
Answer-set programming: themes and challenges

Mirosław Truszczyński

University of Kentucky

NMR-04

Whistler, Canada, June 6, 2004

Answer-set programming: themes and challenges – p.1/35



ASP phenomenon

• ASP emerged around 1999 and quickly became a thriving research area
◦ resuscitated logic-based NMR
◦ new results, many papers, new people, growing recognition

• What is it exactly and what happened?

Answer-set programming: themes and challenges – p.2/35



ASP paradigm

• ASP — a declarative computational approach to knowledge
representation

• More broadly — declarative programming approach for solving search
problems

• Defining features:
◦ high-level modeling language
◦ distinct interpretation: theories encode search problems so that

models represent solutions
◦ uniform control: computing models

Answer-set programming: themes and challenges – p.3/35



A brief history of ASP

1970 1980 1990 2000

emergence of LP - issue of negation

?

program completion

?

default logic

6

autoepistemic logic

6

DL semantics for LP

6

stratification

?

stratified AE theories

6

stable-model semantics

?

SLP as a KR system

?

DeReS/TheoryBase

6

smodels

?

dlv

?

ASP

?

Answer-set programming: themes and challenges – p.4/35



A brief history of ASP

1970 1980 1990 2000

emergence of LP - issue of negation

?

program completion

?

default logic

6

autoepistemic logic

6

DL semantics for LP

6

stratification

?

stratified AE theories

6

stable-model semantics

?

SLP as a KR system

?

DeReS/TheoryBase

6

smodels

?

dlv

?

ASP

?

Answer-set programming: themes and challenges – p.4/35



A brief history of ASP

1970 1980 1990 2000

emergence of LP - issue of negation

?

program completion

?

default logic

6

autoepistemic logic

6

DL semantics for LP

6

stratification

?

stratified AE theories

6

stable-model semantics

?

SLP as a KR system

?

DeReS/TheoryBase

6

smodels

?

dlv

?

ASP

?

Answer-set programming: themes and challenges – p.4/35



A brief history of ASP

1970 1980 1990 2000

emergence of LP - issue of negation

?

program completion

?

default logic

6

autoepistemic logic

6

DL semantics for LP

6

stratification

?

stratified AE theories

6

stable-model semantics

?

SLP as a KR system

?

DeReS/TheoryBase

6

smodels

?

dlv

?

ASP

?

Answer-set programming: themes and challenges – p.4/35



A brief history of ASP

1970 1980 1990 2000

emergence of LP - issue of negation

?

program completion

?

default logic

6

autoepistemic logic

6

DL semantics for LP

6

stratification

?

stratified AE theories

6

stable-model semantics

?

SLP as a KR system

?

DeReS/TheoryBase

6

smodels

?

dlv

?

ASP

?

Answer-set programming: themes and challenges – p.4/35



A brief history of ASP

1970 1980 1990 2000

emergence of LP - issue of negation

?

program completion

?

default logic

6

autoepistemic logic

6

DL semantics for LP

6

stratification

?

stratified AE theories

6

stable-model semantics

?

SLP as a KR system

?

DeReS/TheoryBase

6

smodels

?

dlv

?

ASP

?

Answer-set programming: themes and challenges – p.4/35



A brief history of ASP

1970 1980 1990 2000

emergence of LP - issue of negation

?

program completion

?

default logic

6

autoepistemic logic

6

DL semantics for LP

6

stratification

?

stratified AE theories

6

stable-model semantics

?

SLP as a KR system

?

DeReS/TheoryBase

6

smodels

?

dlv

?

ASP

?

Answer-set programming: themes and challenges – p.4/35



A brief history of ASP

1970 1980 1990 2000

emergence of LP - issue of negation

?

program completion

?

default logic

6

autoepistemic logic

6

DL semantics for LP

6

stratification

?

stratified AE theories

6

stable-model semantics

?

SLP as a KR system

?

DeReS/TheoryBase

6

smodels

?

dlv

?

ASP

?

Answer-set programming: themes and challenges – p.4/35



A brief history of ASP

1970 1980 1990 2000

emergence of LP - issue of negation

?

program completion

?

default logic

6

autoepistemic logic

6

DL semantics for LP

6

stratification

?

stratified AE theories

6

stable-model semantics

?

SLP as a KR system

?

DeReS/TheoryBase

6

smodels

?

dlv

?

ASP

?

Answer-set programming: themes and challenges – p.4/35



ASP — five years later

• Exciting theoretical results
• New algorithms
• Aggregates
• New formalisms — beyond logic programming
• Emerging connections to SAT and CSP
• Successful applications

Answer-set programming: themes and challenges – p.5/35



Program equivalence

• How to rewrite programs?
• How to optimize programs?
• Towards programming methodology
• Program equivalence, strong equivalence, uniform equivalence

(Lifschitz, Pearce, Valverde; Lin; Turner; Osorio, Navarro, Arrazola; Eiter, Fink,
Tompits, Woltran)

Answer-set programming: themes and challenges – p.6/35



Program equivalence

• Disjunctive programs P and Q are equivalent if P and Q have the same
answer sets

• Fundamental question: how to simplify (rewrite) logic programs
preserving equivalence

• Programs P and Q are strongly equivalent if for every program R, answer
sets of P ∪R coincide with answer sets of Q ∪R
◦ Replacing a subprogram with a strongly equivalent one preserves

equivalence
• Disjunctive programs P and Q are uniformly equivalent if for every set of

atoms X, answer sets of P ∪X coincide with answer sets of Q ∪X
◦ Replacing the set of rules of the program (intentional part) with a

uniformly equivalent one preserves equivalence

Answer-set programming: themes and challenges – p.7/35



Strong equivalence

• A pair of sets of atoms (X, Y ) is an SE-model of a DLP P if
◦ X ⊆ Y
◦ Y |= P

◦ X |= P Y

• Two DLPs P and Q are strongly equivalent if and only if SE(P ) = SE(Q)

• Connections to the logic “here-and-there” and to the logic S4F

Answer-set programming: themes and challenges – p.8/35



Uniform equivalence

• An SE-model (X, Y ) of a DLP P is a UE-model of P if for every
(X ′, Y ) ∈ SE(P ), where X ⊆ X ′ ⊆ Y , X ′ = X or X ′ = Y

• Two finite DLPs P and Q are uniformly equivalent if and only if they have
the same UE models

• The general case is also resolved

Answer-set programming: themes and challenges – p.9/35



Additional comments

• Most of program transformations preserve strong and uniform
equivalence (TAUT, RED−, NONMIN, CONTRA, WGPPE); some do not
(RED+, GPPE)
Osorio, Navarro, Arrazola; Eiter, Fink, Tompits, Woltran)

• Further generalizations possible (Turner - lparse programs)

• Complexity is well understood (Turner; Lin; Eiter, Fink)
◦ given two NLPs, deciding whether they are strongly equivalent is

coNP-complete (holds, in fact, for DLPs)
◦ given two DLPs, deciding whether they are uniformly equivalent is

ΠP
2 -complete

◦ given two DLPs that are head-cycle free, deciding whether they are
uniformly equivalent is coNP-complete

• ASP can be used to test equivalence! (Janhunen, Oikarinen)

Answer-set programming: themes and challenges – p.10/35



SLP and propositional logic

• Let Πn consist of:
pijk ← not(qijk)

qijk ← not(pijk)
r1

rk ← ri, rj , pijk

• If P 6⊆ NC 1/poly (that is, not all languages in P can be recognized by
polynomial size propositional formulas)

• Then it is impossible to find a sequence of propositional formulas
F1, F2, . . . such that
◦ for every n, the satisfying assignments for Fn are identical to the

answer sets for Πn

◦ the sizes of the formulas Fn are bounded by a polynomial in n

(Lifschitz and Razborov)

• Related to earlier work on compilability and succinctness

Answer-set programming: themes and challenges – p.11/35



Semantic foundations

• Universal algebra of lattices, operators, approximation operators and
fixpoints (Denecker, Marek, MT; influenced by Fitting’s work on LP)

• Uniform abstract approach to nonmonotonic reasoning systems
• Full understanding of the relationship between DL and AEL

E∆

E∆ C∆

C∆

��	

���	

@@R

DT

DT CT

CT

��	

���	

@@R

-

α:β
γ

⇒ Kα ∧ ¬K¬β ⊃ γ

• Ultimate well-founded semantics and ultimate stable-model semantics
• Generalizations to handle programs with constraints?
• Formalization of the notion of non-monotone induction (Denecker)

Answer-set programming: themes and challenges – p.12/35



Computing

• Native solvers
◦ smodels (Niemelä, Simons, Syrjänen, Soininen)
◦ dlv (Eiter, Leone, Mateis, Pfeifer, Scarcello, Faber, Dell’Armi, Ielpa)
◦ NoMoRe (Linke, Schaub, Anger, Konczak, Bösel)
◦ adapting advances in SAT — learning (Schlipf, Ward)

• Direct use of SAT solvers
◦ compiling LPs into SAT (Ben-Eliyahu; Janhunen)
◦ bringing together program completion, Fages Lemma, loop formulas

and SAT (Lifschitz, McCain, Turner, Erdem, Lierler, Lee; Lin, Zhao; Lierler,
Maratea, Giunchiglia)

Answer-set programming: themes and challenges – p.13/35



SAT — take one

• Exploit concepts of program completion and tightness
• For tight logic programs supported and stable models coincide (Fages)
• Supported models of a logic program are models of this program

completion
• Thus, computing stable models of a tight logic program can be

accomplished by computing models of the completion
◦ cmodels (earlier used in ccalc)
◦ Some additional propositional variables may be necessary when

converting the completion formula into a CNF (typically, not a big
problem)

◦ May fail for non-tight programs (a slightly more general version of the
approach possible but it still does not cover all cases)

Answer-set programming: themes and challenges – p.14/35



SAT — take two: loop formulas

• Dependency graph for a program P — G(P )
◦ atoms are vertices
◦ arc from p to q if there is a rule with the head p and with q in the

positive body
• Loop — any strongly connected subgraph of G(P )

• Loop formula for a loop L

◦ R−(L) — all rules about atoms in L whose edges point outside L

◦ Bp — disjunction of bodies of all rules in R−(L) that define p

◦ ΦL =
∨

p∈L p ⊃
∨

p Bp

◦ Informally, if at least one atom L is in a stable model, there must be
an atom p in L such that at least one rule defining p must have all
atoms of its positive body outside of L (is in R−(L))

• Loop theorem: M is a stable model of P if and only if it is a model of
Comp(P ) ∪ {ΦL : L ∈ L(P )}

Answer-set programming: themes and challenges – p.15/35



How to implement it?

• There may be exponentially many loops
• But one can proceed incrementally!

1. T := comp(P )

2. Find model M of T ; terminate with failure, otherwise
3. If M is an answer set, output M ; terminate
4. Otherwise, compute a loop L such that M 6|= ΦL

5. T := T ∪ {ΦL}; go back to step 2.

• Loops needed in (4) can be computed quickly
• In the worst case, exponentially many steps needed
• Typically, if stable models exist — much better performance
• If not — a potential problem

Answer-set programming: themes and challenges – p.16/35



A way around the problem

• Do not use loop formulas at all
◦ Apply a DPLL procedure for comp(P )
◦ Test each computed model M for stability
◦ Continue accordingly (continue search or output the model and stop)

• Can be improved if DPLL with learning is used
◦ each time M is not a stable model, learn a conflict clause
◦ a conflict clause can be computed with the help of loop formulas
◦ implement a scheme to forget (delete) some conflict clauses as the

search goes on

Answer-set programming: themes and challenges – p.17/35



The idea extends!!

• Disjunctive logic programming
◦ completion
◦ dependency graph, loop
◦ loop formula

• Circumscription

Answer-set programming: themes and challenges – p.18/35



What’s behind the success of smodels?

• Performance of smodels (including lparse)
• Modeling capabilities
• Both aspects strongly depend on the use of cardinality and weight

constraints
• Which brings us to the next theme ... aggregates (Niemelä, Soininen,

Simons; Pelov, Denecker, Bruynooghe; Dell’Armi, Faber, Ielpa, Leone, Pfeifer)

Answer-set programming: themes and challenges – p.19/35



Abstract constraints

• At — a fixed set of propositional atoms
• Abstract constraint — a collection of subsets of At

◦ even = {X ⊆ At : |X| is even}
◦ “At least k” constraint: {X : X ⊆ At ; k ≤ |X|}

• An abstract constraint atom — an expression C(X), where
◦ C is an abstract constraint
◦ X is a finite subset of At — the scope of C(X)

• A rule with abstract constraint atoms:

H ← A1, . . . , Am,not(B1), . . . ,not(Bn)

Answer-set programming: themes and challenges – p.20/35



When it makes sense and what we get

• Under restriction to monotone and consistent atoms
C(X) is monotone if C is closed under superset
C(X) is consistent if for some Y ⊆ X, Y ∈ C

we get direct generalization of normal logic programs (uniform with
respect to models, supported models and stable models)

• Under simple transformations — generalization of logic programs with
weight constraints
◦ basis for the theory of such programs

• The theory is developed in terms of non-deterministic operators on the
lattice of interpretations

• Can be further generalized to the language of nondeterministic operators
on complete lattices and their fixpoints

• Does the approximation theory generalize?

Answer-set programming: themes and challenges – p.21/35



Languages for ASP — beyond logic programming

• Predicate logic extended with (limited) CWA — aspps (East, MT)

• Logic ESO — existential fragment of second order logic (Cadoli, Mancini,
Schaerf)

Answer-set programming: themes and challenges – p.22/35



aspps system

• Program

pred invc(vtx).
var X.

{invc(X)[X] : vtx(X)}k.
edge(X, Y )→ invc(X) ∨ invc(Y ).

• Grounding — psgrnd
• Solving — aspps
• Easy to use off-the-shelf SAT and PB-SAT solvers
• Effective local-search methods — wsat(cc)
• The same expressive power as that of SLP (class NPMV)
• But, can predicate logic approaches be competitive on KR applications?

◦ negation-as-failure?
◦ transitive closure

Answer-set programming: themes and challenges – p.23/35



Applications

• Knowledge representation
◦ reasoning about action, planning and diagnosis — ASP particularly

appropriate (Giunchiglia, Lee, Lifschitz, McCain, Turner; Baral; Gelfond;
Faber, Leone, Pfeifer, Polleres)

◦ qualitative decision theory — elicitation of and reasoning about
preferences (Brewka; Eiter, Brewka; Delgrande, Schaub, Tompits; Gelfond,
Son; Inoue, Sakama; Brewka, Niemelä, MT)
• representing preferences, specifying orders on answer sets
• ASP as a uniform computational tool
• relation to CP-network approach

• Product configuration (Soininen, Sulonen, Tiihonen, Niemelä)
◦ smodels as a computational engine
◦ Variantum — a recent spin-off

Answer-set programming: themes and challenges – p.24/35



Applications

• Bounded model checking
◦ linear-time logic compiled into a linear-size logic program

Heljanko, Niemelä
◦ built-in transitive closure is crucial!

• Combinatorics — computing van der Waerden numbers (Dransfield, Marek,
Liu, MT)
◦ W (2, 6) ≥ 342

Answer-set programming: themes and challenges – p.25/35



Challenges

Answer-set programming: themes and challenges – p.26/35



Random logic programs

• Propose models of random logic programs with constraints
◦ must lead to a “hard” region

• Possibly already solved in the case of normal logic programs (Lin and
Zhao)
◦ k-LP(n, m) — rules of length k, n atoms, m rules
◦ randomly select an atom for the head
◦ randomly select k − 1 different atoms for the body
◦ negate each with probability 0.5
◦ if the rule is new — include it
◦ repeat to get m rules

• Establish bounds on the location of the hard region

Answer-set programming: themes and challenges – p.27/35



Program-rewriting techniques

• Develop principles under which replacing programs with strongly
(uniformly) equivalent ones leads to programs with better computational
properties

• Develop program-rewriting techniques at the predicate level

Answer-set programming: themes and challenges – p.28/35



Non-deterministic operators on lattices

• Establish a formal theory of non-deterministic operators on lattices;
generalize approximation theory to that setting
(towards an abstract treatment of programs with aggregates)

Answer-set programming: themes and challenges – p.29/35



Importance of transitive closure

• What is really behind the effectiveness of LP-based ASP?
• Is it default negation or transitive closure? Or both?
• My guess: it is transitive closure!

Answer-set programming: themes and challenges – p.30/35



Algorithms

• Design native local-search methods to compute stable models
(seems difficult; work by Dimopoulos and Sideris not conclusive)

• Develop new generation of complete algorithms for computing stable
models with aggregates
◦ better implementation of unit propagation (wfs in liear time?)
◦ stronger propagation methods (ultimate wfs?)
◦ dynamic backtracking, backjumping
◦ branching heuristics (which heuristics, when they work and why)
◦ conflict-clause learning

• Exploit program structure to enhance processing
◦ one of features of ASP that SAT does not have

Answer-set programming: themes and challenges – p.31/35



Computational benchmarks

• S(5) and W (5, 3)

◦ S(5) ≥ 160; W (5, 3) ≥ 125
◦ are they equalities?

• Wire-routing on 50× 50 grids with obstacles and with 30 terminal pairs
• 15-puzzle problem with plans of length 40 and more
• Random logic programs with 500 atoms selected from the hard region
• All SAT benchmarks

Answer-set programming: themes and challenges – p.32/35



Programming support

• Build programming interfaces
◦ support for modeling, debugging and optimizing programs
◦ integration with other programming environments

Answer-set programming: themes and challenges – p.33/35



Community

• Bringing togather SAT and ASP
◦ SAT

• fine-tuned data structures (watched literals)
• learning
• local-search methods, ...

◦ ASP
• modeling languages
• default negation, transitive closure
• stronger propagation techniques

◦ More cross-fertilization needed
• ASPARAGUS — towards objective experimentation and benchmarking

Answer-set programming: themes and challenges – p.34/35



Thank you!

Answer-set programming: themes and challenges – p.35/35


	ASP phenomenon
	ASP paradigm 
	A brief history of ASP
	ASP --- five years later
	Program equivalence
	Program equivalence
	Strong equivalence
	Uniform equivalence
	Additional comments
	SLP and propositional logic
	Semantic foundations
	Computing
	SAT --- take one
	SAT --- take two: loop formulas
	How to implement it?
	A way around the problem
	The idea extends!!
	What's behind the success of {em smodels}?
	Abstract constraints
	When it makes sense and what we get
	Languages for ASP --- beyond logic programming
	{em aspps} system
	Applications
	Applications
	Challenges
	Random logic programs
	Program-rewriting techniques
	Non-deterministic operators on lattices
	Importance of transitive closure
	Algorithms
	Computational benchmarks
	Programming support
	Community
	Thank you!

