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FOREWORD BY THE PIMS DIRECTOR

Over the past two years, the Pacific Institute for the Mathematical Sciences (PIMS) has worked to
provide new and innovative ways to further its goals, and high on its priority list has been the training
of young mathematical scientists whether they are pursuing careers in academia or in industry.
The Graduate Industrial Mathematics Modeling Camp (GIMM) was conceived to provide
graduate students with learning opportunities and extensive training in the modern methods of

applied mathematics, in order to prepare them for the PIMS annual Industrial Problem Solving
Workshop.

The first GIMM was held at Simon Fraser University, May 24 - May 29, 1998. Forty Canadian gradu-
ate and near-graduate students came to Simon Fraser University to work with five mentors on various
techniques for modeling industrial problems. The following report describes the proceedings of that
innovative workshop. The students came from 12 universities across Canada: SFU, UBC, UCalgary,
UAlberta, UVictoria, UToronto, McGill, UWQ, UWaterloo, UQuebec at Sherbrook, UManitoba and
Queens University. I am pleased to announce that the program was an UNQUALIFIED success.
The mentors —as well as many who were around the SFU Math, Stats and Computer Science
departments  surely felt and commented on the excitement and the impressive amount of energy
and commitment of the students in the group.

Following the workshop, PIMS arranged for all the students and most mentors to join the second
PIMS Industrial Problem Solving Workshop which was held this year at the University of Calgary,
June 1 - June 6. Together with a mix of faculty from various Canadian and international universities,
the students had a chance to try out their newly acquired skills on industrial problems ranging from
detecting land mines to modeling the finances of building planes. The level of energy and prepared-
ness of the graduate students from the GIMM was widely remarked by many of the experienced
European participants.

Workshops like this one are only possible through the very hard and selfless work of many PIMS
scientists. The concept of the training camp became a reality thanks to the efforts and determination
of Dr. Keith Promislow from the SFU mathematics department and Dr. H. Huang, the PIMS
industrial facilitator for British Columbia. I want to express my appreciation to both of them and
to all the colleagues who have helped along the way. The next Industrial Mathematics Modeling
Camp will be held in the Spring of 1999 at the University of Alberta, to be followed by the 3™
Industrial Problem Solving Workshop to be held at the University of Victoria. We will be looking
forward for the continuation of this story of dedication and success.

Dr. Nassif Ghoussoub, Director
Pacific Institute for the Mathematical Sciences



EDITOR’S PREFACE

The inaugural Graduate Industrial Mathematical Modeling Camp (GIMM) of the Pacific
Institute for the Mathematical Sciences (PIMS) was held at Simon Fraser University from May 24
- May 29, 1998. Close to 40 graduate and soon to be graduate students from universities across
Canada participated in the modeling camp. They were guided by five mentors from industry and
universities in Canada, the United States and the United Kingdom.

The objective of the camp is to provide a stimulating environment and a valuable learning experience
in innovative techniques for approaching hard industrial mathematical problems for the students
prior for the students priori to their participation in the annual PIMS Industrial Problem Solving
Workshop (PIMS-IPS). This year 27 of the participating students went on to participate in
PIMS-IPS in Calgary, June 1 - June 6, 1998.

Format of the Modeling Camp

The format of the modeling camp followed the five-day format of PIMS-IPS so that students would
know what to expect the subsequent week. On the first morning, the students were introduced
to five problems presented by the mentors. The students then selected a problem they wanted to
concentrate on for the remainder of the week. By the afternoon of the first day, these teams were
working intensively to understand the problem. For the next three days, under the guidance of their
mentors, the students devised models for attacking the problem, wrote computer programs, spent
many hours in the library and often had impromptu meetings late into the night working with their
teams.

The teams had a chance to exchange ideas at various breaks throughout the day. In the middle of
the week, the students heard two invited presentations on industrial modeling. Les Scovell (Simons
International Corporation) talked about the hard optimization problems their firm encounters when
designing and building large installations (factories, mines, etc). Dr. Anthony Pierce, (Math, UBC)
gave an overview of PIMS-TPS 1 and told the students what they could expect in PIMS-IPS 2. On
the final day each group presented their results.

The culmination of the week’s work by each team is found in this proceedings. In many cases, teams
continued working on their problem after the camp; these efforts are also reported here.

Acknowledgments

PIMS is indebted to a number of individuals and organizations for the time and energy they put in
to make the camp such a success.

e The main driving force behind the modeling camp was the organizing committee. This was
the first such camp in Canada and required a huge commitment. In particular Dr. Keith
Promislow (Math & Stats, SFU) who chaired the organizing committee was the real driving
force behind the workshop. His dedication and organizational skills ensured that the workshop
ran smoothly.

e The five mentors did a wonderful job selecting appropriate problems for the students. They
would often stay up late with the students working into the night and definitely infected their
teams with their energy and enthusiasm.

e [ wish to thank the people who helped me produce these proceedings during and after the
workshop. PIMS is thankful to all teams for putting considerable efforts into writing their
reports.
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e The PIMS office staff at UBC and SFU sites (Emma MacEuntee, Tania Carpentier, Shannon
Phillips, Thomas Uphill and Dorota Rygiel) and Michele Titcombe (Math, UBC) provided
wonderful administrative assistance.

e PIMS acknowledges the Faculty of Science, the Department of Math & Stats Computer, the
School of Computing Science, and the Institute of Applied Algorithms and Optimization Re-
search all at SFU for providing many resources for the camp.

Structure of this Proceedings

We intend to use this proceedings to document the first PIMS graduate industrial mathematics
modeling camp as well as to provide some insights on mathematical modeling in a workshop setting.
A short introduction of the workshop, given by K. Promislow, is followed by five separate reports.
Each report gives a statement of the problem and then the various approaches taken in attacking
the problem. A list of the participants is included at the end of this proceedings. I would like to
apologize in advance for any errors that have crept into any report.

Dr. Huaxiong Huang, Editor
Pacific Institute for the Mathematical Sciences
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Chapter 1

Introduction

Mathematical modeling is the process of breaking apart a physical problem or process into its
irreducible parts, making a mathematical cast of each piece, and attempting to reconstruct the
resultant odd bits into a whole with some functionality. It is by nature a trial-and-error, iterative,
brainstorming, sociable, frustrating, and at times, gratifying task. The goal of this camp was to
provide graduate students in the mathematical sciences with a taste of this peculiar elixir; not unlike
an intoxicating first visit to the country whose native language and culture one has studied from
afar.

A total of 36 graduate and near-graduate students from 12 Universities across Canada participated
in this inaugural event. Mentors from Kodak, University of Minnesota, University of Southampton,
UBC, and SFU each presented a favorite modeling problem to the students, who through self-
selection were divided into groups of seven to ten. For five intensive days, under the gentle guidance
of their mentor, each team broke down and built up models of their process. The event culminated
with the oral presentations and a written report from each group.

The modeling camp was one part of the PIMS Industrial Forum, and as such the students im-
mediately continued their mathematical modeling efforts at the PIMS Industrial Problem Solving
Workshop at the Univeristy of Calgary, June 1-6 (PIMSIPS 2). Together with a mix of faculty from
various universities they worked in teams on problems straight from industry.

As a whole the program was highly successful. The group had great excitement and energy; re-
markable even to several long-time participants in such events. Each of the mentors went out of
their way to remark on the considerable progress their team had made. Indeed, Chris Budd — an
an member of the original Oxford Study Group, now the preeminent European Study Group and
the organizer of a recent meeting in Bath, England — indicated that they may adapt the PIMS Fo-
rum style (mentored graduate student camp as warm-up for a mixed faculty-grad student industrial
session) to their ongoing effort.

The written reports are compiled in the sequel. It is hoped that they will provide some insight into
the process of model building and guidance for those who endeavor to establish a mathematical
modeling camp or classroom course.

Keith Promislow

Chair, Organizing Committee

Department of Mathematics and Statistics
Simon Fraser University
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Chapter 2

Traffic Signals

Participants: L. Goddyn (Mentor), A. Amariei, D. Gaur, K. Hare, K. Kwok, J. Madden, S.
Mitrovic-Minic, R.W. Tse

PROBLEM STATEMENT: The problem is one of sequencing the cycle of a traffic light at a
large intersection. Certain pairs of traffic movements are forbidden to occur simultaneously (eg.
East-North left-hand turn time interval should be disjoint from the West straight through time
interval). The problem is to find a sequencing of the lights of shortest possible duration avoiding
such forbidden conflicts. This problem is closely related to the computation of a difficult and
unexplored graph parameter called “star-chromatic number”.

2-0
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2-1 The Problem

The problem is one of specifying an efficient sequence for traffic lights at a major intersection. We
make the following simplifying assumptions regarding the traffic flow at this intersection: that it
is stable and that the intersection is isolated from other major intersections. These assumptions
eliminate from consideration intersections at which traffic flow changes a great deal over a short
period of time and those intersections whose traffic flow is strongly influenced by the traffic flow
at nearby intersections. A reasonable example of such an intersection would be an intersection of
suburban arterial roads, which tend to have few signals on them except where they intersect with
other arterial roads. We would like to determine a cyclic patter for the traffic lights that maximizes
throughput of cars and minimizes wait time, while disallowing combinations of traffic flows that
would tend to cause accidents due to conflict of right-of-way.

We construct a graph-theoretic model for the problem. Each vehicle enters an intersection from one
of k directions (e.g., North, South, East, West), and wishes to leave in one of these k directions. We
disallow U-turns, so there are k(k — 1) such pairs. Each of these pairs (e.g.:N-W, E-W, E-S) is called
a transition. Certain pairs of transitions are forbidden to occur simultaneously, so as to avoid conflict
of right-of-way. For example, an E-S left-hand turn would be forbidden during a S-N green light. We
represent the forbidden-pair information with an undirected graph, where transitions correspond to
vertices and two vertices are joined by an edge if and only if the corresponding transitions are not
allowed to occur at the same time. When formulated in this fashion, the problem is closely related
to the problem of coloring vertices in a graph, where two adjacent vertices (ones which are connected
by an edge) are not allowed to be assigned the same color.

If we assume that the traffic flows from each approaching road are uniform, the problem reduces
to determining the star-chromatic number of a graph. In the case of non-uniform traffic flows, we
associate a weight with each node, corresponding to (for example) the number of cars per cycle
which pass through the intersection on the associated path. The problem is now one of arranging
the arcs on a circle of minimum radius such that arcs corresponding to the adjacent nodes do not
intersect.

In Vancouver, only a restricted set of transition sequences are seen in practice. Generally, a left-
turn signal appears before the straight-through green light. However, in our problem we make no
restrictions on the ordering of transitions.

We will also impose more simplifying (and less realistic) assumptions. We suppose that there are no
sensors in the road way to test for the presence of cars, so that the traffic signals’ pattern will not
change in response to current conditions. All allowed transitions are explicitly signaled (so that, for
example, we do not allow right turns into traffic when the signal is red). We further decree that the
signals shall change according to a fixed cyclic sequence having a fixed period.

In each cycle, each transition v shall be allotted one contiguous time interval I(v) of duration P(v),
during which the traffic signal permitting v is green. We may view I(v) as an arc of length P(v) in
a circle S. Thus our problem can be formulated as follows:

Given a graph G with Vertex weights P, our problem is to find a mapping I from the vertices V(G)
to the set of intervals of a circle S, such that

1. the interval I(v) has length P(v),
2. if uv is an edge of G then I(u) and I(v) must be disjoint,

3. the circumference of S is as small as possible.
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We shall call the minimum possible circumference of S the weighted-star-chromatic number of (G, P).
Some study has been made of the star-chromatic number in the case where P is uniform. However,
we are not aware of any algorithm for estimating the star-chromatic number, even for this special
case.

This report is organized as follows. In section 2-2, we will describe the methods which we have used
to solve the problem. In section 2-3, we will present and discuss some results for the techniques
used. In section 2-4 we will present our conclusions, and in section 2-5 we will comment on the ways
in which this work could be extended to make it more applicable to real-world problems.

2-2 Methods

We investigated three different approaches, as follows:

e Using local search to improve an initial feasible solution. Most of the work in this approach
was in the formulation of the linear program which computes the next move to be made.

e Two slightly different greedy algorithms.

e (Calculating the optimal solution using a commercial C++ optimization library. We modeled
the problem as a set of the disjunctive constraints which have to be satisfied.

The first two approaches try to find the circle of minimum circumference, whereas the greedy al-
gorithm tries to fit the arcs on the shortest possible interval. These two approaches correspond to
calculating the weighted star chromatic number and calculating the weighted chromatic number.

The reason for investigating approaches other than calculating the optimal value directly is that
calculating the chromatic number is known to be NP-hard and thus the number of steps required to
calculate the optimal solution goes up exponentially with the size of the problem. Since calculating
the star-chromatic and weighted star-chromatic numbers are clearly problems that are at least as
hard as calculating the chromatic number, it is not considered feasible in general to find optimal
solutions. Thus, while we calculated optimal solutions where possible so as to determine the effec-
tiveness of our heuristic approaches, these heuristics are not expected to find the optimal answer in
general.

2-2.1 Local search using Linear Programming

The problem of minimizing the signal plan cycle (and maximizing intersection throughput) can be
solved by finding the weighted star-chromatic number of the conflict graph. In this section we present
a local search heuristic for calculating the star-chromatic number of a graph.

Given (G, P) and any orientation G there is a linear program LP (to be described later) whose
solution is an upper bound of the star-chromatic number of G.

Our goal is to find an orientation of G or G which minimizes or nearly minimizes the upper bound of
the star-chromatic number. The LP is feasible provided G has no directed circuits. Thus an initial
solution is obtained by ordering the vertices of G and orienting all edges toward the larger endpoint.
Upon solving LPg, another orientation G" is obtained by reversing some arc of G. This arc is chosen
from a list of candldate arcs either randomly or via a meta-heuristic such as tabu search (see below).
The list of candidate arcs is obtained by analyzing the dual optimum of LPs. (Any arc e whose
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dual variable for w, < . is non-zero is a candidate for reversing.) The new LP is obtained from
LPg by multiplying the appropriate column of M by -1.

The heuristic can be described as follows:

e Step 1: Find an initial solution, i.e., an initial graph orientation G.

e Step 2: Find an upper bound of the star-chromatic number by using the linear program
corresponding to G.

e Step 3: Reverse the orientation of one edge in G. Go to Step 2.

The choice of the edge to be reversed in Step 3 can be made in several different ways. One possibility
is a simple random selection, after which the algorithm will continue from this new solution regardless
of the solution’s optimal value. The randomness of the choice can be constrained to get better
solutions. Another possibility is to implement a tabu search algorithm which will guide the moves
from a solution to another from G to G’ in the following way:

e Calculate the upper bounds of the star-chromatic number (solve LPs) for all graphs each of
which is made by reversing the orientation of a single edge from the list of candidate edges.
These graphs comprise the neighborhood of the current solution G.

e Move from the current solution G to the best neighbor é’, i.e., to the neighbor with the
smallest upper bound for the star-chromatic number.

The procedures were coded in C, using the 1p_solve package at
http://ucsu.colorado.edu/%u/software/lp/lp_solve.html with a Maple front end. For graphs
having fewer than a few dozen edges, one thousand iterations of the process seems to be sufficient
to produce an optimal or nearly optimal solution.

Linear Program for calculating an upper bound of the star-chromatic number

Given (G, P) we compute edge weights w,, = [P(u) + P(v)]/2. For each orientation G of G we
consider the LP with variables ¢ and {z. : e € E(G)}:

LPg: minimize ¢ subject to

(1) we < z. <t — we, for each arc e of é,
(2) Yo sgn(C,e)z. = 0, for each circuit C of G.

Here sgn(C,e) = + 1 depends on whether e is directed in the same or opposite direction as (a fixed
orientation of) C.

Ouly a flow-space basis of m —n + 1 circuits C need appear in (2), where n and m are the numbers
of vertices and edges of G. (The set of fundamental circuits of any spanning tree of G will suffice.)
Hence the LP has 3m — n + 1 constraints on m + 1 variables. Any feasible solution (x,t) of LPg
corresponds to a legal sequencing y : V(G) — S of green lights over a time circle S of circumference
t. We obtain y form = by solving yM = x, where M is the constraint matrix of (2), and reducing y
modulo ¢.

Any solution z of (2) is called a tension or potential. Kirchoff and others studied potentials in
the context of electrical networks. One can derive from their work that the minimum possible
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circumference for a given (G, P) is exactly

minmin{t : (¢,z) satisfy (1) and (2)}
G

Our strategy here is to seek an orientation G of G which minimizes or nearly minimizes the value
of LP5. The method is described in the previous section.

2-2.2 Greedy Algorithm

The basic idea of these heuristics is to pick the ‘most problematic’ vertex to add to the partial
solution at all times. The idea is that the vertices which have the greatest number of conflicts,
largest weights, etc. should be added early rather than late. If they are added late in the process,
the program may not be able to overlap the vertices’ associated segments with any other, and thus
large intervals will be appended to the end of the interval. A sketch of the algorithms follows: Pick
the first vertex with (1) largest weight and (2) highest degree.

The difference between the two greedy algorithms is in the method of selecting the node to be placed
at each iteration. The priorities for vertex selection for Method 1 are as follows:

1. Vertex with the largest number of conflicts with vertices already placed
2. Vertex with the largest weight

3. Vertex with the highest degree

Method 2 is similar to Method 1, the only difference being that the priorities used in Method 1 are
ordered 2, 1, 3.

Once a vertex has been selected, its corresponding line segment then must be placed on the interval.
We want to do this in such a way as to minimize the total length of the interval. Thus, we place the
start of the vertex’s segment as close to zero as possible, and allow the segment to overlap with any
non-conflicting segments.

To do this, we must avoid conflicts with segments that have already been placed. (Once a segment
has been placed, it is not moved.) We try to fit the current segment after each conflicting segment.
To maximize efficiency, we maintain a list of the conflicting segments, sorted in increasing order to
the right endpoint of each segment. If the segment won’t fit, we move on to the next conflicting
segment and try again.

Using cliques

A clique in the conflict graph yields a lower bound on the length of the traffic light cycle. Specifically,
since all members of a clique conflict with one another, the cycle cannot be any shorter than the
sum of the weights of the elements of the clique.

This fact implies that one should employ a preprocessing step consisting of finding the clique of
maximum weight and placing the elements of this clique one after another. We note that the clique
of maximum weight and the clique containing the largest number of vertices may not be the same,
since the vertices are weighted. However, finding the maximum-weight clique is almost certainly
NP-hard, since we know that finding a maximal clique, which appears to be easier, is NP-hard.
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Nevertheless, a limited version of this preprocessing step may be both useful and feasible. If we
restrict ourselves to finding the clique of maximum weight of three or fewer nodes, for example,
this can be accomplished in O(n?) time by checking all combinations of three nodes, which takes
n(n — 1)(n — 2) steps. Since the greedy algorithms, for example, are also in O(n?) on dense graphs,
doing this is ‘free’, asymptotically speaking, and yields a solution that is at least as good, and in
general better, than a solution which starts from an arbitrary vertex. In the current implementation,
we use a trivial form of this preprocessing by choosing the clique of maximum weight of size 1.

Some result on local optimality

In this section we will argue that the solution produced by the greedy algorithm cannot be compacted
any more (or at least not in a straightforward fashion; we do not claim that the greedy algorithm
yields an optimal answer). We will assume that the reader is familiar with the basic results about
interval graphs (for a nice introduction see Graph Theory by West). Consider the solution obtained
by the greedy algorithm. If we construct a graph in which the nodes are the intervals and edges
correspond to overlapping intervals, then the graph is an Interval Graph. Interval graphs have perfect
elimination orderings. This means that we can compute the shortest interval needed to represent
the interval graph on the number line in polynomial time.

Without loss of generality we can assume that the shortest interval on which the interval graph can
be laid out starts at 0. The greedy algorithm tries to fit the next interval at the earliest possible
location. This constraint tells us that it is not possible to move the interval any more to the left,
and thus reduce the total width. In fact it can be shown that the greedy algorithm computes the
perfect elimination ordering. This implies that the solution obtained by the greedy algorithm cannot
be compacted, and is therefore locally optimal.

Compressing the solution onto a circle

Given a solution on the interval, the following procedure places the solution on the circle. In the
process, it tries to decrease the circumference of the circle from its initial value of the length of the
interval. This is accomplished by allowing segments to “wrap around” the endpoints of the interval,
which are now identified as a single point on the circle.

Case 1: Only 1 interval touches the boundary, say z.

(a) We save S — max(intervalends # ).

(b) Look at all intervals adjacent to z in the graph, and calculate min(start(y) — end(z)) # 0
(mod S)!. For all y adjacent to = such that start(y) = end(x), we put y into A.

(c) For all z € A repeat (b).

(d) Terminate when either the original x appears in A (in which case we have a tight circle, and
we cannot compress), or A = (), in which case we compress by the minimum of all the numbers
calculated.

Case 2: If there is more than one interval then we calculate this value for each of them and compress
by the minimum of all of them.

We repeat this process until no more compressions are possible.

INote if we wrap around the circle n times, to get there we use (start(y) — end(z))/n.
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2-2.3 Optimal Solution Using Ilog Solver

The problem of finding the weighted star-chromatic number of a graph can be formulated as the
following constraint satisfaction problem:

In what follows we assume that z; denotes the mid-point of interval i (which corresponds to the
node ¢ in the incompatibility graph). w; denotes the weight of the node i (or the length of the arc
associated with node ¢). The incompatibility graph is G = (V, E).

Minimize y subject to

’LUZ'+’LU]'

5 <z — xj] gy—w for all (z;,z;) € E(GQ)

and
0<z; <y for anyi

We used the Ilog Solver® to find optimal solutions to the above mentioned set of constraints. We
gratefully acknowledge Junas Adhikary for the help provided on the Ilog package.

2-3 Testing

There were two approaches considered for testing: creating a series of random graphs, which would
allow us to characterize the overall performance of the various approaches and creating a series of
graphs which corresponded to what we considered realistic intersections. Since the motivation for
this project was to derive useful approaches for calculation efficient traffic signal cycles, rather than
approaches for calculating the weighted star-chromatic number of a graph, we decided on the latter
scheme.

The tests were constructed as follows: we created three classes of graphs, corresponding to 3-way,
4-way and 5-way intersections. Since we lacked experimental data, we assigned weights to the traffic
flows (vertices) that seemed to accord with our empirical knowledge of traffic patterns. Each member
of a given class of graphs differed from the other members of its class by an amount that depended
on a single variable, which corresponded roughly to time of day.

We hoped to use these tests to determine two things. We wanted to measure the relative performance
of the heuristics on graphs whose structure was reminiscent of actual traffic patterns observed in
nature (as well as their performance relative to the optimal solution). We also wished to do some sen-
sitivity analysis on the weights of the nodes, to determine, among other things, how these algorithms
might be used in an adaptive traffic signal network.

Unfortunately, we did not have the time to collect sufficient data to come to any definite conclusions,
or to engage in a great deal of analysis. Based on our limited results, however, it appears that the
LP method and the two greedy algorithms have comparable results on the classes of graphs that we
investigated. No algorithm had significantly better performance overall, although there were some
differences in the quality of the solution in a few cases.

2A C++ library for Constraint Programming.
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2-4 Conclusion

In this document, we modeled the problem of finding a signal plan for an isolated intersection as a
graph theoretic problem. In particular, we have computed the weighted star-chromatic number of
an undirected graph.

We tested the three approaches on almost real world data (constructed over a period of a day).
We modeled intersections with 3, 4 and 5 roads converging. We generated 11 instances for each
intersection size by varying the traffic flows in a systematic fashion. Optimal solutions computed
using Ilog were used to rate the performance of the greedy and the local search approaches. Local
search and greedy almost always found the optimal solution. However, given the size of the data set
and the assumptions, we cannot comment on the robustness of the approach. It remains to be seen
how the techniques would perform on real world data.

2-5 Future Work

In this document we have studied the case for an isolated intersection. The real world application
is closer to the online version of the problem of finding the weighted star-chromatic number. In
the online version the traffic flows change continuously. Ideally, what we would like to do is obtain
a family of related solutions, which have the property that while the sizes of the intervals might
change, the relative orderings will remain relatively stable. This would allow the traffic signal to
adapt to traffic patterns without unduly confusing the drivers. We believe that our algorithms can
be adapted to the online version of the problem.

It should be noted that the problem is NP-hard (Garey and Johnson). Furthermore, even finding
approximations within a factor or n'T¢ is NP-hard (Arora et. al.). Not much is know about
the special classes of graph for which the problem can be solved in polynomial time. It would be
interesting to investigate the existence of a dichotomy theorem (similar to Schaefer’s for satisfiability,
Hell et al. for graph homomorphism). Given the abundance of the negative results for the problem,
we advocate the use of greedy approaches tailored to the input data as a cost effective solution.

The local search method can be made complete (so that it would find solution if one exists) by using
the reserve search technique (Avis and Fukuda) for enumerating the vertices of a convex hull. Tt
remains to be seen if a complete algorithm based on reverse search would perform any better or
worse in practice when compared to the current implementation based on tabu search. It should be
noted that such an algorithm would take exponential time in the worst case.
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Optimal Policies for Queueing
Systems

Participants: R. Kuske (Mentor), B. Bart, M. Titcombe, Y. Lucet, S. Kavousian, S. Jensen, A.
Sheshnev, K. El-Yassini, M. Neagu

PROBLEM STATEMENT: There are several conceptually simple problems which could be
studied. These include make-to-stock production systems in which costs are incurred in production
and held inventory, with competition between processes for a server, and queueing networks in which
customers require more than one type of service, with again competition for service. These problems
can be studied using either stochastic processes or deterministic fluid flow models. One can start
by studying small systems to gain some intuition and works his/her way up to larger systems. One
can use simulations as well as analytical tools.

3-0
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Figure 3-1: The Oreo Cookie Queuing Model.
3-1 Modeling a Queueing System - Simulation Approach

3-1.1 Introduction

The production of Oreo cookies can be modelled by a 3-step process. The Oreo cookie factory
has two machines. The first machine adds a biscuit to a cookie in a progress and the second adds
the cream filling. The process is analogous to the queuing system shown in Figure 3-1. Because
machine 1 can service only one of stage 1 or stage 3 at any given time, it is equipped with a switch
to define which service it is providing. Each stage is equipped with a queue which will begin to fill
if the machine’s service rate is slower than the arrival rate of the queue. We shall now define some
quantities.

Definition 1 For the Oreo cookie system, let Q; represent the queue at stage i and let Q;(t) represent
the number of partially completed cookies in @Q; at time t. Furthermore, let u; be the service rate of
Q; and let X be the arrival rate to Q1. The system is said to be neutrally stable if the all queue sizes
are bounded above for all time.

Stability is highly dependent on the algorithm we use to change the switch. It is known that if we
use the optimal switching strategy, then the system is neutrally stable if

1 1 1

AT ops

1
>_
M2

and (3-1)

>| =

Unfortunately, to employ the optimal switching strategy, we must assume that we can constantly
monitor the system and its queues. This would be a realistic model if a computer was monitoring
the system.

But suppose that for reasons of affordability, job unions, etc. that Nabisco does not have such a
monitor available. Instead, they will pay a human to change the switch. Hence, we introduce Mr.
Christie, our factory worker hero who, of course, makes good cookies. Mr. Christie’s switching
algorithm is as follows.
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loop
drink coffee for t; minutes
a: dummy statement
change the switch

end loop

where the coffee break time ¢; is Mr. Christie’s single parameter. There are two questions to be
answered.

1. (Nabisco’s Problem) If Nabisco wants to provide Mr. Christie with coffee breaks of ¢; minutes,
then what size will Nabisco need to build the queues so that no cookies overflow a queue?

2. (Mr. Christie’s Problem) If Mr. Christie runs a machine with specified queue lengths, then
what is the longest time that Mr. Christie can have a coffee break without overflowing any of
the queues?

It is clear that these questions are the converses of each other.

3-1.2 Analysis

Analysis of each possible step was found to be too difficult because there were too many cases to
consider. In light of practicality, we have chosen the simulation approach. In our simulation, we let

= 3 minutes
= 8 minutes
= 6 minutes

= 10 minutes

S e

One important simulation issue is how Mr. Christie handles partially serviced cookies when his
coffee break ends. He could abort the service and leave it to be processed until later, but then (3-1)
would not hold anymore. To ensure that (3-1) holds, we add dummy statement a to the algorithm.

a: wait until partially serviced cookie in machine 1 has finished

The simulation was carried out on a SPARC ULTRA 1. A graph of maximum queue size against
time is shown in Figure 3-2.

3-1.3 Results

For all choices of t1, the system reached an equilibrium state (i.e. the system was neutrally stable).
The graphs of @1 (t) and @Q2(t) are clearly linear with slopes 0.2000 and 0.1786, respectively. The
graph of Q3(t) appears to be a region, rather than a line. Upon closer examination of this graph in
Figure 3-3, Q3(t) is very jumpy. The slope of the peaks of Q3(t) is 0.2194 and the troughs drop by
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Figure 3-2: Queue size virsus coffee break time.

Figure 3-3: Queue size virsus coffee break time: a close-up.

3-3
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Figure 3-4: Queue size virsus non-deterministic coffee break time.

7% of the peaks from time to time. It has been suggested that dummy statement a is the cause of
this occasional drop.

Given that Mr. Christie is only human, it might be fair to assume that his coffee break time is a
random function. Figure 3-4 shows a graph of the maximum queue sizes if Mr. Christie’s coffee
break times are random subject to a binomial distribution. Notice that the sporadic nature of Q3(t)
has ceased. The trendlines have slopes 0.2098, 0.1893 and 0.2255, for queues 1, 2 and 3, respectively-
a 6% increase.

3-1.4 Conclusions

In a practical sense, running a simulation to determine the appropriate way to build a machine is
an effective solution to the Oreo cookie problem. We have concluded that for regularly spaced coffee
breaks, the maximum queue size is a linear function of the coffee break time, ¢;. The maximum queue
size almost remains linear for the random coffee break times. To justify the practicality of long coffee
breaks, Nabisco may require Mr. Christie to monitor many cookie machines on the factory floor,
thereby flipping many switches at interval t;, rather than drinking so much coffee.
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3-2 Queueing Problem for an Open System - Discrete Ap-
proach

3-2.1 Introduction

We consider a simple system on which we study different queueing strategies. In section 3-2.2 we
consider the objectives of the company’s management. Mathematical model of the above problem is
defined in section 3-2.3. The transition diagram between different states of the system is described in
section 3-2.4. In section 3-2.5 we state the necessary conditions for the existence of neutrally stable
cycles. We also present results for various system parameters. The participants of this subgroup are
Janez Ales, Shane Jensen and Yves Lucet.

3-2.2 Management Objectives

We consider a simple system devoted to the construction of an OREO cookie. Two servers are
present, one for the wafer component of the cookie, and one for the creme filling. A total of three
processes are needed, which are: (1) a bottom wafer being generated by Server I; (2) white filling
being added by Server II; and (3) a top wafer being added by Server I. This is illustrated in Figure 3-5.

Since our first server must process two different jobs, a priority policy must be introduced. Three
distinct priority policies are considered: Job 1 first, Job 3 first and Job 1 and 3 weighted equally.
Based on intuition, we make two assumptions: (1) Job 1 and Job 3 are individually faster than Job
2 and (2) Job 1 and Job 3 together take more time than Job 2. The objective of the company’s
management is to minimize the processing time for a cookie.

Process 3

Server | Server 11
Process 1 Process 2

Figure 3-5: Schematics of the model.

3-2.3 Mathematical Model

In order to simulate the states of the above mentioned system we introduce some system parameters.
Let A\ be the arrival rate of the cookie holders to the Server I in a unit time (objects/time), let u;
be the processing speed for Job ¢ (objects/time), let u; be the dedication of a server to Job i, and
let z; be the queue size of Job i (objects), for i = 1,2, 3.

Assumptions made in section 3-2.2 lead to the following conditions imposed on system parameters:

2 < min (g, p3), (3-2)

and
1 1 1
— <

< + .
M2 U1 Us 3

(3-3)

To ensure stability of the system the time needed to process one object on Server I must be smaller
than the interval time in which objects are arriving to the queue for Job 1. Also, the processing
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Table 3-1: State variables of the integral system.

Queue | State 1 | State 2 | State 3 | State 4 | State 5 | State 6 State 7
2 X1 X x > 1 X [ X _mm
M1 M2 M3 M1 M3 Hiui M2 M2
Ty 1 -1 0 1— 22 | &2 1 R
K2 = qug 1 1 ”33113 1
T3 0 1 1 B u3 p2 +

time for Job 2 has to be smaller than the interval time of the arrivals. Hence, we get the following
two conditions:

for Server I and

for Server II.

Three distinct priority policies are considered: Job 1 first, that is, u; = 1 and ug = 0, Job 3 first,

uy = 0 and uz = 1, Job 1 and 8 weighted equally, u; = I—lllf:HS and ug = HlTHS’

3-2.4 States of the System

We describe all the possible states of the system in the state transition diagram in Figure 3-6. For
example, when system is in idle state (State 0) we have all queues empty, that is, 1 = 3 = 3 = 0,
and State 7 corresponds to all queues being non-empty, 1,2, x3 > 0. As one will notice the number
of possible states can grow exponentially in the number of queues considered.

3-2.5 Stability of Cycles

Under each of the three priority policies mentioned in section 3-2.3 three types of cycles are possible:
stable, neutrally stable, and unstable, depending on the stability conditions (3-2) and (3-3).

Neutrally stable cycles appear when the system cycles between the states without queue growth or
return to the idle state. In order for the system to reach idle state it has to have all queues empty
for a non-zero time interval. That is, whenever the system gets a new arrival at the same time then
all queues are emptied we consider a direct transition from State 3 to State 1, (see Figure 3-6). The
necessary condition for the existence of a cycle is that the sum of the changes in the queue size has to
add up to zero for every queue. All the state variables are listed in Table 3-1. In order to satisfy our
necessary condition for a neutrally stable cycle, we must find all combinations of the columns which
sum to zero, i.e., A7 = 0 with y; = 0 or 1 where § = (y1,v2,..,y7)T and the elements of matrix
A are the state variables listed in the table. Diaz-Rivera, Armbruster, and Taylor [2] considered
this integral system in a re-entrant queueing problem. Integer solutions to linear system are used to
determine neutrally stable cycles for an entire range of arrival rates and processing speeds under the
equal weight priority policy. Notice, that the above condition is only necessary, but not sufficient.
Thus, not all integral solutions lead to cycles. Therefore, it is necessary to check if the given integral
solution is indeed a cycle in the transition diagram.

Our objective was to characterise the periodicity between the different states this system can achieve
for given arrival rates and processing speeds of our servers. Several examples of stable and unstable
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Idle
State 0

x,x ,x>0
77273

State 7

Figure 3-6: Diagram of state transition with the arrows indicating the transitions between states. In
addition to an idle state, seven non-idle states are possible for our system, each corresponding to a
different combination of non-zero queue sizes.

cycles were examined under each priority policy. This determines the behaviour of the system for
given initial conditions, and some of the results are summarized in the following.

1. Neutrally stable system (A =1, u; = 3, s = 2, uz = 6, and time is 1).
For priority u; = 0 and us = ug = 1, two solutions are

(1,1,0,0,0,1,0)",

= (1,1,1,0,0,0,0)T.

ey

For priority u1 = ug = 0.5 and us = 1, there is only one solution
7=(1,1,1,0,0,0,0)T.
For priority u; = us = 1 and ug = 0, there are two solutions

(0,1,1,0,0,1,0)7,
(1,1,1,0,0,0,0)T.

ey
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2. Stable system (A =1, u3 = p2 = usz = 4 and time is 3/4).
For three different priorities tested: u; = uz = 0.5 and us = 1; u; = us = 1 and uz = 0; and

u1 = 0 and us = ug = 1, there exists only one solution
7= (1,1,1,0,0,0,0)".
3. Unstable system (A =4, yu1 = s = pug = 1 and time is 2).
For priority u; = ug = 0.5 and uy = 1, there are two solutions

= (0,0,0,1,1,1,0)7,
= (1,0,1,1,1,0,0)".

AR

For priority u; = us = 1 and u3 = 0, we have four solutions

7 = (0,0,0,0,1,1,0)",
7 = (0,0,1,0,1,1,1)7,
7 = (0,0,1,1,1,1,0)7,
7 = (1,0,1,1,1,0,0)".

For priority u; = 0 and us = u3 = 1, we also have four solutions

7 = (0,0,0,1,0,1,0)7,
7 = (1,0,0,1,0,1,1)7,
7 = (1,0,0,1,1,1,0)7,
7 = (1,0,1,1,1,0,0)".

These solutions correspond to cycles in the transition diagram from Figure 3-6. State ¢ belongs to
the cycle if the i‘h component of the solution is 1, otherwise the state is not in the cycle.

3-2.6 Summary

We have considered a simple system devoted to the construction of an OREQ cookie. Two servers are
present in the system and a total of three processes are needed. The objective is to characterise the
periodicity between the different states this system can achieve for given arrival rates and processing
speeds of our servers. Since our first server must process two different jobs, a priority policy must
be introduced. Three distinct priority policies have been considered: Job 1 first, Job & first, Job 1
and 8 weighted equally. Under each of these three priority policies, three types of cycles are possible:
stable, neutrally stable, and unstable. Integer solutions to a linear system are used to determine
neutrally stable cycles for an entire range of arrival rates and processing speeds under the equal
weight priority policy. Several examples of stable and unstable cycles are examined under each
priority policy.
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3-3 Single Server Re-entrant Systems - Continuous Approach

3-3.1 Introduction

Our subgroup of the Optimal Policies for Queueing Systems/Networks group examined the optimiza-
tion based on a specific performance measure of a simple re-entrant manufacturing system using a
continuous fluid model approach. The participants of this subgroup are Khalid El-Yassini, Mike
Neagu, David Saunders, and Michele Titcombe.

3-3.2 Statement of the Problem

We considered the system in Figure 3-7(a) consisting of a single server with two job classes, the
second of which re-enters the server. The complication of this re-entrant system is the competition
between job classes 1 and 2 at the server. We examined the optimization strategies based on the
performance measure of minimizing the total holding cost of the system.

2
- u2
A
(a) Single server re-entrant (b) Tandem queues

Figure 3-7: Flow diagrams of the two related systems: the single server re-entrant system (SSRS)
and the tandem queues system (TQS).

The parameters of the problem are

A = rate of incoming jobs
u; = rate at which server processes job class ¢
c¢; = cost incurred by job class ¢ waiting to be served
u; = dedication of server to job class i
z;(t) = amount of job class i waiting to be served,

where i = 1, 2. Feasibility of the system requires that

u; 2 (3-4)
zi > 0 (3-5)
uy +uy < 3_6)
The stability of the system requires
A A
—+— <1 (3-7)
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Given the initial conditions z;(0), the arrival rate A, the service rates u; and the costs ¢;, for i = 1,2,
the problem is to determine the optimal controls u;(t) that minimize the total holding cost

T
/0 (C]iE] (t) + Ccox2 (t)) dt (3—8)

subject to (3-4)-(3-7). For this system, the job class amounts, z;, satisfy the ordinary differential
equations

.’tl = )\ — H1U1 (3—9)
Cbg = H1U1 — U2U>. (3—10)

In (3-8), T is the time at which both job classes have been depleted, i.e. ; = x5 = 0. The fixed

3

time 7' is possible in view of the stability condition (3-7).

Figure 3-7(b) shows a related system, consisting of two servers in tandem, that Avram et al. [1]
considered in their study of fluid models of sequencing problems. In the case of the tandem queues

problem, the stability condition is

A A
— <1, — < 1

1251 M2
Since the simple tandem network has no competition of job classes in the server, they were able
to develop the optimal policy for this network using Pontryagin’s maximum principle. We have
reproduced their tandem queues network results for Cases 3 and 4 in Figure 3-8, containing the
switching curve of server dedication, and the corresponding optimal controls for the tandem queues
problem in Table 3-2. In both the figure and the table, 3 is the slope of the switching curve, and is

Table 3-2: Optimal controls for related tandem queue problem. (reproduced from Avram et al. [1]).

| Case | Conditions | u(t) ]
1 C1 Z Co (1‘ 1)
2 c1 < Ca, (0/ ].)
M1 > 2
c1 < Ca,
3 1 < p2, (0, 1)
z1(t) 1 _ cr(po—pr)
wm <5 P = Gln
c1 < Ca,
4 1 < p2, (1, ].)
z1(t) 1
wz(t) = g

We claim that if the two systems, the single server re-entrant system (SSRS) and the tandem queues
system (TQS), are in the same state (i.e., the same x; and z2 at ¢ = 0) and if the optimal controls
w1 (t) and wuy(t) for the tandem queues problem satisfy (3-6) for some time ¢; > 0, then the optimal
controls for the two problems coincide on the time interval [0, #;].

Now, we outline the argument behind this claim, first noting that if the dedications w; and wus
minimize the cost integral (3-8) up to some time 7', then these dedications also minimize the cost
integral up to any time t; < 7.
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Figure 3-8: Switching curve for cases 3 and 4 of the tandem queues network optimal policy (repro-
duced from Avram et al. [1]).

Let u; and uy be optimal controls for the tandem queues system (TQS), satisfying (3-6) for all ¢ in
[0,t1]. Also, let v; and vy be optimal controls for the single server re-entrant system (SSRS). We
want to show that uq(t) = vy (t) and us(t) = vo(t) for all ¢ in [0, ¢].

Since u; and wuy minimize the cost integral for TQS up to time T, they also minimize the cost
integral for TQS up to time #; from the note above. But w; + us < 1 on the interval [0,%1], so uy
and us are acceptable controls for SSRS on [0, ¢;]. Since the two systems are governed by the same
set of differential equations in (3-9), and start with the same initial conditions, and any acceptable
controls for SSRS are also acceptable for TQS, it follows that u; and u» minimize the cost integral
for SSRS up to time t;. But v; and vs also minimize the cost for SSRS up to time ;. Assuming

uniqueness of the optimal controls, it follows that u; = v; and us = v2 on the interval [0, ¢].

Next, we describe a version of the claim which does not invoke uniqueness of the optimal controls.
Suppose that u; and us minimize the cost integral for TQS up to time T and satisfy (3-6) for all ¢
in the interval [0,#1]. Then, there exist optimal controls v; and vs for SSRS such that u, (¢) = vy (¢)
and us(t) = va(¢) for all ¢ in [0,¢;]. The argument is similar to the one above.

To back up our claim, we have plotted the total holding cost from (3-8) versus z,(0), the initial
queue size of job class 2, for various dedication strategies in the cases that satisfy (3-6). In all the
plots, we fixed the arrive rate at A = 1 and the initial queue size of job class 1 at z1(0) = 10. The
inset in each plot displays the dedication strategies in the zz, state space for given initial queue
sizes (z1(0),z2(0)).

Figures 3-9 and 3-10 correspond to Case 1 of the tandem queue system, in which the cost at queue 1
is greater than or equal to that at queue 2. Our claim does not include Cases 1 and 4 in the tandem
queue network, since those dedications violate (3-6) for the single server re-entrant network. The
two dedication strategies that we used for Case 1 (¢; > ¢q) are: (i) serve queue 1 to depletion, then
split the server so that queue 1 remains depleted while serving queue 2 to depletion, and (ii) serve
queue 2 to depletion, then split the server so that queue 2 remains depleted while serving queue 1 to
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Figure 3-9: Case 1(a): ¢1 > ca, p1 > pa. Total holding cost C' versus initial queue size of job class
2, £2(0). Parameter set={(c1,c2) = (10,5), (p1,p2) = (3,2), A =1, 21(0) = 10}.

depletion as well. Figure 3-9 indicates that the total holding cost is lower if the dedication strategy
is to serve queue 1 to depletion, whereas Figure 3-9 displays a critical initial queue size of job class
2 of approximately z2(0) & 7 below which it would be cheaper to serve queue 2 to depletion first.

Figure 3-11 corresponds to Case 2 of the tandem queue system. For Case 2, we used the same
dedication strategies as in Case 1. The plot validates our claim for this case, since the total holding
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Figure 3-10: Case 1(b): ¢1 > ca, p1 < p2. Total holding cost C versus initial queue size of job class
2, 24(0). Parameter set={(c1,c2) = (10,5), (p1,u2) = (2,3), A =1, z,(0) = 10}.
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cost for the single server re-entrant system is lowest using the dedication strategy of the tandem
queues system for the same case, that is, to serve queue 2 to depletion first.

Figure 3-12 essentially combines Cases 3 and 4 of the tandem queue system, in which we have
computed the total holding cost for three strategies: (i) serve queue 1 to depletion first, (ii) serve
queue 2 to depletion first, and (iii) serve queue 2 until the switching curve xo = Bz1, then split the
server dedication to stay on the line until both queues are depleted. Case 4 is included since the
switching curve itself belongs to this case. For this plot, the initial point (x;(0),z2(0)) lies above
the switching curve x5 = Bz, which corresponds to Case 3 of the tandem queue system. The figure
validates our claim for this case, showing that the cheapest strategy is to serve queue 2 to depletion.
Although we cannot use the strategy of the tandem queue Case 4 since the dedication violates (3-6),
Figure 3-12 suggests that the dedication for Case 4 of our single server re-entrant system is to serve
queue 2 to depletion first, as in our Case 3.

In Figures 3-13 to 3-15, we have plotted the results for simulations of the single server re-entrant
system with exponentially distributed interarrival and service times. The total cost C' is computed
as an average over ten realizations for integer values of the initial queue length of job class 2, z4(0).
We used the same parameter values as in Figures 3-9 to 3-11.

Comparing Figures 3-9 and 3-13 and Figures 3-10 and 3-14, we see that the results of the simulations
do not agree with the predictions of the analysis in the case of ¢; > ¢y. Assuming that we follow
strategy (i) of our Case 1, then we empty queue 1 first and then divide the server so that it will
attempt to keep queue 1 empty while also emptying queue 2. However, in the case of the simulation
with discrete random arrivals, queue 1 will not remain empty. After one or more arrivals, there will
be customers in the queue for a period of time during which costs are incurred. The simulation
suggests that it may be better to dedicate more of the server to queue 1 when this occurs.

The simulation results in Figure 3-15 agree with the predictions of the analysis in the case with
c1 < cg and py > po.
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Figure 3-11: Case 2: ¢1 < ¢2, u1 > po. Total holding cost C versus initial queue size of job class 2,
x2(0). Parameter set={(c1,c2) = (5,10), (p1,p2) = (6,3), A =1, x1(0) = 10}.
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Figure 3-12: Case 3: ¢1 < ¢2, u1 < po. Total holding cost C versus initial queue size of job class 2,
x2(0). Parameter set={(c1,c2) = (5,10), (p1,p2) = (3,6), A =1, x1(0) = 10}.
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Figure 3-13: Total holding cost C versus x2(0) for simulation with exponentially distributed inter-
arrival and service times with the same parameters as Figure 3-9. Strategies: serve queue 1 to
depletion first (solid), serve queue 2 to depletion first (dotted).
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Figure 3-14: Total holding cost C versus x2(0) for simulation with exponentially distributed inter-
arrival and service times with the same parameters as Figure 3-10. Strategies: serve queue 1 to
depletion first (solid), serve queue 2 to depletion first (dotted).

3000

2500

2000 -~ B

1500 -

1000 -

500
0

Figure 3-15: Total holding cost C wversus x2(0) for simulation with exponentially distributed inter-
arrival and service times with the same parameters as Figure 3-11. Strategies: serve queue 2 to
depletion first (solid), serve queue 1 to depletion first (dotted).



Chapter 4

Synchrony of Pituitary Cells

Participants: Y.-X. Li (Mentor), N. Costanzino, A. Dawes, T. Ewen, S. Reinker, J. Williams

PROBLEM STATEMENT:

Calcium is the primary trigger for initiating a large variety of biological processes. Thus, hormone
secretion by endocrine cells in the pituitary gland is triggered by an increase in intracellular calcium
concentration. Such a calcium increase, induced by an extracellular messenger, is often oscillatory.
This pulsatile calcium profile has been shown to correlate to the secretory activities in pituitary
cells. However, individual cells only secrete a tiny amount of hormone. Therefore, coherent, syn-
chronized secretory activity is of great physiological importance. Whether and how intracellular
calcium oscillations in individual pituitary cells synchronize with each other remain obscure. Recent
experiments suggest that plasma membrane electrical activities in neighboring cells can synchro-
nize. The question remains if synchronized plasma membrane electrical activity causes synchrony
in agonist-induced intracellular calcium oscillations between neighboring cells. The experimentalists
cannot answer this question yet. We here answer the question by using mathematics.

4-0
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4-1 Introduction and Statement of the Problem

The systems studied in mathematical biology are exceedingly complex. In modeling any complex
phenomena, it is important to include only the mechanisms that play a fundamental role in the
dynamics of the system. In this way, one hopefully obtains a simpler system that captures the
‘essential features’ of the more complex phenomena. Therefore, having some background information
of the mechanisms involved is essential in order to properly model any system. With this in mind,
we present some biological background in Section 4-1.1. Then in Section 4-1.2 we state the problem
which we want to investigate. Finally, in Section 4-1.3 we propose a method by which we will
approach the problem.

4-1.1 Background

Calcium is the primary trigger for initiating a large variety of biological processes. Thus, hor-
mone secretion by endocrine cells in the pituitary gland is triggered by an increase in intracellular
calcium concentration. Such a calcium increase, induced by an extracellular messenger, is often
oscillatory. This pulsatile calcium profile has been shown to correlate to the secretory activities in
pituitary cells. Individual cells however, only secrete a tiny amount of hormone. Therefore, coher-
ent, synchronized secretory activity is of great physiological importance. It is not clear whether
the intracellular calcium (IC) oscillations in individual pituitary cells synchronize with each other or
how this process takes place. Recent experiments suggest that plasma membrane (PM) electrical ac-
tivities in neighboring cells can synchronize. However, the question remains if synchronized plasma
membrane electrical activity causes synchrony in agonist-induced intracellular calcium oscillations
between neighboring cells. This question has not been answered by the experimentalists yet. In the
next Section we pose the problem which we wish to study.

4-1.2 Statement of the Problem

The question of whether or not calcium oscillations of each individual pituitary cell can synchronize
or phase-lock with neighboring pituitary cells can be answered by investigating the behavior of the
inner workings of a single pituary cell. Each individual cell is a coupled system of a plasma membrane
(PM) oscillator and an intracellular calcium (IC) oscillator as shown in Fig. 4-1. We thus pose the
following problem: Can the intracellular calcium oscillations of each pituitary cell synchronize or
phase-lock with those of neighboring cells? In answering this, we must first investigate the coupled
IC-PM system and the coupled PM-PM system.

4-1.3 Method of Approach

Mathematically, the problem of two coupled pituitary cells can be simplified to the problem of a
network of four coupled oscillators. This is because each cell is by itself a coupled system of a
plasma membrane (PM) oscillator and an intracellular calcium (IC) oscillator. It is known that the
PM oscillator activates the IC oscillator but the latter inhibits the former. The coupling between
the two cells is diffusive, or nearest neighbor coupling, and is only between the two PM oscillators.
Therefore, a sufficient condition is to show that since the IC oscillator in each cell is coupled to its
own PM oscillator and since the two PM oscillators synchronize, the two IC oscillators should also
be synchronized, although they do not talk directly to each other. Hence, we will concentrate our
efforts on exploring whether the PM and IC oscillations are synchronized. Despite the outcome of
this exploration, we will also briefly explore synchronization between cells.
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Figure 4-1: Schematics of the coupled cells.
4-2 The Two Models

To construct a model of the pituitary cell, we modified two existing models for mechanisms that occur
within the cell. The first is the Morris-Lecar model, which has successfully been used in describing
the potential difference across a membrane. To describe the intracellular calcium oscillations in the
cytosol, we used the Li-Rinzel model. In the next two subsections, we briefly present these two
models.

4-2.1 The Morris-Lecar Model

These equations describe the potential v and channel gating w across the plasma membrane.

d
Cmd—: = Ly —Ioa—Ix—1Ip (4-1)
W = AW W)~ w) (4-2)

where I, is the current externally applied to the membrane (for instance by an electrode), Ic, and
I are the calcium and potassium currents respectively, and I;, describes the cumulative effect of

other small currents and is called the leak currents. The functional forms of the currents are given
by

IC’a = goamoo (’U)('U - UC’a) (4_3)
Iy = grw)(v—vk) (4-4)
I = gr(v—or) (4-5)

where g is the maximum conductance. The functions mq,(v) and w(v) are the activation probabilities
which are typically sigmoidal curves, and determine the gating or channel opening of the cell.
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4-3

Under certain parameter values the Morris-Lecar system exhibits periodic firing as can be seen in

Fig. 4-2. Experiments have shown that the period is on the order of seconds.
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Figure 4-2: Morris-Lecar plasma membrane voltage oscillator.

4-2.2 The Li-Rinzel Model

This model describes the IC oscillations in the cytosol. The calcium is introduced through both the
plasma membrane (PM) and the endoplasmic reticulum (ER).

where a = ¢ + ocgg.

The flux of calcium out of and into the cytosol is given by the following equations:

dc

dt
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dt
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For a fairly robust set of parameter values, this system for the calcium concentration in the cytosol
also settles to a periodic oscillation (Fig. 4-3) which may also have a similar period to solutions of
the Morris-Lecar system.
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Figure 4-3: Li-Rinzel intra-cellular Calcium oscillator.

4-3 Coupling

Recall that our goal is to determine if the IC oscillations in two separate cells become synchronized
when the two PM oscillators become synchronized. As previously described, we attempt to do this
by taking two existing models, the Morris-Lecar mode- and the Li-Rinzel model, and model how they
couple based on experimental evidence. This will give a model for the calcium oscillations within
the cell. We will then take two identical cells modeled in this manner and couple them across the
plasma membranes. We want to see, if the PM becomes synchronized, whether the IC oscillations
also become synchronized even though they are not directly affecting each other.

4-3.1 Coupling Within the Pituitary Cell

Having previously explored the uncoupled Morris-Lecar and Li-Rinzel models with XPP, we decided
it was time to model the coupling between the IC and the PM of each individual pituitary cell. The
models were coupled by the addition of two extra terms. The first was through the equations for v
and ¢, where these oscillations are related through the equation for J;,;

Jin =T, — alc, (4-13)

Second, we introduced a calcium activated potassium current Iy (cq), which affects the voltage across
the plasma membrane due to the influx of potassium ions. Hence equation (4-2) becomes

dv

mgr = Lapp = Ioa = I = I = Ix(ca) (4-14)
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where
(v —vg)ct

LAt 4-15
ct + k¢, ( )

Ix(ca) = 9K (Ca)
See Fig 4-4 for an example of phase-locking. The resulting 5-dimensional system corresponds to a
feedback loop between the PM and the IC regulation oscillator. Here PM activates the IC while IC
inactivates the PM. Numerical explorations with the program XPP revealed that indeed the voltage
oscillations of the PM and the calcium oscillations of the ER do phase-lock. In fact, they phase-lock
over a large set of parameter values, and for each parameter value the basin of attraction for the
phase-locked solution seemed to be the whole phase-space.

T T T T T
0 |+ -
30
< ¢
20 g
10 + B
0
210 4
v
-20 + -
.30 4
-40 + -
1 1 1 1
0 5 10 15 20 25 30

Time

Figure 4-4: Phase-lock between PM and IC.

However, since we are only interested in solutions which are periodic, it is natural to ask ourselves
if the behaviour of the cell can be captured with a much simpler set of equations. Indeed, it is often
the case that the dynamics of oscillators, such as the two above, can be described solely though one
variable - their phase difference. Descriptions of this sort are called phase models. In these types
of models, the state of the oscillator during its cycle is parameterized by a phase variable. This
greatly simplifies the analysis because the model reduces to a problem in one periodic variable. We
investigated a popular method for coupling mutually attracting/repelling oscillators, based on the
work of Strogatz [4] and Li [3]. In Section 4-3.1, we describe this method, and (unsuccessfully apply
it to our system). We also give an argument why this approach does not work.

The Integrate and Fire Model of Coupling

This is a specific example of a phase model. Let ¢ describe the phase of an oscillator with period 1
and let f be a function such that x = f(¢) subject to the conditions:

do
) i
) fo)=o0
i) f1) =1
)

fis concave down, i.e. f' >0, f' <0

1
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One function that satisfies these conditions is:

f@) = e(1-e?) (4-16)
¢ = (4-17)

The time evolution of this function is shown in Fig 4-5, x increases towards its threshold value at
which point it fires and then returns to 0 and the cycle repeats. When dealing with two coupled
oscillators, the firing of one causes a displacement of the other oscillator. It follows this time
evolution:

zi(t) = 1= x;(t") = min{1,2,(t) + ¢}, i=1,2
j#0,5=1,2e>0

Hence, we use the following equations for our integrate-and-fire model.

where g is the inverse function of f (ie. fg = 1)
It is easy to see that to construct the return map R(¢) = ha(h1(¢)). We chose

hi(¢) = g(f(1—¢)—er),
ha(¢) = g(f(1—¢) +e2).

The size of €; > 0 determines the strength of the interaction between the oscillators. The sign change
of € describes an activating/inactivating process. For simplicity we considered the case e; = 5. Then
the return map in this case is given by

R(¢) ha(h1(9))

—In(e te? ! — 2]71 + Z)

Fixed points of R(¢) correspond to synchronized or phase-locked solutions. Assuming the existence
of a fixed point R(¢*) = ¢*, we found that

(4-18)

This gives a lower bound on ¢ :
2c

NG
At this critical value of g, the fixed point ¢* = % which corresponds to a solution with half a phase

difference. Unfortunately the lower bound on € is not valid in our region [0, 1]. It is easily verified
that R(¢) does not have a fixed point.

(4-19)

Ee =

There are several reasons why this model does not work. The most simple and compelling reason can
be described by considering two runners on a circular track. Let us assume that runner A is ahead
of runner B and A activates B while B inhibits A. When runner A crosses the mark, B gets pushed
closer to A by an amount e. Then when B crosses the mark, he pulls A closer to him by the same
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Xi(t)
1

0 T 2T 3T Time

Figure 4-5: Integrate-and-Fire Oscillator.

amount. We thus see that A and B get closer and closer together. However, as this continues, let us
say that A and B are now running side-by-side (ie. synchronized). Then as A and B simultaneously
cross the finish line they will repell each other because B will push A backwards and A will push B
forwards. In this way, we can see that A and B can never synchronize or phase-lock. Hence, this
model is not appropriate in describing the coupling between the IC and the PM.

4-3.2 Coupling Between Cells

Here we take two pituitary cells modeled as above and couple them proportional-y to the voltage
difference across the intercellular gap. The electrical gap junction coupling gives positive/positive
feedback (Fig. 4-1). The coupling takes the form:

dv
OmE = Iapp — ICa — IK — IL — IK(Ca) + E('D — ’U) (4—20)
dv _
OmE = Iapp - IC’a - IK - IL - IK(Ca) - E(U - ’U) (4_21)
(4-22)

The voltage oscillations of the two cells synchronize over time, as do those for the IC oscillations
despite there being no direct coupling between them (Figs.4-6 and 4-7). We determined numerically
the response and interaction functions (Figs. 4-8 and 4-9). The response function estimates the
systems phase-shift due to perturbation. Roots of the interaction function correspond to fixed
points in the phase difference between oscillators. Here we found roots at zero and half-phase, with
zero being the stable fixed point.

4-4 Conclusion

The combination of the Morris-Lecar and and the Li-Rinzel model gave a similar behaviour to
experimentally observations in pituitary gland cells. We were able to obtain coupling of the two
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Figure 4-6: Synchronization of two PM oscillators.

oscillators in the PM and ER membrane. Furthermore two cells that were coupled only through the
plasma membrane, corresponding to gap junction coupling, had their ICs synchronized. Therefore,
we found that calcium oscillations of each individual pituary cell do synchronize with neighboring
pituary cells. In answering this we also found that the PM and IC oscillations within each pituitary
gland cell phase-lock, and that the PM oscillations of two neighbouring cells synchronize.
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Figure 4-7: Synchronization of two IC oscillators.
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Chapter 5

Air Impact on Green Sand

Participants: C. Please (Mentor), S. Bohun, A. Bona, D. Chertok, J. Modayil, J. Samuel, C.
Stoica, A. Wacher

PROBLEM STATEMENT: Toowoomba Foundry is a producer of cast-iron parts for a number
of automobile and agricultural machinery manufacturers. To produce their cast-iron products, such
as truck brake drums and water pump housings, they use a conventional method involving making
a mould, for every item, out of sand. Once made, the mould is filled with molten metal which is
then cooled and the mould then broken to reveal the cast object.

The technology of creating a sand mould consists of placing sand over a pattern and then compressing
the sand to create compacted sand which has sufficient rigidity that the pattern can be removed
easily, and the sand will remain in place when molten metal is poured onto it.

The sand itself has some very special properties and consists of relatively uniform grains of “Dune”
sand mixed with water and very fine particles of bentonite (clay) which cover the sand. The purpose
of this project will be to investigate how the sand gets compacted. The method of interest consists
of using a sealed box with the pattern as the base in which the sand is loosely placed. The box
is then very suddenly subjected to high pressure air (around 7 atmospheres of pressure). If the
pressure is applied too slowly very little compaction occurs while when applied very quickly the
sand becomes very well compacted with at particularly strongly compacted region adjacent to the
pattern. However, the rapid compaction tends to create regions relatively void of sand and hence
causes problems when the molten metal is poured in.

Can a model be made to demonstrate how the sand compacts so that methods of creating good
compaction without voids be suggested?

5-0
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5-1 Introduction

An Australian steel casting company, Toowoomba Foundry, employs a sand mould casting procedure
as part of its operation. To produce a mould, a sand-based substance called green sand is poured
into a box containing the moulding pattern. Subsequently, high pressure air at 0.7 MPa is quickly
(on the time scale of 0.1s) applied to the top of the sand to compress it. The profile of the pressure
pulse is shown in Figure 5-1. Upon compression, the sand is packed into a solid structure which
preserves the shape of a pattern that is later used for casting.

Pressure (M Pa)
0.7
-
0.1
I I
0 2 4 Time (s)

Figure 5-1: Compaction pressure pulse.

To optimize the compaction process, the manufacturer wishes to reduce inhomogeneities in thee
compacted sand that lead to imperfections in the mould. An empirical solution to this problem
involves the application of two consecutive compacting air pulses as shown in Figure 5-2.

Pressure (MPa)
0.7
=
0.17
L R R B
0 2 4 6 8 10 12 14 Time (s)

Figure 5-2: Preceding pressure pulse with a pre-compaction pulse.

It has been observed that the mould imperfections, soft spots, occur at specific positions in the mould
and that the size and location of such imperfections depend on the geometry of the pattern. An
example of such a dependency is given in Figure 5-3. Other tools for reducing the size of soft spots
at the manufacturer’s disposal include: 1) roughening of the pattern surface, 2) the introduction of
air vents at the outer surface of the mould.

The object of this research was to develop a qualitative mathematical model of the problem and
suggest improvements for the manufacturing process.
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< Soft Spot

Soft Spot

-t
<——— Paten Pattern

Figure 5-3: Reduction of soft spots due to the change in mould shape: larger for sharp angles (left
figure), smaller for smooth profiles (right figure).

5-2 Physical properties and assumptions

1.

The actual particles of solid in the sand mixture are assumed to be incompressible. However,
the air fraction of the sand mixture is compressible. It is the air fraction that makes the sand
a compressible material.

During the compaction process, the permeability of the sand changes insignificantly. This
assumption was made on incomplete experimental data and should be verified experimentally.

Based on experimental data, the sand never experiences decompression.
Air is treated as an ideal isothermic Newtonian fluid with constant viscosity.

We consider a one-dimensional model in space. The equations are based on the classical con-
servation laws of mechanics (i.e. the conservation of mass and the conservation of momentum).

5-3 Formal Construction of the Model

Variables

e y = vertical coordinate.

e { = time.

Constants

e hg = 0.4m.

o K/u=1/X=10"%m3s/kg (Darcy’s ‘constant’ for green sand).

e ap = 0.6 (Fraction of air in un-compacted sand mixture).
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State Variables

e a(t,y): Volume percentage of air in green sand mixture.

e pa(t,y): Density of air.
e ps(t,y): Density of a sand particle.
e vA(t,y): Velocity of air.
e vs(t,y): Velocity of a sand particle.

e h(t): Position of the top of sand mixture.
e Py(t): Experienced pressure of air at top of the sand box.
o Pa(pa) = Apa, where X\ = (latm/kgm?): Air pressure as given by an ideal, isothermal gas.

e Pg(«): Pressure of sand on sand (Experimentally obtained).

5-3.1 Conservation of Mass and Momentum

Mass
. O(apa)  O(apava)
1. Air: =
. ot oy 0
o 0 —a)ps) | O((1 —a)psvs) _
2. Sand: 5 + 3y =0
Momentum
. 0 0 OP
3. Air: a(apAvA) + a—y(apAvi) = —a—yA — YA

0 0
4. Sand: E((l — a)pg’l}g) + 8_y((1 — a)psvg) = — - 4777

5-3.2 Non-dimensionalization

We scale all variables with respect to a set of characteristic sizes P = (IMPa)P, pa = popa, h =
hoh, y = hoy, t = tot, v = (ho/to)v, ps = ps, @ = @, ¥ = v. Now examine the changes to the above
equations.

d(apa) N d(apava)

1. o pava) g
5 a(la; ) 9 8ya)v5) i

3. t%(quh?l)Da) <%(OZPA’UA) + %(apAqa)) _ 785];4 B to(z&gpa) s

* ’%(ﬁSThEa) <%((1 —ajus) + 8%((1 - 0‘)”%)) = B(PA(PAa)y-I- Ps(a))
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If the momentum of the air is significant, then the proper scaling factor would be:

pohg
Pl _ g, to =~ 0.1ms.
2(Mpa) 0 O ms

If the momentum of the sand was significant then:

2

pshg
————— =1, or ty=~3ms.
t3(1MPa)
If the friction of the air on the sand was significant, then g ~ 0.16s which is comparable to the 0.2s
supplied by the machine. Hence, the momentum of sand and/or air does not play any significant
role. Therefore, the most significant process is governed by the Darcy’s law. The initial conditions
associated with the momenta, v4(0,y) = 0 and vs(0,y) = 0, are discarded.

5-3.3 Simplified Equations

d(apa) N 0 (apava)

ot Oy -0 oy
a(1aza)+8((1;ya)vs) - (5-2)
%(ps<a>+PA<pA>> =0 (5-3)
oA = J’)‘a% (5-4)

The initial value conditions and the boundary conditions become:

a(0,y) = agp v4(t,0) = 0 (no vents)
pa(0,y) =1 vs(t,0) =0
h(0) =1 pa(t,0) =1 (vents)

(ag) =0 dh/dt = vs(t, h(t))
Pg(a) = experiment data  pa(t, h(t)) = Py(t)

Considering the third equation and the last boundary condition, we find
Ps(a) + pa = Po(t)

since P4 = pa.

5-4 Analysis
The relation

Ps(a) + pa = Po(t)
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is critical. Through some mathematical consideration (omitted for brevity) we can investigate the
compression of the sand mixture in some special cases:

1. Assume that the experienced pressure at the top of the sand box increases much faster than
tg ~0.16s. In this case, no air flows through the sand and the sand compacts uniformly. Vents
at the bottom of the box do not play any role.

2. Assume that the experienced pressure a the top of the sand box increases much slower than
to.
(a) If there are no air vents at the bottom of the pattern, then no compression occurs.

(b) If there are vents then compression increases linearly; the bottom will be the most com-
pressed region.

5-5 Conclusions

e Ignore inertia: Inertia does not play any role in the compaction process.

e No shock waves: Since momentum does not contribute to the compaction process, no waves
can be propagated.

5-6 Recommendations

e No shock waves: Shock waves should not be considered, even in higher dimensions.

e Permeability: Values of permeability are neither easily, nor accurately calculated by theoretical
means. Moreover, the value of permeability can critically affect the compression of the sand,
especially considering that the critical time ¢q is so close to the machine’s capability of raising
air pressure. The company is urged to calculate the permeability of the sand mixture for
various values of a.

e Partial fill. Soft spots are believed to be formed by transverse motion of the sand particles.
One method to reduce these defects is to fill the box with sand to the ‘critical shoulder’,
followed by a fast compression. Now, fill the box and perform another fast compression.

e Shoulder air vents: Place air vents on the ‘shoulder’ above the defect. For this to be effective,
the increase in air pressure must occur over a time scale of ~ 10t

e Plastic top: If an airtight cover were placed on top of the sand, then the air pressure in the
sand-air mixture would be much lower than without the cover. Hence, the sand must compact
more. Moreover, as the air pressure in the sand-air mixture is lower, the time designated for
pressure release can be shortened significantly.

e Special air vents: If air vents are placed at the bottom of the box and are opened shortly
after the pressure reaches its maximum, we expect the efficiency of the machine to increase
drastically. Installing such vents could lead to two advantages:

— Denser compaction for the same air pressure pulse;

— The relaxation time can be reduced.
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Surface Tension in a Flowing Fluid

Participants: David Ross (Mentor), Vladislav Agapov, Roger Coroas, Tony Cabal, Charles Cuell,
Andrew Irwin, Tim Rogalsky, Bruce Rout

PROBLEM STATEMENT: Photographic film is made by coating a thin fluid layer of gelatin
solution on a hard backing. The solution contains light-sensitive silver-halide crystals and dye-
forming chemicals (and other stuff). The gelatin dries and hardens. Because of the importance
of gelatin to our manufacturing processes, we are interested in the viscosity of gelatin solutions.
As we all know from experience with Jell-O, (yes, it’s the same stuff that we use to make film),
gelatin solutions start out a fluids, they get thicker and thicker, and eventually turn into solids. The
problem would be to find a mathematical model of the chemical process by which this happens.

6-0
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6-1 Introduction

Eastman-Kodak Corporation presented a problem regarding the application of chemicals onto a
polymer film using a long thin waterfall known as a coating curtain. The company wishes to
keep a low surface tension on the curtain to prevent the curtain from breaking up during chemical
application. One method the company has utilized is to add surfactant to the aqueous reservoir of
the curtain.

The surfactant molecules consist of a hydrophobic ‘tail’ and neutral ‘head’ which congregate at the
surface of the curtain, thereby lowering surface tension.

The company expected that by using surfactants of higher hydrophobicity the surface tension of the
curtain would continually decrease in some well-behaved function. Although surfactants below a cer-
tain level of hydrophobicity behave as expected, above this level surfactants of higher hydrophobicity
actually increase the surface tension.

It is believed micelles are responsible for this behaviour.

6-2 Mathematical Formulation

Surfactant accumulates on the surface of the curtain by fluid transport (the emulsion is falling) and
by diffusion through the curtain. However, experiments show that air bubbles transported by the
fluid are essentially in free fall at all points in the curtain. This allows us to rule out the fluid
transport process. A good estimate for diffusion transport is given by % = 1. Using t = 0.1s (the
length of time the emulsion falls) we get # ~ 3 x 10~ *cm, which allows for diffusion to be a possibility,
since the typical cross section is 2 x 1073cm at the bottom of the curtain and the surfactant content
in this outer sheath, if transported to the clean surface, is sufficient to reduce the surface tension.

In addition to diffusion, when the monomer concentration goes to some value typical for the sur-
factant, groups of sixty monomers will form non hydrophobic micelles so that the concentration of
monomers remains constant at this value. This concentration is called the CMC (critical micelle
concentration). Given this, we can write the diffusion equations for the monomers and micelles as:

oc 9%C

5 = Deg —60KH(C — CMC)+60KH(CMC ~ C)M (6-1)
M 20
‘38—t = Dm%? + KH(C — CMC)— KH(CMC — C)M, (6-2)

where C is the monomer concentration, M is the micelle concentration, K is the rate at which
monomers form micelles, D, is the monomer diffusion rate and D,, is the micelle diffusion rate. H
is the Heaviside function.

The initial conditions are

C(z,0) = A (6-3)
M (z, = B, 6-4)
where A and B are constants.
The boundary conditions are
d? acC
- p, & (6-5)

dt oz |,_,
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= kpC0,8)(? mae — 7) — k? (6-6)
oM

o = 0. (6-7)

=0

In the first boundary condition, ? is the concentration of monomer on the surface of the curtain.
The first equality comes from Fick’s equation, ¢ = —D%, where ¢ is the monomer flux. The second
equality comes from modelling the interaction of the monomer with the surface of the curtain as a
second order kinetic reaction, with forward (on to the surface) and backward rates given by ky and
ky respectively.

The boundary condition for M is a zero flux condition at the water/fluid boundary.

We notice that if we add 60 times the equation for M to the equation for C, the Heaviside functions
cancel and we end up with

oC  9OM _ ) 8C . 560N
ot ot N © Oz2 ™92

(6-8)
We can define a new variable n = C'+ 60M, and recognize that as we move from the surface into the
medium, 7 increases from zero, and reaches C M C at some point (provided the initial concentration

is sufficient). Up to that point, M = 0, so 3;24 = 0. After that point, C = CMC, so %Qtzc = 0.

Given this, we can write the following with impunity
on 0 9(n)
— = — [Dn)—=], -
ot Oz ( () oz )’ (6-9)
where
D(n) = D. if n<CMC (6-10)
= D, if n>CMC (6-11)
Boundary conditions become
n(z,0) = A+60B (6-12)
d?
il kymin(n(0,t), CMC)(? maz —7) — ks? (6-13)
on
= D.— 6-14
Jrl._, (6-14)

6-3 Numerical Solution of the Partial Differential Equation

To verify the model, the diffusion equation was solved numerically. Three approaches to this were
attempted. An IMSL routine appeared promising, but was unable to deal with the non-linear bound-
ary condition. However, consistent results were obtained from two algorithms using the method of
lines in Matlab.

The method of lines is a technique which reduces a partial differential equation to a system of
ordinary differential equations. This system can then be solved using standard techniques. One
team used the Matlab routine ODE45 to solve it. The other team wrote an Euler solver. Both
resulted in the same solution when the initial concentration was lower than the CMC.
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The method of lines discretizes the partial differential equation along the z-axis. That is, n(x,t) is
subdivided into N + 1 functions 7;(t), where

ni(t) = n(iAx,t), i=0,1,...,N, (6-15)

for some given interval Az. Each of these is then followed along a ‘line’ in the t¢-direction by the
ordinary differential equation solver.

In the interior of the domain, the relationship between the functions 7;(t) is determined by the
diffusion equation (6-9) using the finite difference method. Thus,

dTh‘ D (m+12+m) (mx;m) - D (m+;7i71) (nrAn;ﬂ) ' 1
—_— = =

, A 6-16
dt AV ’ T ( )
Assuming symmetry, the boundary at i = N, corresponding to the inside of the waterfall, requires
no flux of surfactant. That is, %"—;V = 0. This is enforced by setting
dnpy ~ dnn 1
— = , 6-17
dt dt ( )

ensuring a horizontal slope there. Initial conditions are given by the initial concentration,

7:(0)=10"% i=1,... N. (6-18)

In the first numerical scheme, the equation in 79 was removed and equation (6-13) in ? was added to
the system. Then 70(t) was found algebraically, using the finite difference form of equation (6-14),

DA — by min(no, CMO)(? mae —7) — ho?. (6-19)

The results were encouraging, and are presented below for the surfactants having a CMC greater
than the initial concentration of surfactants.

In the second numerical scheme, the boundary condition given in equation (6-13) is simplified.
Analyzing the stability for the worst-case scenario (when 7y(t) > CMC), we require that

(kyCMC + k) At < 1. (6-20)

Since ky/kf = 107?CMC, and ky = 107°, this ordinary differential equation requires At < 1078,
The condition for stability of the partial differential equation, however, is %IAJ < 1, where D, =
1078, Thus the partial differential equation requires At < 1072,

This is a stiff system, with the time-scale of 7 being much smaller than the time-scale of . What this
really means, however, is that the concentration at the surface equilibrates virtually instantaneously

d?
with the concentration at the subsurface. That is, on the micro scale, i 0. Solving equation
(6-13) gives
min(ng(t), CMC)

? - ? maxr . . 6_21
min (o (t), CMC) + 10 3CMC (6-21)
. .. . . d? on
Differentiating this (on the macro scale!) and recalling that i DCB_ , we have
€T x=0
i De 3t (m(t)+107*CMC)’

T _ e .m0 < CMC. (6-22)
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Critical Micelle Dynamic Surface Tension
Concentration (mol ¢cm~—3) (dynes cm~2) at 0.1 s
1-107% 53.0432
1-107° 41.98
1-10°6 30.54
1-1077 30.76
5-10°8 40.72
1-108 60.02
2.10°8 55.0450

Table 6-1: Computed dynamic surface tension as a function of initial surfactant concentration.

When 9 > CMC, the concentration at the subsurface is above critical. Therefore a no flux condition
is required. In finite difference form, the partial differential equation at the boundary becomes
Ono _ 2Dy, (m — o)

T v v CMC. (6-23)

Finally, since we are assuming that 19(0) ~ 7 (0), initially

m0(0) = 0. (6-24)

The numerical scheme is now complete. Ordinary differential equations (6-16), (6-17), (6-22), and
(6-23) together with initial conditions (6-18) and (6-24) form the system comprising the method of
lines.

6-4 Results

We solved the diffusion equation (6-9) numerically for a variety of critical micelle concentrations
of surfactant. The initial surfactant concentrations and computed surface tensions are reported in
Table 6-1 and experimental data obtained from Eastman-Kodak are in Table 6-2. These data are
plotted on the same set of axes in Figure 6-1.

Critical Micelle Dynamic Surface Tension
Concentration (mol ¢cm™—3) (dynes ecm~1) at 0.1 s

1.0-1077 41

1.5-1077 30

1.566- 1077 59

1.95-1077 56.5

3.5-1077 29

2.0-1076 33

2.0-107° 43

Table 6-2: Experimentally measured dynamic surface tension as a function of critical micelle con-
centration (CMC). The initial surfactant concentration is ng = 1076,
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DST as a function of CMC
T T T
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60 - + “theoryl.data" + o
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Critical Micelle Concentration (molicm2)

Figure 6-1: Comparison of experimental and theoretical dynamic surface tensions as a function of
critical micelle concentration. A small CMC corresponds to a strongly hydrophobic surfactant (a
molecule with a longer tail). The initial total surfactant density was n(0) = 10~% mol/cm?>.

Figures 6-2 and 6-3 show a three-dimensional plot of the total surfactant density as a function of
space and time for two important cases: (a) CMC > n(0) and (b) CMC < n(0). In the first case,
all the surfactant is in the highly mobile monomeric form, and the surfactant rapidly accumulates
on the surface. There is an early minimum in the sub-surface surfactant concentration folowed by
an equlibration phase which is nearly complete in 0.1s. In the second case, much of the surfactant is
in micelle form and the diffusion process slows down the accumulation of surfactant on the surface.
Figures 6-4 and 6-5 shows the surfactant density on the surface of the curtain (?) as a function of
time for two important cases: (a) CMC > n(0) and (b) CMC < 1(0). The slower accumulation of
surfactant on the surface can be seen clearly in the second figure.

7
/////////
W 2

Figure 6-2: Total surfactant density n(t) (mol cm™32, vertical axis) as a function of space (measured

from the air-fluid boundary in cm, x-azis) evolving over time (for 0 <t < 0.1s, y-azis) and CMC=
1075 mol em=3. Computations were performed with a finer mesh than shown; the spatial mesh width
was Az = 10" %cm and approzimately 5000 time steps were used.
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Figure 6-3: Total surfactant density n(t) (mol cm™3, vertical axis) as a function of space (measured
from the air-fluid boundary in c¢m, x-azis) evolving over time (for 0 <t < 0.1s, y-azis) and CMC=
10~8 mol em™3. Computations were performed with a finer mesh than shown; the spatial mesh width
was Az = 10 %cm and approzimately 5000 time steps were used.
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Figure 6-4: Surfactant density on the surface of the curtain (?, mol cm™?2, vertical azis) evolving
over time (for 0 < t < 0.1s, horizontal azis) for CMC= 10"° mol cm 3.
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Figure 6-5: Surfactant density on the surface of the curtain (7, mol ecm™2, vertical axis) evolving

over time (for 0 <t < 0.1s, horizontal azis) for CMC= 10"8 mol cm=3.

6-5 Conclusions

The excellent agreement between the experimental data and a simplified computational method
suggest that the anomalous increase in dynamic surface tension (DST) for increasingly hydrophobic
surfactants is in large part explained by our diffusion model. The initial decrease in DST with
increasing hydrophobicity (shown by decreasing CMC on the right hand side of Figure 6-1) is easily
understood. The longer surfactants are better at reducing the DST. Surfactants with a CMC smaller
than the initial surfactant density of 107 mol/cm?® form micelles in the holding tank and the slower
mobility of the micelles in the diffusion process described above accounts for the larger DST after
0.1s.
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