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Vershik’s Construction of Markov Partitions

Consider the hyperbolic automorphism α =
( 0 1

1 1
)
of T2 = R2/Z2. We can

draw its expanding and contracting subspaces:

The intersections of these two subspaces are the homoclinic points of α.
We shall see that not all homoclinic points are created equal.
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Maps Defined By Homoclinic Points

If x is one of these homoclinic points, (e.g., x = y∆), then we can define a
map ξx : `∞(Z,Z) −→ T2 by

ξx (v) =
∑

n∈Z
vnα

−nx , v = (vn) ∈ `∞(Z,Z).

The map ξx is equivariant:
ξx ◦ σ = α ◦ ξx ,

where σ is the shift (σv)n = vn+1 on `∞(Z,Z).
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Sofic Covers and Sofic Partitions

In 1992–94 Vershik showed that the restriction of ξx to the two-sided
beta-shift Xβ ⊂ `∞(Z,Z) of the large eigenvalue β = 1+

√
5

2 of α is
surjective.
Since Xβ is the Golden Mean shift (which is of finite type), this is a
Markov cover of α.
Does this give a Markov partition (i.e., is ξx almost one-to-one on Xβ)?
The answer depends on the homoclinic point chosen: it has to be
fundamental in the sense that its orbit generates the group ∆(α) ⊂ T2 of
all homoclinic points of α (Lind-S, 1999; Einsiedler-S, 1997). In our
drawing the points x∆ and y∆ are fundamental, but z∆ is not.
This connection between two-sided beta-shifts and hyperbolic toral
automorphisms was extended to general quadratic Pisot numbers
(Sidorov-Vershik, 1998), then to arbitrary Pisot numbers (S, 2000;
Sidorov, 2001–02).
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The General Recipe For This Construction

Take a hyperbolic automorphism α ∈ GL(n,Z);
Find a fundamental homoclinic point x∆ ∈ Tn of α (for this α has to
be conjugate — in GL(n,Z) — to a companion matrix; Lind-S, 1999);
Define ξx∆ : `∞(Z,Z) −→ Tn as before by ξx∆(v) =

∑
n∈Z vnα

−nx∆;
Find a full shift with sufficiently large alphabet V ⊂ `∞(Z,Z) such
that the restriction of ξx∆ to V is surjective.
Use Marcus-Petersen-Williams (1984) to a sofic shift V ∗ ⊂ V such
that ξx∆ , restricted to V ∗ is surjective and finite-to-one
(Kenyon-Vershik, 1998; S, 2000);
Try to get this restriction to be almost one-to-one (S, 2000).
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The Two-Dimensional Sandpile Model: Finite Volume
Let Λ ⊂ Z2 be a nonempty finite set (Λ b Z2).

A configuration on Λ is an element of NΛ, where N = {1, 2, 3, . . . };
A configuration y ∈ NΛ is stable if yn ≤ 4 for every n ∈ Λ;
If y ∈ NΛ is unstable at a site n ∈ Λ (i.e., if yn > 4), then the site n
topples: y → y ′ = Tny , where y ′n = yn − 4, and y ′m = ym + 1 for
m ∈ Λ with ‖m− n‖1 = 1. If yn ≤ 4 then Tny = y .

Lemma (Dhar): The toppling operators Tn, n ∈ Λ, commute.
We set TΛ = limn→∞

∏
n∈Λ Tn. Then TΛ : NΛ −→ NΛ is well-defined.

For y ∈ NΛ, TΛ(y) is the stabilization of y .
Addition:

Under addition and stabilization the stable config’s form a semigroup SΛ.
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The group property

Definition: The set RΛ ⊂ SΛ of recurrent configurations is the unique
maximal subgroup of SΛ.

Description of RΛ: For every E ⊂ Λ and n ∈ E we denote by NE (n) the
number of neighbours of n in E . Put

PE = {v ∈ SΛ : vn > NE (n) for at least one n ∈ E}.

Then
RΛ =

⋂
E⊂Λ

PE .

Note that πΛ(RΛ′) ⊂ RΛ whenever Λ ⊂ Λ′ b Z2.
Are the group operations in RΛ and RΛ′ compatible? Unfortunately not!
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A Neutral Element Of RΛ

The identity for Λ = 500× 500. Dark grey = 4, light grey = 3, medium grey = 2, black = 1
(Le Borgne-Rossin, 2002)
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Another Neutral Element

The identity for Λ = 298× 198. Dark grey = 4, light grey = 3, medium grey = 2, black = 1
(Le Borgne-Rossin, 2002)
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From Finite to Infinite Volume

Since πΛ(RΛ′) ⊂ RΛ whenever Λ ⊂ Λ′ b Z2 we can define a closed
shift-invariant subset

R∞ = {v ∈ {1, . . . , 2d}Z2
: πΛ(v) ∈ RΛ for every Λ b Z2},

called the 2-dimensional critical sandpile model.

Is R∞ a group?
What are the dynamical properties of the shift-action of Z2 on R∞?
The topological entropy of this-shift action is known: it is given by

h(α) =

∫ 1

0

∫ 1

0
log
(
4− cos(2πt1)− cos(2πt2)

)
dt1dt2.
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The Harmonic Model

Let α be the shift-action on the closed shift-invariant subgroup

X =
{

(xn) ∈ TZ2
: 4xn = xn+(1,0) + xn−(1,0) + xn+(0,1) + xn−(0,1) for all n

}
of TZ2 .

Theorem: α is nonexpansive and Bernoulli with entropy

h(α) =

∫ 1

0

∫ 1

0
log
(
4− cos(2πt1)− cos(2πt2)

)
dt1dt2.

The Haar measure λX is the unique shift-invariant measure of maximal
entropy on X .

Definition. The action α on the compact connected abelian group X
(with Borel field BX and Haar measure λX ) is the 2-dimensional harmonic
model, determined by the Laurent polynomial f = 4−u1−u2−u−1

1 −u−1
2 .
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Symbolic Covers Of The Harmonic Model
Let X ⊂ TZ2 be the harmonic model with shift-action α. We call a point
y ∈ X homoclinic if ∑

n∈Z2 |yn| <∞,

The set ∆1(X ) ⊂ X of all homoclinic points is a countable dense subgroup
of X .
Fix a nonzero point y ∈ ∆1(X ) and define an equivariant map
ξy : L∞(Z2,Z) −→ X by

ξy (v) =
∑

n∈Z2 vnα−ny

for every v ∈ L∞(Z2,Z). Although this map depends on the point y is can
be shown that it is always surjective.
A closed, bounded, shift-invariant subset V ⊂ L∞(Z2,Z) is an equal
entropy symbolic cover of X if ξy (V ) = X and h(σV ) = h(α), where σV is
the shift-action of Z2 on V .
This definition does not depend on the homoclinic point y ∈ ∆1(X ) r {0}.
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Construction Of Homoclinic Points: A Green Function
We denote by ν the equidistributed probability measure on the set
{±(1, 0),±(0, 1)} ⊂ Z2. For every m ≥ 1 we set

φ(m) =
1
4 ·
∑m

k=0
νk

and
ψ(m) = φ(m) − φ(m)(0).

Then
w∆ := lim

m→∞
ψ(m)

converges pointwise. The resulting map w∆ : Z2 −→ R has the following
properties.

w∆ is unbounded;
w∆ = 1

4 ·Gν , where Gν is the Green function of the random walk with
one-step transition law ν;

(w∆ · f )n = (f · w∆)n =

{
1 if n = 0,
0 otherwise,

i.e., w∆ = f −1.
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L1-Multipliers Of The Green Function

We set I = {h ∈ R2 = Z[u±1
1 , u±1

2 ] : h · w∆ ∈ L1(Z2)}.

Theorem. I = f · R2 + (u1 − 1)3 · R2 + (u2 − 1)3 · R2.

Define x∆ ∈ X by setting

x∆
n = w∆

n (mod 1), n ∈ Z2.

Theorem. The point x∆ is not homoclinic, but
∆1(α) = {h(α)(x∆) : h ∈ I}, where

h(α) =
∑

n∈Z2 hnαn for every h =
∑

n∈Z2 hnun ∈ R2.

Klaus Schmidt Sandpiles and Markov Partitions 14/16



Sandpiles Cover The Harmonic Model

Theorem. For every nonzero y ∈ ∆1(α), ξy (R∞) = X and
h(σR∞) = h(α). In other words, R∞ is an equal entropy symbolic cover of
α with covering map ξy (Verbitskiy-S, 2008).
Problem. When is the restriction of ξy to R∞ almost injective?
The conjecture is that by taking all such maps simultaneously one obtains
an almost injective covering map from R∞ to a certain (explicitly given)
quotient of X by an α-invariant subgroup Y ⊂ X .
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The Dissipative Sandpile Model

For the dissipative sandpile model, where the toppling operator Tn
removes, e.g., 5 grains of sand at the site n and deposits one grain at each
of the four neighbours, one can show that this sandpile model is an almost
one-to-one symbolic cover of the group

X ′ =
{

(xn) ∈ TZ2
: 5xn = xn+(1,0) +xn−(1,0) +xn+(0,1) +xn−(0,1) for all n

}
.

The shift-action α′ of Z2 on X ′ is expansive and has a genuine
fundamental homoclinic point, which makes life (and proofs) much easier
than in the critical case.
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