all $y$.

We remark:

- $Y$ irreducible, $s$-resolving $\Rightarrow s$-bijective
- $s$-resolving $\Rightarrow$ finite-to-one
- $s$-bijective $\Rightarrow \pi: Y^{s}(y, \epsilon) \rightarrow X^{s}\left(\pi(y), \epsilon^{\prime}\right)$ is a local homeomorphism


## Shifts of finite type

Let $G=\left(G^{0}, G^{1}, i, t\right)$ be a finite directed graph. Then

$$
\begin{aligned}
\Sigma_{G}= & \left\{\left(e^{k}\right)_{k=-\infty}^{\infty} \mid e^{k} \in G^{1},\right. \\
& \left.i\left(e^{k+1}\right)=t\left(e^{k}\right), \text { for all } n\right\} \\
\sigma(e)^{k}= & e^{k+1}, \text { "left shift"" }
\end{aligned}
$$

The local product structure is given by

$$
\begin{array}{r}
\Sigma^{s}(e, 1)=\left\{\left(\ldots, *, *, *, *, e^{1}, e^{2}, \ldots\right)\right\} \\
\Sigma^{u}(e, 1)=\left\{\left(\ldots, e^{-2}, e^{-1}, e^{0}, *, *, *, \ldots\right)\right\}
\end{array}
$$

A shift of finite type is any system conjugate to ( $\Sigma_{G}, \sigma$ ), for some $G$.

## Dimension groups

Motivation: For $\operatorname{dim}(X)=0$, the Cech cohomology of $X$ is $C(X, \mathbb{Z})$. Or, the free abelian group on the collection of clopen sets with relation

$$
E \cup F=E+F, \text { if } E \cap F=\emptyset
$$

Let $(\Sigma, \sigma)$ be a shift of finite type. $\mathcal{D}^{s}(\Sigma, \sigma)$ denotes the set of all $E \subset \Sigma^{s}(e, \epsilon)$ which are compact and open.

Equivalence relation $\sim$ :

$$
\begin{aligned}
{[E, F]=F,[F, E]=E } & \Rightarrow E \sim F \\
E \sim F & \Leftrightarrow \sigma(E) \sim \sigma(F)
\end{aligned}
$$

$D^{s}(\Sigma, \sigma)$ is the free abelian group generated by equivalence classes of $\mathcal{D}^{s}(\Sigma, \sigma)$ modulo the relation:

$$
[E \cup F]=[E]+[F], \text { if } E \cap F=\emptyset
$$

$G$ a finite directed graph.
$\mathbb{Z} G^{0}=$ free abelian group on $G^{0}$ or $\mathbb{Z}^{N}, N=\# G^{0}$.

Define $\gamma^{s}: \mathbb{Z} G^{0} \rightarrow \mathbb{Z} G^{0}$, by

$$
\gamma^{s}(v)=\sum_{t(e)=v} i(e) .
$$

and $A$ is the adjacency matrix of $G$,

$$
A: \mathbb{Z}^{N} \rightarrow \mathbb{Z}^{N}
$$

Then

$$
\begin{aligned}
D^{s}\left(\Sigma_{G}, \sigma\right) & \cong \lim \mathbb{Z} G^{0} \xrightarrow{\gamma^{s}} \mathbb{Z} G^{0} \xrightarrow{\gamma^{s}} \cdots \\
& \cong \lim \mathbb{Z}^{N} \xrightarrow{A} \mathbb{Z}^{N} \xrightarrow{A} \cdots
\end{aligned}
$$

## $D^{s}$ as a functor

Let $\pi:(\Sigma, \sigma) \rightarrow\left(\Sigma^{\prime}, \sigma\right)$ be a factor map. If $\pi$ is $s$-bijective, then there is a map

$$
\pi^{s}: D^{s}(\Sigma, \sigma) \rightarrow D^{s}\left(\Sigma^{\prime}, \sigma\right)
$$

(The idea is that $\pi^{s}[E]=[\pi(E)]$.)

If $\pi$ is $u$-bijective, then there is a map

$$
\pi^{s *}: D^{s}\left(\Sigma^{\prime}, \sigma\right) \rightarrow D^{s}(\Sigma, \sigma)
$$

(The idea is that $\pi^{s *}\left[E^{\prime}\right]=\left[\pi^{-1}\left(E^{\prime}\right)\right]$.)
(Kitchens, Boyle, Marcus, Trow)

## Homology: First attempt

$(X, \varphi)$ a Smale space. What is $H^{s}(X, \varphi)$ ?

Bowen: For $(X, \varphi)$ irreducible, there exists

$$
\pi:(\Sigma, \sigma) \rightarrow(X, \varphi)
$$

continuous, surjective and finite-to-one.

For $N \geq 0$, define

$$
\begin{aligned}
\Sigma_{N}(\pi)= & \left\{\left(e_{0}, e_{1}, \ldots, e_{N}\right) \mid\right. \\
& \pi\left(e_{n}\right)=\pi\left(e_{0}\right), \\
& 0 \leq n \leq N\} .
\end{aligned}
$$

For all $N \geq 0,\left(\Sigma_{N}(\pi), \sigma\right)$ is also a shift of finite type.

Idea: Compute homology of ( $X, \varphi$ ) from that of $\left(\Sigma_{N}(\pi), \sigma\right), N \geq 0$.

For $0 \leq n \leq N$, let $\delta_{n}: \Sigma_{N}(\pi) \rightarrow \Sigma_{N-1}(\pi)$ be the map which deletes entry $n$.

Lemma 1. If $\pi$ is $s$ or $u$-bijective, then so is $\delta_{n}$.

Definition 2. If $\pi$ is s-bijective, define $\partial_{N}^{s}(\pi)$ : $D^{s}\left(\Sigma_{N}\right) \rightarrow D^{s}\left(\Sigma_{N-1}\right)$ by

$$
\partial_{N}^{s}(\pi)=\sum_{n=0}^{N}(-1)^{n}\left(\delta_{n}\right)^{s}
$$

If $\pi$ is u-bijective, define $\partial_{N}^{s *}(\pi): D^{s}\left(\Sigma_{N}\right) \rightarrow$ $D^{s}\left(\Sigma_{N+1}\right)$ by

$$
\partial_{N}^{s *}(\pi)=\sum_{n=0}^{N+1}(-1)^{n}\left(\delta_{n}\right)^{s *}
$$

If $\pi$ is $s$-bijective, we get a chain complex; $u$ bijective, we get a cochain complex.

But to get either, we would need $X^{s}(x, \epsilon)$ or $X^{u}(x, \epsilon)$ totally disconnected.

## Homology: Second attempt

$(X, \varphi)$ a Smale space, what is $H^{s}(X, \varphi)$ ?
Let $(X, \varphi)$ be a Smale space. We look for a Smale space $(Y, \psi)$ and a factor map $\pi_{s}:(Y, \psi) \rightarrow(X, \varphi)$ satisfying:

1. $\operatorname{dim}\left(Y^{u}(y, \epsilon)\right)=0$,
2. $\pi_{s}$ is $s$-bijective.

That is, $Y^{u}(y, \epsilon)$ is totally disconnected, while $Y^{s}(y, \epsilon)$ is homeomorphic to $X^{s}\left(\pi_{s}(y), \epsilon\right)$.

This is a "one-coordinate" version of Bowen's Theorem.

Similarly, we look for a Smale space ( $Z, \zeta$ ) and a factor map $\pi_{u}$ satisfying:

1. $\operatorname{dim}\left(Z^{s}(z, \epsilon)\right)=0$,
2. $\pi_{u}$ is $u$-bijective.

We call $\pi=\left(Y, \psi, \pi_{s}, Z, \zeta, \pi_{u}\right)$ a resolving pair for ( $X, \varphi$ ).

Theorem 3. For $(X, \varphi)$ irreducible, resolving pairs exist.

Consider the fibred product:

$$
\Sigma=\left\{(y, z) \in Y \times Z \mid \pi_{s}(y)=\pi_{u}(z)\right\}
$$

with

$\rho_{s}(y, z)=z$ is $s$-bijective, $\rho_{u}(y, z)=y$ is $u$ bijective. Hence, $\Sigma$ is a SFT, $\Sigma=\Sigma_{G}$, for some graph $G$.

For $L, M \geq 0$,

$$
\begin{aligned}
\Sigma_{L, M}(\pi)= & \left\{\left(y_{0}, \ldots, y_{L}, z_{0}, \ldots, z_{M}\right) \mid\right. \\
& y_{l} \in Y, z_{m} \in Z \\
& \left.\pi_{s}\left(y_{l}\right)=\pi_{u}\left(z_{m}\right)\right\}
\end{aligned}
$$

Moreover, the maps

$$
\delta_{l,}: \Sigma_{L, M} \rightarrow \Sigma_{L-1, M}, \delta_{, m}: \Sigma_{L, M} \rightarrow \Sigma_{L, M-1}
$$

are $s$-bijective and $u$-bijective, respectively.

We get a double complex:

$$
\begin{array}{cc}
D^{s}\left(\sum_{0,2}\right) \leftarrow D^{s}\left(\sum_{1,2}\right) \leftarrow D^{s}\left(\sum_{2,2}\right) \leftarrow \\
D^{s}\left(\sum_{0,1}\right) \leftarrow D^{s}\left(\Sigma_{1,1}\right) \leftarrow D^{s}\left(\Sigma_{2,1}\right) \leftarrow \\
D^{s}\left(\Sigma_{0,0}\right) \leftarrow D^{s}\left(\Sigma_{1,0}\right) \leftarrow D^{s}\left(\Sigma_{2,0}\right) \leftarrow \\
\\
\partial_{N}^{s}: \quad \oplus_{L-M=N} D^{s}\left(\Sigma_{L, M}\right) \\
\rightarrow \quad \oplus_{L-M=N-1} D^{s}\left(\Sigma_{L, M}\right) \\
\partial_{N}^{s}= & \sum_{l=0}^{L}(-1)^{l} \delta_{l,}^{s}+\sum_{m=0}^{M+1}(-1)^{m+M} \delta_{\delta_{, m}^{* s}}^{s s} \\
& H_{N}^{s}(\pi)=\operatorname{ker}\left(\partial_{N}^{s}\right) / \operatorname{Im}\left(\partial_{N+1}^{s}\right) .
\end{array}
$$

## Five basic theorems

Recall: beginning with $(X, \varphi)$, we select a resolving pair $\pi=\left(Y, \pi_{s}, Z, \pi_{u}\right)$ and compute $H_{N}^{s}(\pi)$.

Theorem 4. The groups $H_{N}^{s}(\pi)$ do not depend on the choice of resolving pair $\pi$.

From now on, we write $H_{N}^{s}(X, \varphi)$.

Theorem 5. The functor $H_{*}^{s}(X, \varphi)$ is covariant for s-bijective maps, contravariant for $u$ bijective maps.

Theorem 6. For ( $X, \varphi$ ) irreducible, the group $H_{0}^{s}(X, \varphi)$ has a natural order structure.

The invariant $D^{s}\left(\Sigma_{N}\right)$ is computed as an inductive limit

$$
\mathbb{Z} G_{N}^{0} \rightarrow \mathbb{Z} G_{N}^{0} \rightarrow \cdots
$$

and the generators of $\mathbb{Z} G_{N}^{0}$ are $N+1$-tuples of vertices from $G$.

Instead, define $\mathbb{Z}_{a} G_{N}^{0}$ as the quotient by the relations

$$
\begin{aligned}
\left(v_{0}, \ldots, v_{N}\right) & =0, \\
\left(v_{\alpha(0)}, \ldots, v_{\alpha(N)}\right) & =\text { if } v_{i}=v_{j}, i \neq j, \\
& \operatorname{sgn}(\alpha)\left(v_{0}, \ldots, v_{N}\right), \\
& \alpha \in S_{N+1}
\end{aligned}
$$

with limit $D_{a}^{s}\left(\Sigma_{N}\right) . D_{a}^{s}\left(\Sigma_{N}\right) \neq 0$ for only finitely many $N$.

Theorem 7. The homologies obtained from $D^{s}\left(\Sigma_{N}\right)$ and $D_{a}^{s}\left(\Sigma_{N}\right)$ are the same.

There is also a two-variable version.

We can regard $\varphi:(X, \varphi) \rightarrow(X, \varphi)$, which is both $s$ and $u$-bijective and so induces an automorphism of the invariants.

Theorem 8. (Lefschetz Formula) Let ( $X, \varphi$ ) be any Smale space having a resolving pair and let $p \geq 1$.

$$
\begin{aligned}
\sum_{N \in \mathbb{Z}}(-1)^{N} & \operatorname{Tr}\left[\left(\varphi^{s}\right)^{p}:\right. & H_{N}^{s}(X, \varphi) \otimes \mathbb{Q} \\
& \rightarrow & \left.H_{N}^{s}(X, \varphi) \otimes \mathbb{Q}\right] \\
& = & \#\left\{x \in X \mid \varphi^{p}(x)=x\right\}
\end{aligned}
$$

## Example 1: Shifts of finite type

If $(X, \varphi)=(\Sigma, \sigma)$, then $Y=\Sigma=Z$ is a resolving pair.

The double complex $D_{a}^{s}$ is:

and $H_{0}^{s}(\Sigma, \sigma)=D^{s}(\Sigma)$ and $H_{N}^{s}(\Sigma, \sigma)=0, N \neq$ 0 .

Example 2: $\operatorname{dim}\left(\mathrm{X}^{\mathrm{s}}(\mathrm{x}, \epsilon)\right)=0$ and $(X, \varphi)$ irred.

We may find a SFT and $s$-bijective map

$$
\pi_{s}:(\Sigma, \sigma) \rightarrow(X, \varphi)
$$

The $Y=\Sigma, Z=X$ is a resolving pair and the double complex $D_{a}^{s}$ is:


Example 3: $(\mathrm{X}, \varphi)=\mathrm{m}^{\infty}$-solenoid (BazettP.)

A resolving pair is $Y=\{0,1, \ldots, m-1\}^{\mathbb{Z}}$, the full $m$-shift, $Z=X$ and the double complex $D_{a}^{s}$ is

and we get $H_{0}^{s}(X, \varphi) \cong \mathbb{Z}[1 / m], H_{1}^{s}(X, \varphi) \cong \mathbb{Z}$, $H_{N}^{s}\left(\Sigma_{G}, \sigma\right)=0, N \neq 0,1$.
D. Pollock considering Williams-Yi 1-dimensional solenoids.

Example 4: A hyperbolic toral automorphism (Bazett-P.):

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right): \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}
$$

The double complex $D_{a}^{s}$ looks like:

and

| $N$ | $H_{N}^{s}(X, \varphi)$ | $\varphi^{s}$ |
| :---: | :---: | :---: |
| -1 | $\mathbb{Z}$ | 1 |
| 0 | $\mathbb{Z}^{2}$ | $\left(\begin{array}{cc}1 & 1 \\ 1 & 0\end{array}\right)$ |
| 1 | $\mathbb{Z}$ | -1. |

As an ordered group, $H_{0}^{s}(X, \varphi) \cong \mathbb{Z}+\frac{1+\sqrt{5}}{2} \mathbb{Z}$.

