Sandpiles and Markov Partitions

Klaus Schmidt

University of Vienna and Erwin Schrödinger Institute

(Joint work with Evgeny Verbitskiy)

NWDS, Victoria, August 2008

Consider the hyperbolic automorphism $\alpha = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ of $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$. We can draw its expanding and contracting subspaces:

The intersections of these two subspaces are the homoclinic points of α . We shall see that not all homoclinic points are created equal. If x is one of these homoclinic points, (e.g., $x = y^{\Delta}$), then we can define a map $\xi_x \colon \ell^{\infty}(\mathbb{Z}, \mathbb{Z}) \longrightarrow \mathbb{T}^2$ by

$$\xi_x(\mathbf{v}) = \sum_{n \in \mathbb{Z}} \mathbf{v}_n \alpha^{-n} x, \ \mathbf{v} = (\mathbf{v}_n) \in \ell^\infty(\mathbb{Z}, \mathbb{Z}).$$

The map ξ_x is equivariant:

$$\xi_{\mathsf{x}} \circ \sigma = \alpha \circ \xi_{\mathsf{x}},$$

where σ is the shift $(\sigma v)_n = v_{n+1}$ on $\ell^{\infty}(\mathbb{Z},\mathbb{Z})$.

In 1992–94 Vershik showed that the restriction of ξ_x to the two-sided beta-shift $X_\beta \subset \ell^\infty(\mathbb{Z}, \mathbb{Z})$ of the large eigenvalue $\beta = \frac{1+\sqrt{5}}{2}$ of α is surjective.

Since X_{β} is the Golden Mean shift (which is of finite type), this is a Markov cover of α .

Does this give a Markov partition (i.e., is ξ_x almost one-to-one on X_β)?

The answer depends on the homoclinic point chosen: it has to be fundamental in the sense that its orbit generates the group $\Delta(\alpha) \subset \mathbb{T}^2$ of all homoclinic points of α (Lind-S, 1999; Einsiedler-S, 1997). In our drawing the points x^{Δ} and y^{Δ} are fundamental, but z^{Δ} is not.

This connection between two-sided beta-shifts and hyperbolic toral automorphisms was extended to general quadratic Pisot numbers (Sidorov-Vershik, 1998), then to arbitrary Pisot numbers (S, 2000; Sidorov, 2001–02).

- Take a hyperbolic automorphism $\alpha \in GL(n, \mathbb{Z})$;
- Find a fundamental homoclinic point x^Δ ∈ Tⁿ of α (for this α has to be conjugate in GL(n, Z) to a companion matrix; Lind-S, 1999);
- Define $\xi_{x^{\Delta}} : \ell^{\infty}(\mathbb{Z}, \mathbb{Z}) \longrightarrow \mathbb{T}^{n}$ as before by $\xi_{x^{\Delta}}(v) = \sum_{n \in \mathbb{Z}} v_{n} \alpha^{-n} x^{\Delta}$;
- Find a full shift with sufficiently large alphabet V ⊂ ℓ[∞](ℤ, ℤ) such that the restriction of ξ_{x^Δ} to V is surjective.
- Use Marcus-Petersen-Williams (1984) to a sofic shift V^{*} ⊂ V such that ξ_{x^Δ}, restricted to V^{*} is surjective and finite-to-one (Kenyon-Vershik, 1998; S, 2000);
- Try to get this restriction to be almost one-to-one (S, 2000).

The Two-Dimensional Sandpile Model: Finite Volume

Let $\Lambda \subset \mathbb{Z}^2$ be a nonempty finite set $(\Lambda \Subset \mathbb{Z}^2)$.

- A configuration on Λ is an element of \mathbb{N}^{Λ} , where $\mathbb{N} = \{1, 2, 3, \dots\}$;
- A configuration $y \in \mathbb{N}^{\Lambda}$ is stable if $y_{\mathbf{n}} \leq 4$ for every $\mathbf{n} \in \Lambda$;
- If $y \in \mathbb{N}^{\Lambda}$ is unstable at a site $\mathbf{n} \in \Lambda$ (i.e., if $y_{\mathbf{n}} > 4$), then the site \mathbf{n} topples: $y \to y' = T_{\mathbf{n}}y$, where $y'_{\mathbf{n}} = y_{\mathbf{n}} 4$, and $y'_{\mathbf{m}} = y_{\mathbf{m}} + 1$ for $\mathbf{m} \in \Lambda$ with $\|\mathbf{m} \mathbf{n}\|_1 = 1$. If $y_{\mathbf{n}} \le 4$ then $T_{\mathbf{n}}y = y$.

Lemma (Dhar): The toppling operators T_n , $n \in \Lambda$, commute.

We set $\mathfrak{T}_{\Lambda} = \lim_{n \to \infty} \prod_{\mathbf{n} \in \Lambda} \mathcal{T}_{\mathbf{n}}$. Then $\mathfrak{T}_{\Lambda} \colon \mathbb{N}^{\Lambda} \longrightarrow \mathbb{N}^{\Lambda}$ is well-defined. For $y \in \mathbb{N}^{\Lambda}$, $\mathfrak{T}_{\Lambda}(y)$ is the stabilization of y.

Addition:

Under addition and stabilization the stable config's form a semigroup S_{Λ} .

Definition: The set $\mathcal{R}_{\Lambda} \subset S_{\Lambda}$ of recurrent configurations is the unique maximal subgroup of S_{Λ} .

Description of \Re_{Λ} : For every $E \subset \Lambda$ and $\mathbf{n} \in E$ we denote by $N_E(\mathbf{n})$ the number of neighbours of \mathbf{n} in E. Put

$$\mathfrak{P}_{\boldsymbol{E}} = \{ \boldsymbol{v} \in \mathfrak{S}_{\boldsymbol{\Lambda}} : \boldsymbol{v}_{\boldsymbol{n}} > \mathsf{N}_{\boldsymbol{E}}(\boldsymbol{n}) \text{ for at least one } \boldsymbol{n} \in \boldsymbol{E} \}$$

Then

$$\mathfrak{R}_{\Lambda}=\bigcap_{E\subset\Lambda}\mathfrak{P}_{E}.$$

Note that $\pi_{\Lambda}(\mathcal{R}_{\Lambda'}) \subset \mathcal{R}_{\Lambda}$ whenever $\Lambda \subset \Lambda' \Subset \mathbb{Z}^2$.

Are the group operations in \mathcal{R}_{Λ} and $\mathcal{R}_{\Lambda'}$ compatible? Unfortunately not!

A Neutral Element Of \mathcal{R}_{Λ}

The identity for $\Lambda = 500 \times 500$. Dark grey = 4, light grey = 3, medium grey = 2, black = 1 (Le Borgne-Rossin, 2002)

Another Neutral Element

The identity for $\Lambda = 298 \times 198$. Dark grey = 4, light grey = 3, medium grey = 2, black = 1 (Le Borgne-Rossin, 2002) Since $\pi_{\Lambda}(\mathcal{R}_{\Lambda'}) \subset \mathcal{R}_{\Lambda}$ whenever $\Lambda \subset \Lambda' \Subset \mathbb{Z}^2$ we can define a closed shift-invariant subset

 $\mathfrak{R}_{\infty} = \{ \mathbf{v} \in \{1, \dots, 2d\}^{\mathbb{Z}^2} : \pi_{\Lambda}(\mathbf{v}) \in \mathfrak{R}_{\Lambda} \text{ for every } \Lambda \Subset \mathbb{Z}^2 \},$

called the 2-dimensional critical sandpile model.

- Is \Re_{∞} a group?
- What are the dynamical properties of the shift-action of \mathbb{Z}^2 on \mathcal{R}_{∞} ?
- The topological entropy of this-shift action is known: it is given by

$$h(\alpha) = \int_0^1 \int_0^1 \log \left(4 - \cos(2\pi t_1) - \cos(2\pi t_2)\right) dt_1 dt_2.$$

The Harmonic Model

Let α be the shift-action on the closed shift-invariant subgroup $X = \left\{ (x_n) \in \mathbb{T}^{\mathbb{Z}^2} : 4x_n = x_{n+(1,0)} + x_{n-(1,0)} + x_{n+(0,1)} + x_{n-(0,1)} \text{ for all } n \right\}$ of $\mathbb{T}^{\mathbb{Z}^2}$.

Theorem: α is nonexpansive and Bernoulli with entropy

$$h(\alpha) = \int_0^1 \int_0^1 \log \left(4 - \cos(2\pi t_1) - \cos(2\pi t_2)\right) dt_1 dt_2.$$

The Haar measure λ_X is the unique shift-invariant measure of maximal entropy on X.

Definition. The action α on the compact connected abelian group X (with Borel field \mathcal{B}_X and Haar measure λ_X) is the 2-dimensional harmonic model, determined by the Laurent polynomial $f = 4 - u_1 - u_2 - u_1^{-1} - u_2^{-1}$.

Symbolic Covers Of The Harmonic Model

Let $X \subset \mathbb{T}^{\mathbb{Z}^2}$ be the harmonic model with shift-action α . We call a point $y \in X$ homoclinic if

 $\sum\nolimits_{\mathbf{n}\in\mathbb{Z}^2}|y_{\mathbf{n}}|<\infty,$

The set $\Delta_1(X) \subset X$ of all homoclinic points is a countable dense subgroup of X.

Fix a nonzero point $y \in \Delta_1(X)$ and define an equivariant map $\xi_y \colon L^\infty(\mathbb{Z}^2, \mathbb{Z}) \longrightarrow X$ by

$$\xi_{y}(\mathbf{v}) = \sum_{\mathbf{n}\in\mathbb{Z}^{2}} \mathbf{v}_{\mathbf{n}} \alpha^{-\mathbf{n}} y$$

for every $v \in L^{\infty}(\mathbb{Z}^2, \mathbb{Z})$. Although this map depends on the point y is can be shown that it is always surjective.

A closed, bounded, shift-invariant subset $V \subset L^{\infty}(\mathbb{Z}^2, \mathbb{Z})$ is an equal entropy symbolic cover of X if $\xi_y(V) = X$ and $h(\sigma_V) = h(\alpha)$, where σ_V is the shift-action of \mathbb{Z}^2 on V.

This definition does not depend on the homoclinic point $y \in \Delta_1(X) \setminus \{0\}$.

Construction Of Homoclinic Points: A Green Function

We denote by ν the equidistributed probability measure on the set $\{\pm(1,0),\pm(0,1)\}\subset\mathbb{Z}^2$. For every $m\geq 1$ we set

$$\phi^{(m)} = \frac{1}{4} \cdot \sum_{k=0}^{m} \nu^k$$

and

$$\psi^{(m)} = \phi^{(m)} - \phi^{(m)}(0).$$

Then

$$w^{\Delta} \coloneqq \lim_{m \to \infty} \psi^{(m)}$$

converges pointwise. The resulting map $w^{\Delta} \colon \mathbb{Z}^2 \longrightarrow \mathbb{R}$ has the following properties.

- w^{Δ} is unbounded;
- $w^{\Delta} = \frac{1}{4} \cdot G_{\nu}$, where G_{ν} is the Green function of the random walk with one-step transition law ν ;

•
$$(w^{\Delta} \cdot f)_{\mathbf{n}} = (f \cdot w^{\Delta})_{\mathbf{n}} = \begin{cases} 1 & \text{if } \mathbf{n} = \mathbf{0}, \\ 0 & \text{otherwise,} \end{cases}$$
 i.e., $w^{\Delta} = f^{-1}$.

L¹-Multipliers Of The Green Function

We set
$$\mathbb{J}=\{h\in \mathsf{R}_2=\mathbb{Z}[u_1^{\pm 1},u_2^{\pm 1}]:h\cdot w^{\Delta}\in L^1(\mathbb{Z}^2)\}.$$

Theorem. $\mathcal{I} = f \cdot R_2 + (u_1 - 1)^3 \cdot R_2 + (u_2 - 1)^3 \cdot R_2$.

Define $x^{\Delta} \in X$ by setting

$$x_{\mathbf{n}}^{\Delta} = w_{\mathbf{n}}^{\Delta} \pmod{1}, \ \mathbf{n} \in \mathbb{Z}^{2}.$$

Theorem. The point x^{Δ} is not homoclinic, but $\Delta_1(\alpha) = \{h(\alpha)(x^{\Delta}) : h \in \mathcal{I}\},$ where

$$h(\alpha) = \sum_{\mathbf{n} \in \mathbb{Z}^2} h_{\mathbf{n}} \alpha^{\mathbf{n}}$$
 for every $h = \sum_{\mathbf{n} \in \mathbb{Z}^2} h_{\mathbf{n}} u^{\mathbf{n}} \in R_2$.

- **Theorem**. For every nonzero $y \in \Delta_1(\alpha)$, $\xi_y(\Re_\infty) = X$ and
- $h(\sigma_{\mathcal{R}_{\infty}}) = h(\alpha)$. In other words, \mathcal{R}_{∞} is an equal entropy symbolic cover of α with covering map ξ_{γ} (Verbitskiy-S, 2008).

Problem. When is the restriction of ξ_y to \Re_∞ almost injective?

The conjecture is that by taking all such maps simultaneously one obtains an almost injective covering map from \mathcal{R}_{∞} to a certain (explicitly given) quotient of X by an α -invariant subgroup $Y \subset X$. For the dissipative sandpile model, where the toppling operator T_n removes, e.g., 5 grains of sand at the site **n** and deposits one grain at each of the four neighbours, one can show that this sandpile model is an almost one-to-one symbolic cover of the group

 $X' = \Big\{ (x_{\mathbf{n}}) \in \mathbb{T}^{\mathbb{Z}^2} : 5x_{\mathbf{n}} = x_{\mathbf{n}+(1,0)} + x_{\mathbf{n}-(1,0)} + x_{\mathbf{n}+(0,1)} + x_{\mathbf{n}-(0,1)} \text{ for all } \mathbf{n} \Big\}.$

The shift-action α' of \mathbb{Z}^2 on X' is expansive and has a genuine fundamental homoclinic point, which makes life (and proofs) *much* easier than in the critical case.