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\/ershik's Construction of Markov Partitions

Consider the hyperbolic automorphism a = (91) of T? = R?/Z?. We can
draw its expanding and contracting subspaces:

N
oS

The intersections of these two subspaces are the homoclinic points of a.

We shall see that not all homoclinic points are created equal.
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Maps Defined By Homoclinic Points

If x is one of these homoclinic points, (e.g., x = y2), then we can define a

map &: (°(Z,7) — T? by
Ex(v) = ZnEZ vat "x, v = (vp) € (*°(Z,Z).

The map &, is equivariant:
§X OO0 =wo §X7

where o is the shift (ov), = vy41 on £°(Z, Z).
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fic Covers and Sofic Partitions

In 1992-94 Vershik showed that the restriction of &, to the two-sided
beta-shift X3 C (°°(Z,Z) of the large eigenvalue § = 1+T\/§ of av is
surjective.

Since X3 is the Golden Mean shift (which is of finite type), this is a
Markov cover of a.

Does this give a Markov partition (i.e., is & almost one-to-one on X3)?
The answer depends on the homoclinic point chosen: it has to be
fundamental in the sense that its orbit generates the group A(a) C T? of
all homoclinic points of a (Lind-S, 1999; Einsiedler-S, 1997). In our
drawing the points x2 and y® are fundamental, but z2 is not.

This connection between two-sided beta-shifts and hyperbolic toral
automorphisms was extended to general quadratic Pisot numbers
(Sidorov-Vershik, 1998), then to arbitrary Pisot numbers (S, 2000;
Sidorov, 2001-02).
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he General Recipe For This Construction

@ Take a hyperbolic automorphism « € GL(n, Z);

e Find a fundamental homoclinic point x® € T” of « (for this « has to
be conjugate — in GL(n,Z) — to a companion matrix; Lind-S, 1999);

o Define &,a: £°°(Z,Z) — T" as before by &,a(v) = 3 ez vna "2,

e Find a full shift with sufficiently large alphabet V' C ¢°°(Z,Z) such
that the restriction of £,a to V is surjective.

@ Use Marcus-Petersen-Williams (1984) to a sofic shift V* C V such
that £,a, restricted to V* is surjective and finite-to-one
(Kenyon-Vershik, 1998; S, 2000);

@ Try to get this restriction to be almost one-to-one (S, 2000).
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he Two-Dimensional Sandpile Model: Finite Volume

Let A C Z? be a nonempty finite set (A € Z?).
o A configuration on A is an element of N*, where N = {1,2,3,... };
@ A configuration y € NN is stable if y, < 4 for every n € A;
o If y € NV is unstable at a site n € A (i.e., if yn > 4), then the site n
topples: y — y' = Ty, where ¥, = yn — 4, and y},, = ym + 1 for
m € A with [m—n|; = 1. If y, <4 then Thy =y.
Lemma (Dhar): The toppling operators T,, n € A, commute.
We set Tp = lim_o0 [[nep Tn- Then Ty : NA — N7 is well-defined.
For y € NA, Ta(y) is the stabilization of y.

Addition: 33 21 3321 3421
3435@n343mwg43
44 3 2 4 4 3 2 4[5]3 2
3332 333 2 3332
3431 3431 44 31
wetppings 4 3 1 4 wwocopsings [5]3 2 4 wping [1 4 2 4
T[]l T 13rs T 2313
343 2 44 42 44 42

Under addition and stabilization the stable config’s form a semigroup Sa.
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he group property

Definition: The set Ry C Sp of recurrent configurations is the unique
maximal subgroup of Sx.

Description of Rj: For every E C A and n € E we denote by Ng(n) the
number of neighbours of nin E. Put

Pe={v €8p:va>Ng(n) for at least one n € E}.

Then
Rp = mEc/\ PE.

Note that mA(Ra') C Rp whenever A C N € Z2.
Are the group operations in Ry and Ras compatible? Unfortunately not!
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A Neutral Element Of Rp

The identity for A = 500 x 500. Dark grey = 4, light grey = 3, medium grey = 2, black =1
(Le Borgne-Rossin, 2002)
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Another Neutral Element

The identity for A = 298 x 198 Dark grey = 4, light grey = 3, medium grey = 2, black =1
(Le Borgne-Rossin, 2002)
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From Finite to Infinite Volume

Since TA(Rar) C Rp whenever A C A’ € Z2 we can define a closed
shift-invariant subset

Roo ={v e{l,.. .,2d}Z2 :A(v) € R for every A € Z°},

called the 2-dimensional critical sandpile model.

o Is Ry a group?
o What are the dynamical properties of the shift-action of 7Z? on Ru ?

@ The topological entropy of this-shift action is known: it is given by

h(a) = /01 /01 log (4 — cos(2mty) — cos(2mty)) dtydty.
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he Harmonic Model

Let « be the shift-action on the closed shift-invariant subgroup

X = {(x,,) e T : 4x, = Xnt(1,0) T Xn—(1,0) T Xn4(0,1) T Xn—(0,1) for all n}
of TZ*,

Theorem: « is nonexpansive and Bernoulli with entropy

h(a) = /01 /01 log (4 — cos(2mty) — cos(2mty)) dtydt,.

The Haar measure Ax is the unique shift-invariant measure of maximal
entropy on X.

Definition. The action « on the compact connected abelian group X
(with Borel field Bx and Haar measure \x) is the 2-dimensional harmonic

model, determined by the Laurent polynomial f =4 — u; — up — ufl — u;l.
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Symbolic Covers Of The Harmonic Model

Let X C TZ® be the harmonic model with shift-action o. We call a point
y € X homoclinic if

Zn€Z2 |.y"| < o0,
The set A1(X) C X of all homoclinic points is a countable dense subgroup
of X.

Fix a nonzero point y € A1(X) and define an equivariant map
&, L%(Z2,7) — X by

&(v) = Zn€Z2 Vo My

for every v € L>°(Z?,Z). Although this map depends on the point y is can
be shown that it is always surjective.

A closed, bounded, shift-invariant subset V C L>(Z2,Z) is an equal
entropy symbolic cover of X if {,(V) = X and h(oy) = h(a), where oy is
the shift-action of Z? on V.

This definition does not depend on the homoclinic point y € A;(X) ~ {0}.
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onstruction Of Homoclinic Points: A Green Function

We denote by v the equidistributed probability measure on the set
{#£(1,0),4(0,1)} C Z2. For every m > 1 we set

1 m
(m) _ =, k
o = 4 Zk:o v
and
qp(m) - ¢(m) _ ¢(m)(0).
Then
wh = m|£nOO (M
converges pointwise. The resulting map w2 : Z? — R has the following
properties.
e w2 is unbounded:;
o wh = % - Gy, where G, is the Green function of the random walk with
one-step transition law v;
1 ifn=0
o (WA Fa=(F-wh)y=4 "N TH e WAt
0 otherwise,
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L*-Multipliers Of The Green Function

We set J = {h € Ry = Z[ui*, u3] : h- wh € [}(Z?)}.
Theorem. I =f - Ry + (3 — 1)3- Ry + (1 — 1)3 - R
Define x& € X by setting

x2 =wh (mod 1), neZzZ?

Theorem. The point x2 is not homoclinic, but
Aq(a) = {h(a)(x?) : h € I}, where

h(a) = ZneZ2 ha™ for every h = Zn€Z2 hat™ € Rs.
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andpiles Cover The Harmonic Model

Theorem. For every nonzero y € Aj(a), §y(Ro) = X and

h(ox..) = h(a). In other words, R is an equal entropy symbolic cover of
a with covering map &, (Verbitskiy-S, 2008).

Problem. When is the restriction of £, to R, almost injective?

The conjecture is that by taking all such maps simultaneously one obtains
an almost injective covering map from R, to a certain (explicitly given)
quotient of X by an a-invariant subgroup Y C X.
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he Dissipative Sandpile Model

For the dissipative sandpile model, where the toppling operator T,
removes, e.g., 5 grains of sand at the site n and deposits one grain at each
of the four neighbours, one can show that this sandpile model is an almost
one-to-one symbolic cover of the group

2
X = {(Xn) e T . 5Xn = Xn4(1,0) T Xn—(1,0) + Xn+(0,1) T Xn—(0,1) for all n}.
The shift-action o’ of Z? on X' is expansive and has a genuine

fundamental homoclinic point, which makes life (and proofs) much easier
than in the critical case.
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