A homology theory for basic sets

Ian F. Putnam, University of Victoria

Smale spaces: hyperbolic topological systems

- 1. basic sets for Axiom A systems
- 2. hyperbolic toral automorphisms
- 3. solenoids (R. Williams)
- 4. shifts of finite type (SFT's)

Shifts of finite type

- 1. zero-dimensional Smale spaces
- 2. universal property (Bowen's Theorem)
- 3. Krieger's dimension group invariant

Goal: Extend Krieger's invariant to Smale spaces

Smale spaces (D. Ruelle)

(X,d) compact metric space,

 $\varphi : X \to X$ homeomorphism with <u>canonical</u> <u>coordinates</u>: there is a constant $0 < \lambda < 1$, and for x in X and $\epsilon > 0$ and small, there are sets $X^{s}(x, \epsilon)$ and $X^{u}(x, \epsilon)$:

1. $X^{s}(x,\epsilon) \times X^{u}(x,\epsilon)$ is homeomorphic to a neighbourhood of x,

2. φ -invariance,

3.

$$d(\varphi(y),\varphi(z)) \leq \lambda d(y,z), \quad y,z \in X^{s}(x,\epsilon), \\ d(\varphi^{-1}(y),\varphi^{-1}(z)) \leq \lambda d(y,z), \quad y,z \in X^{u}(x,\epsilon),$$

That is, we have a local picture:

Actual definition: existence of [,] satisfying some axioms. [x, y] is the intersection of $X^{s}(x, \epsilon)$ and $X^{u}(y, \epsilon)$.

Stable and unstable equivalence:

$$R^{s} = \{(x,y) \mid \lim_{n \to +\infty} d(\varphi^{n}(x),\varphi^{n}(y)) = 0\}$$

$$R^{u} = \{(x,y) \mid \lim_{n \to +\infty} d(\varphi^{-n}(x),\varphi^{-n}(y)) = 0\}$$

 $R^{s}(x), R^{u}(x)$ denote equivalence classes.

Factor maps

Let π : $(Y, \psi) \to (X, \varphi)$ be a factor map between Smale spaces. For every y in Y, π : $R^{s}(y) \to R^{s}(\pi(y))$.

- π is *s*-resolving if π : $R^{s}(y) \rightarrow R^{s}(\pi(y))$ is injective, for all y.
- π is *s*-bijective if π : $R^{s}(y) \rightarrow R^{s}(\pi(y))$ is bijective, for all y.

We remark:

- Y irreducible, s-resolving \Rightarrow s-bijective
- *s*-resolving \Rightarrow finite-to-one
- s-bijective $\Rightarrow \pi : Y^s(y, \epsilon) \to X^s(\pi(y), \epsilon')$ is a local homeomorphism

Shifts of finite type

Let $G = (G^0, G^1, i, t)$ be a finite directed graph. Then

$$\begin{split} \Sigma_G &= \{(e^k)_{k=-\infty}^{\infty} \mid e^k \in G^1, \\ &\quad i(e^{k+1}) = t(e^k), \text{ for all } n\} \\ \sigma(e)^k &= e^{k+1}, \text{ "left shift"} \end{split}$$

The local product structure is given by

$$\Sigma^{s}(e,1) = \{(\dots,*,*,*,*,e^{1},e^{2},\dots)\}$$

$$\Sigma^{u}(e,1) = \{(\dots,e^{-2},e^{-1},e^{0},*,*,*,\dots)\}$$

A shift of finite type is any system conjugate to (Σ_G, σ) , for some G.

Dimension groups

Motivation: For dim(X) = 0, the Cech cohomology of X is $C(X,\mathbb{Z})$. Or, the free abelian group on the collection of clopen sets with relation

$$E \cup F = E + F$$
, if $E \cap F = \emptyset$.

Let (Σ, σ) be a shift of finite type. $\mathcal{D}^{s}(\Sigma, \sigma)$ denotes the set of all $E \subset \Sigma^{s}(e, \epsilon)$ which are compact and open.

Equivalence relation \sim :

$$[E, F] = F, [F, E] = E \implies E \sim F$$
$$E \sim F \iff \sigma(E) \sim \sigma(F)$$

 $D^{s}(\Sigma, \sigma)$ is the free abelian group generated by equivalence classes of $\mathcal{D}^{s}(\Sigma, \sigma)$ modulo the relation:

$$[E \cup F] = [E] + [F]$$
, if $E \cap F = \emptyset$.

G a finite directed graph.

 $\mathbb{Z}G^0 = \text{ free abelian group on } G^0$ or $\mathbb{Z}^N, N = \#G^0$.

Define $\gamma^s: \mathbb{Z}G^0 \to \mathbb{Z}G^0$, by

$$\gamma^{s}(v) = \sum_{t(e)=v} i(e).$$

and \boldsymbol{A} is the adjacency matrix of \boldsymbol{G} ,

$$A:\mathbb{Z}^N\to\mathbb{Z}^N$$

Then

$$D^{s}(\Sigma_{G}, \sigma) \cong \lim \mathbb{Z}G^{0} \xrightarrow{\gamma^{s}} \mathbb{Z}G^{0} \xrightarrow{\gamma^{s}} \cdots$$
$$\cong \lim \mathbb{Z}^{N} \xrightarrow{A} \mathbb{Z}^{N} \xrightarrow{A} \cdots$$

D^s as a functor

Let $\pi : (\Sigma, \sigma) \to (\Sigma', \sigma)$ be a factor map. If π is *s*-bijective, then there is a map

$$\pi^s: D^s(\Sigma, \sigma) \to D^s(\Sigma', \sigma).$$

(The idea is that $\pi^{s}[E] = [\pi(E)]$.)

If π is *u*-bijective, then there is a map

$$\pi^{s*}: D^s(\Sigma', \sigma) \to D^s(\Sigma, \sigma)$$

(The idea is that $\pi^{s*}[E'] = [\pi^{-1}(E')].$)

(Kitchens, Boyle, Marcus, Trow)

Homology: First attempt

 (X,φ) a Smale space. What is $H^s(X,\varphi)$?

Bowen: For (X, φ) irreducible, there exists

$$\pi: (\mathbf{\Sigma}, \sigma) \to (X, \varphi),$$

continuous, surjective and finite-to-one.

For $N \geq 0$, define

$$\Sigma_N(\pi) = \{(e_0, e_1, \dots, e_N) \mid \pi(e_n) = \pi(e_0), \\ 0 \le n \le N\}.$$

For all $N \ge 0$, $(\Sigma_N(\pi), \sigma)$ is also a shift of finite type.

Idea: Compute homology of (X, φ) from that of $(\Sigma_N(\pi), \sigma), N \ge 0$.

For $0 \le n \le N$, let $\delta_n : \Sigma_N(\pi) \to \Sigma_{N-1}(\pi)$ be the map which deletes entry n.

Lemma 1. If π is s or u-bijective, then so is δ_n .

Definition 2. If π is s-bijective, define $\partial_N^s(\pi)$: $D^s(\Sigma_N) \to D^s(\Sigma_{N-1})$ by

$$\partial_N^s(\pi) = \sum_{n=0}^N (-1)^n (\delta_n)^s.$$

If π is u-bijective, define $\partial_N^{s*}(\pi)$: $D^s(\Sigma_N) \rightarrow D^s(\Sigma_{N+1})$ by

$$\partial_N^{s*}(\pi) = \sum_{n=0}^{N+1} (-1)^n (\delta_n)^{s*}.$$

If π is *s*-bijective, we get a chain complex; *u*-bijective, we get a cochain complex.

But to get either, we would need $X^{s}(x,\epsilon)$ or $X^{u}(x,\epsilon)$ totally disconnected.

Homology: Second attempt

 (X,φ) a Smale space, what is $H^{s}(X,\varphi)$?

Let (X, φ) be a Smale space. We look for a Smale space (Y, ψ) and a factor map $\pi_s : (Y, \psi) \to (X, \varphi)$ satisfying:

- 1. $dim(Y^{u}(y,\epsilon)) = 0$,
- 2. π_s is *s*-bijective.

That is, $Y^u(y, \epsilon)$ is totally disconnected, while $Y^s(y, \epsilon)$ is homeomorphic to $X^s(\pi_s(y), \epsilon)$.

This is a "one-coordinate" version of Bowen's Theorem.

Similarly, we look for a Smale space (Z, ζ) and a factor map π_u satisfying:

- 1. $dim(Z^s(z,\epsilon)) = 0$,
- 2. π_u is *u*-bijective.

We call $\pi = (Y, \psi, \pi_s, Z, \zeta, \pi_u)$ a resolving pair for (X, φ) .

Theorem 3. For (X, φ) irreducible, resolving pairs exist.

Consider the fibred product:

 $\Sigma = \{(y, z) \in Y \times Z \mid \pi_s(y) = \pi_u(z)\}$

with

 $\rho_s(y,z) = z$ is *s*-bijective, $\rho_u(y,z) = y$ is *u*-bijective. Hence, Σ is a SFT, $\Sigma = \Sigma_G$, for some graph G.

For $L, M \ge 0$, $\Sigma_{L,M}(\pi) = \{(y_0, \dots, y_L, z_0, \dots, z_M) \mid y_l \in Y, z_m \in Z, \\ \pi_s(y_l) = \pi_u(z_m)\}.$

Moreover, the maps

 $\delta_{l,}: \Sigma_{L,M} \to \Sigma_{L-1,M}, \delta_{,m}: \Sigma_{L,M} \to \Sigma_{L,M-1}$ are *s*-bijective and *u*-bijective, respectively.

We get a double complex:

$$\begin{array}{c} \uparrow & \uparrow & \uparrow \\ D^{s}(\Sigma_{0,2}) \leftarrow D^{s}(\Sigma_{1,2}) \leftarrow D^{s}(\Sigma_{2,2}) \leftarrow \\ \uparrow & \uparrow & \uparrow \\ D^{s}(\Sigma_{0,1}) \leftarrow D^{s}(\Sigma_{1,1}) \leftarrow D^{s}(\Sigma_{2,1}) \leftarrow \\ \uparrow & \uparrow & \uparrow \\ D^{s}(\Sigma_{0,0}) \leftarrow D^{s}(\Sigma_{1,0}) \leftarrow D^{s}(\Sigma_{2,0}) \leftarrow \end{array}$$

$$\partial_N^s : \bigoplus_{L-M=N} D^s(\Sigma_{L,M}) \\ \to \bigoplus_{L-M=N-1} D^s(\Sigma_{L,M})$$

$$\partial_N^s = \sum_{l=0}^L (-1)^l \delta_{l,}^s + \sum_{m=0}^{M+1} (-1)^{m+M} \delta_{m,m}^{*s}$$

$$H_N^s(\pi) = \ker(\partial_N^s) / Im(\partial_{N+1}^s).$$

Five basic theorems

Recall: beginning with (X, φ) , we select a resolving pair $\pi = (Y, \pi_s, Z, \pi_u)$ and compute $H_N^s(\pi)$.

Theorem 4. The groups $H_N^s(\pi)$ do not depend on the choice of resolving pair π .

From now on, we write $H_N^s(X,\varphi)$.

Theorem 5. The functor $H_*^s(X,\varphi)$ is covariant for *s*-bijective maps, contravariant for *u*bijective maps.

Theorem 6. For (X, φ) irreducible, the group $H_0^s(X, \varphi)$ has a natural order structure.

The invariant $D^s(\Sigma_N)$ is computed as an inductive limit

$$\mathbb{Z}G_N^0 \to \mathbb{Z}G_N^0 \to \cdots$$

and the generators of $\mathbb{Z}G_N^0$ are N + 1-tuples of vertices from G.

Instead, define $\mathbb{Z}_a G_N^0$ as the quotient by the relations

$$(v_0, \dots, v_N) = 0,$$

if $v_i = v_j, i \neq j,$
$$(v_{\alpha(0)}, \dots, v_{\alpha(N)}) = sgn(\alpha)(v_0, \dots, v_N),$$

$$\alpha \in S_{N+1}$$

with limit $D_a^s(\Sigma_N)$. $D_a^s(\Sigma_N) \neq 0$ for only finitely many N.

Theorem 7. The homologies obtained from $D^s(\Sigma_N)$ and $D^s_a(\Sigma_N)$ are the same.

There is also a two-variable version.

We can regard $\varphi : (X, \varphi) \to (X, \varphi)$, which is both *s* and *u*-bijective and so induces an automorphism of the invariants.

Theorem 8. (Lefschetz Formula) Let (X, φ) be any Smale space having a resolving pair and let $p \ge 1$.

 $\sum_{N \in \mathbb{Z}} (-1)^N \quad Tr[(\varphi^s)^p : \quad H^s_N(X, \varphi) \otimes \mathbb{Q} \\ \rightarrow \qquad H^s_N(X, \varphi) \otimes \mathbb{Q}]$

 $= \#\{x \in X \mid \varphi^p(x) = x\}$

Example 1: Shifts of finite type

If $(X, \varphi) = (\Sigma, \sigma)$, then $Y = \Sigma = Z$ is a resolving pair.

The double complex D_a^s is:

and $H_0^s(\Sigma, \sigma) = D^s(\Sigma)$ and $H_N^s(\Sigma, \sigma) = 0, N \neq 0$.

Example 2: dim $(X^{s}(x, \epsilon)) = 0$ and (X, φ) irred.

We may find a SFT and s-bijective map

$$\pi_s : (\Sigma, \sigma) \to (X, \varphi).$$

The $Y = \Sigma, Z = X$ is a resolving pair and the double complex D_a^s is:

Example 3: $(X, \varphi) = m^{\infty}$ -solenoid (Bazett-P.)

A resolving pair is $Y = \{0, 1, ..., m-1\}^{\mathbb{Z}}$, the full *m*-shift, Z = X and the double complex D_a^s is

and we get $H_0^s(X,\varphi) \cong \mathbb{Z}[1/m]$, $H_1^s(X,\varphi) \cong \mathbb{Z}$, $H_N^s(\Sigma_G,\sigma) = 0, N \neq 0, 1.$

D. Pollock considering Williams-Yi 1-dimensional solenoids.

Example 4: A hyperbolic toral automorphism (Bazett-P.):

$$\left(\begin{array}{cc}1 & 1\\ 1 & 0\end{array}\right): \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$$

The double complex D_a^s looks like:

and

As an ordered group, $H_0^s(X,\varphi) \cong \mathbb{Z} + \frac{1+\sqrt{5}}{2}\mathbb{Z}$.