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FOREWORD BY THE PIMS DIRECTOROver the past two years, the Paci�c Institute for the Mathematical Sciences (PIMS) has worked toprovide new and innovative ways to further its goals, and high on its priority list has been the trainingof young mathematical scientists whether they are pursuing careers in academia or in industry.The Graduate Industrial Mathematics Modeling Camp (GIMM) was conceived to providegraduate students with learning opportunities and extensive training in the modern methods ofapplied mathematics, in order to prepare them for the PIMS annual Industrial Problem SolvingWorkshop.The �rst GIMM was held at Simon Fraser University, May 24 - May 29, 1998. Forty Canadian gradu-ate and near-graduate students came to Simon Fraser University to work with �ve mentors on varioustechniques for modeling industrial problems. The following report describes the proceedings of thatinnovative workshop. The students came from 12 universities across Canada: SFU, UBC, UCalgary,UAlberta, UVictoria, UToronto, McGill, UWO, UWaterloo, UQuebec at Sherbrook, UManitoba andQueens University. I am pleased to announce that the program was an UNQUALIFIED success.The mentors |as well as many who were around the SFU Math, Stats and Computer Sciencedepartments| surely felt and commented on the excitement and the impressive amount of energyand commitment of the students in the group.Following the workshop, PIMS arranged for all the students and most mentors to join the secondPIMS Industrial Problem Solving Workshop which was held this year at the University of Calgary,June 1 - June 6. Together with a mix of faculty from various Canadian and international universities,the students had a chance to try out their newly acquired skills on industrial problems ranging fromdetecting land mines to modeling the �nances of building planes. The level of energy and prepared-ness of the graduate students from the GIMM was widely remarked by many of the experiencedEuropean participants.Workshops like this one are only possible through the very hard and sel
ess work of many PIMSscientists. The concept of the training camp became a reality thanks to the e�orts and determinationof Dr. Keith Promislow from the SFU mathematics department and Dr. H. Huang, the PIMSindustrial facilitator for British Columbia. I want to express my appreciation to both of them andto all the colleagues who have helped along the way. The next Industrial Mathematics ModelingCamp will be held in the Spring of 1999 at the University of Alberta, to be followed by the 3rdIndustrial Problem Solving Workshop to be held at the University of Victoria. We will be lookingforward for the continuation of this story of dedication and success.Dr. Nassif Ghoussoub, DirectorPaci�c Institute for the Mathematical Sciences
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EDITOR'S PREFACEThe inaugural Graduate Industrial Mathematical Modeling Camp (GIMM) of the Paci�cInstitute for the Mathematical Sciences (PIMS) was held at Simon Fraser University from May 24- May 29, 1998. Close to 40 graduate and soon to be graduate students from universities acrossCanada participated in the modeling camp. They were guided by �ve mentors from industry anduniversities in Canada, the United States and the United Kingdom.The objective of the camp is to provide a stimulating environment and a valuable learning experiencein innovative techniques for approaching hard industrial mathematical problems for the studentsprior for the students priori to their participation in the annual PIMS Industrial Problem SolvingWorkshop (PIMS-IPS). This year 27 of the participating students went on to participate inPIMS-IPS in Calgary, June 1 - June 6, 1998.Format of the Modeling CampThe format of the modeling camp followed the �ve-day format of PIMS-IPS so that students wouldknow what to expect the subsequent week. On the �rst morning, the students were introducedto �ve problems presented by the mentors. The students then selected a problem they wanted toconcentrate on for the remainder of the week. By the afternoon of the �rst day, these teams wereworking intensively to understand the problem. For the next three days, under the guidance of theirmentors, the students devised models for attacking the problem, wrote computer programs, spentmany hours in the library and often had impromptu meetings late into the night working with theirteams.The teams had a chance to exchange ideas at various breaks throughout the day. In the middle ofthe week, the students heard two invited presentations on industrial modeling. Les Scovell (SimonsInternational Corporation) talked about the hard optimization problems their �rm encounters whendesigning and building large installations (factories, mines, etc). Dr. Anthony Pierce, (Math, UBC)gave an overview of PIMS-IPS 1 and told the students what they could expect in PIMS-IPS 2. Onthe �nal day each group presented their results.The culmination of the week's work by each team is found in this proceedings. In many cases, teamscontinued working on their problem after the camp; these e�orts are also reported here.AcknowledgmentsPIMS is indebted to a number of individuals and organizations for the time and energy they put into make the camp such a success.� The main driving force behind the modeling camp was the organizing committee. This wasthe �rst such camp in Canada and required a huge commitment. In particular Dr. KeithPromislow (Math & Stats, SFU) who chaired the organizing committee was the real drivingforce behind the workshop. His dedication and organizational skills ensured that the workshopran smoothly.� The �ve mentors did a wonderful job selecting appropriate problems for the students. Theywould often stay up late with the students working into the night and de�nitely infected theirteams with their energy and enthusiasm.� I wish to thank the people who helped me produce these proceedings during and after theworkshop. PIMS is thankful to all teams for putting considerable e�orts into writing theirreports. ii



� The PIMS o�ce sta� at UBC and SFU sites (Emma MacEntee, Tania Carpentier, ShannonPhillips, Thomas Uphill and Dorota Rygiel) and Michele Titcombe (Math, UBC) providedwonderful administrative assistance.� PIMS acknowledges the Faculty of Science, the Department of Math & Stats Computer, theSchool of Computing Science, and the Institute of Applied Algorithms and Optimization Re-search all at SFU for providing many resources for the camp.Structure of this ProceedingsWe intend to use this proceedings to document the �rst PIMS graduate industrial mathematicsmodeling camp as well as to provide some insights on mathematical modeling in a workshop setting.A short introduction of the workshop, given by K. Promislow, is followed by �ve separate reports.Each report gives a statement of the problem and then the various approaches taken in attackingthe problem. A list of the participants is included at the end of this proceedings. I would like toapologize in advance for any errors that have crept into any report.Dr. Huaxiong Huang, EditorPaci�c Institute for the Mathematical Sciences
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Chapter 1IntroductionMathematical modeling is the process of breaking apart a physical problem or process into itsirreducible parts, making a mathematical cast of each piece, and attempting to reconstruct theresultant odd bits into a whole with some functionality. It is by nature a trial-and-error, iterative,brainstorming, sociable, frustrating, and at times, gratifying task. The goal of this camp was toprovide graduate students in the mathematical sciences with a taste of this peculiar elixir; not unlikean intoxicating �rst visit to the country whose native language and culture one has studied fromafar.A total of 36 graduate and near-graduate students from 12 Universities across Canada participatedin this inaugural event. Mentors from Kodak, University of Minnesota, University of Southampton,UBC, and SFU each presented a favorite modeling problem to the students, who through self-selection were divided into groups of seven to ten. For �ve intensive days, under the gentle guidanceof their mentor, each team broke down and built up models of their process. The event culminatedwith the oral presentations and a written report from each group.The modeling camp was one part of the PIMS Industrial Forum, and as such the students im-mediately continued their mathematical modeling e�orts at the PIMS Industrial Problem SolvingWorkshop at the Univeristy of Calgary, June 1-6 (PIMSIPS 2). Together with a mix of faculty fromvarious universities they worked in teams on problems straight from industry.As a whole the program was highly successful. The group had great excitement and energy; re-markable even to several long-time participants in such events. Each of the mentors went out oftheir way to remark on the considerable progress their team had made. Indeed, Chris Budd { anan member of the original Oxford Study Group, now the preeminent European Study Group andthe organizer of a recent meeting in Bath, England { indicated that they may adapt the PIMS Fo-rum style (mentored graduate student camp as warm-up for a mixed faculty-grad student industrialsession) to their ongoing e�ort.The written reports are compiled in the sequel. It is hoped that they will provide some insight intothe process of model building and guidance for those who endeavor to establish a mathematicalmodeling camp or classroom course.Keith PromislowChair, Organizing CommitteeDepartment of Mathematics and StatisticsSimon Fraser University 1-0



Chapter 2Tra�c Signals
Participants: L. Goddyn (Mentor), A. Amariei, D. Gaur, K. Hare, K. Kwok, J. Madden, S.Mitrovic-Minic, R.W. TsePROBLEM STATEMENT: The problem is one of sequencing the cycle of a tra�c light at alarge intersection. Certain pairs of tra�c movements are forbidden to occur simultaneously (eg.East-North left-hand turn time interval should be disjoint from the West straight through timeinterval). The problem is to �nd a sequencing of the lights of shortest possible duration avoidingsuch forbidden con
icts. This problem is closely related to the computation of a di�cult andunexplored graph parameter called \star-chromatic number".
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CHAPTER 2. TRAFFIC SIGNALS 2-12-1 The ProblemThe problem is one of specifying an e�cient sequence for tra�c lights at a major intersection. Wemake the following simplifying assumptions regarding the tra�c 
ow at this intersection: that itis stable and that the intersection is isolated from other major intersections. These assumptionseliminate from consideration intersections at which tra�c 
ow changes a great deal over a shortperiod of time and those intersections whose tra�c 
ow is strongly in
uenced by the tra�c 
owat nearby intersections. A reasonable example of such an intersection would be an intersection ofsuburban arterial roads, which tend to have few signals on them except where they intersect withother arterial roads. We would like to determine a cyclic patter for the tra�c lights that maximizesthroughput of cars and minimizes wait time, while disallowing combinations of tra�c 
ows thatwould tend to cause accidents due to con
ict of right-of-way.We construct a graph-theoretic model for the problem. Each vehicle enters an intersection from oneof k directions (e.g., North, South, East,West), and wishes to leave in one of these k directions. Wedisallow U-turns, so there are k(k�1) such pairs. Each of these pairs (e.g.:N-W, E-W, E-S) is calleda transition. Certain pairs of transitions are forbidden to occur simultaneously, so as to avoid con
ictof right-of-way. For example, an E-S left-hand turn would be forbidden during a S-N green light. Werepresent the forbidden-pair information with an undirected graph, where transitions correspond tovertices and two vertices are joined by an edge if and only if the corresponding transitions are notallowed to occur at the same time. When formulated in this fashion, the problem is closely relatedto the problem of coloring vertices in a graph, where two adjacent vertices (ones which are connectedby an edge) are not allowed to be assigned the same color.If we assume that the tra�c 
ows from each approaching road are uniform, the problem reducesto determining the star-chromatic number of a graph. In the case of non-uniform tra�c 
ows, weassociate a weight with each node, corresponding to (for example) the number of cars per cyclewhich pass through the intersection on the associated path. The problem is now one of arrangingthe arcs on a circle of minimum radius such that arcs corresponding to the adjacent nodes do notintersect.In Vancouver, only a restricted set of transition sequences are seen in practice. Generally, a left-turn signal appears before the straight-through green light. However, in our problem we make norestrictions on the ordering of transitions.We will also impose more simplifying (and less realistic) assumptions. We suppose that there are nosensors in the road way to test for the presence of cars, so that the tra�c signals' pattern will notchange in response to current conditions. All allowed transitions are explicitly signaled (so that, forexample, we do not allow right turns into tra�c when the signal is red). We further decree that thesignals shall change according to a �xed cyclic sequence having a �xed period.In each cycle, each transition v shall be allotted one contiguous time interval I(v) of duration P (v),during which the tra�c signal permitting v is green. We may view I(v) as an arc of length P (v) ina circle S. Thus our problem can be formulated as follows:Given a graph G with Vertex weights P, our problem is to �nd a mapping I from the vertices V(G)to the set of intervals of a circle S, such that1. the interval I(v) has length P (v),2. if uv is an edge of G then I(u) and I(v) must be disjoint,3. the circumference of S is as small as possible.



CHAPTER 2. TRAFFIC SIGNALS 2-2We shall call the minimum possible circumference of S the weighted-star-chromatic number of (G;P ).Some study has been made of the star-chromatic number in the case where P is uniform. However,we are not aware of any algorithm for estimating the star-chromatic number, even for this specialcase.This report is organized as follows. In section 2-2, we will describe the methods which we have usedto solve the problem. In section 2-3, we will present and discuss some results for the techniquesused. In section 2-4 we will present our conclusions, and in section 2-5 we will comment on the waysin which this work could be extended to make it more applicable to real-world problems.2-2 MethodsWe investigated three di�erent approaches, as follows:� Using local search to improve an initial feasible solution. Most of the work in this approachwas in the formulation of the linear program which computes the next move to be made.� Two slightly di�erent greedy algorithms.� Calculating the optimal solution using a commercial C++ optimization library. We modeledthe problem as a set of the disjunctive constraints which have to be satis�ed.The �rst two approaches try to �nd the circle of minimum circumference, whereas the greedy al-gorithm tries to �t the arcs on the shortest possible interval. These two approaches correspond tocalculating the weighted star chromatic number and calculating the weighted chromatic number.The reason for investigating approaches other than calculating the optimal value directly is thatcalculating the chromatic number is known to be NP-hard and thus the number of steps required tocalculate the optimal solution goes up exponentially with the size of the problem. Since calculatingthe star-chromatic and weighted star-chromatic numbers are clearly problems that are at least ashard as calculating the chromatic number, it is not considered feasible in general to �nd optimalsolutions. Thus, while we calculated optimal solutions where possible so as to determine the e�ec-tiveness of our heuristic approaches, these heuristics are not expected to �nd the optimal answer ingeneral.2-2.1 Local search using Linear ProgrammingThe problem of minimizing the signal plan cycle (and maximizing intersection throughput) can besolved by �nding the weighted star-chromatic number of the con
ict graph. In this section we presenta local search heuristic for calculating the star-chromatic number of a graph.Given (G;P ) and any orientation ~G there is a linear program LP (to be described later) whosesolution is an upper bound of the star-chromatic number of G.Our goal is to �nd an orientation of ~G or G which minimizes or nearly minimizes the upper bound ofthe star-chromatic number. The LP is feasible provided ~G has no directed circuits. Thus an initialsolution is obtained by ordering the vertices of G and orienting all edges toward the larger endpoint.Upon solving LP~G, another orientation ~G0 is obtained by reversing some arc of ~G. This arc is chosenfrom a list of candidate arcs either randomly or via a meta-heuristic such as tabu search (see below).The list of candidate arcs is obtained by analyzing the dual optimum of LP~G. (Any arc e whose



CHAPTER 2. TRAFFIC SIGNALS 2-3dual variable for we � xe is non-zero is a candidate for reversing.) The new LP is obtained fromLP~G by multiplying the appropriate column of M by -1.The heuristic can be described as follows:� Step 1: Find an initial solution, i.e., an initial graph orientation ~G.� Step 2: Find an upper bound of the star-chromatic number by using the linear programcorresponding to ~G.� Step 3: Reverse the orientation of one edge in ~G. Go to Step 2.The choice of the edge to be reversed in Step 3 can be made in several di�erent ways. One possibilityis a simple random selection, after which the algorithm will continue from this new solution regardlessof the solution's optimal value. The randomness of the choice can be constrained to get bettersolutions. Another possibility is to implement a tabu search algorithm which will guide the movesfrom a solution to another from ~G to ~G0 in the following way:� Calculate the upper bounds of the star-chromatic number (solve LPs) for all graphs each ofwhich is made by reversing the orientation of a single edge from the list of candidate edges.These graphs comprise the neighborhood of the current solution ~G.� Move from the current solution ~G to the best neighbor ~G0, i.e., to the neighbor with thesmallest upper bound for the star-chromatic number.The procedures were coded in C, using the lp solve package athttp://ucsu.colorado.edu/~xu/software/lp/lp solve.html with a Maple front end. For graphshaving fewer than a few dozen edges, one thousand iterations of the process seems to be su�cientto produce an optimal or nearly optimal solution.Linear Program for calculating an upper bound of the star-chromatic numberGiven (G;P ) we compute edge weights wuv = [P (u) + P (v)]=2. For each orientation ~G of G weconsider the LP with variables t and fxe : e 2 E(~G)g:LP~G: minimize t subject to(1) we � xe � t� we, for each arc e of ~G,(2) Pe2C sgn(C; e)xe = 0, for each circuit C of G.Here sgn(C; e) = + 1 depends on whether e is directed in the same or opposite direction as (a �xedorientation of) C.Only a 
ow-space basis of m�n+1 circuits C need appear in (2), where n and m are the numbersof vertices and edges of G. (The set of fundamental circuits of any spanning tree of G will su�ce.)Hence the LP has 3m � n + 1 constraints on m + 1 variables. Any feasible solution (x; t) of LP~Gcorresponds to a legal sequencing y : V (G)! S of green lights over a time circle S of circumferencet. We obtain y form x by solving yM = x, where M is the constraint matrix of (2), and reducing ymodulo t.Any solution x of (2) is called a tension or potential. Kircho� and others studied potentials inthe context of electrical networks. One can derive from their work that the minimum possible



CHAPTER 2. TRAFFIC SIGNALS 2-4circumference for a given (G;P ) is exactlymin~G minft : (t; x) satisfy (1) and (2)gOur strategy here is to seek an orientation ~G of G which minimizes or nearly minimizes the valueof LP~G. The method is described in the previous section.2-2.2 Greedy AlgorithmThe basic idea of these heuristics is to pick the `most problematic' vertex to add to the partialsolution at all times. The idea is that the vertices which have the greatest number of con
icts,largest weights, etc. should be added early rather than late. If they are added late in the process,the program may not be able to overlap the vertices' associated segments with any other, and thuslarge intervals will be appended to the end of the interval. A sketch of the algorithms follows: Pickthe �rst vertex with (1) largest weight and (2) highest degree.The di�erence between the two greedy algorithms is in the method of selecting the node to be placedat each iteration. The priorities for vertex selection for Method 1 are as follows:1. Vertex with the largest number of con
icts with vertices already placed2. Vertex with the largest weight3. Vertex with the highest degreeMethod 2 is similar to Method 1, the only di�erence being that the priorities used in Method 1 areordered 2, 1, 3.Once a vertex has been selected, its corresponding line segment then must be placed on the interval.We want to do this in such a way as to minimize the total length of the interval. Thus, we place thestart of the vertex's segment as close to zero as possible, and allow the segment to overlap with anynon-con
icting segments.To do this, we must avoid con
icts with segments that have already been placed. (Once a segmenthas been placed, it is not moved.) We try to �t the current segment after each con
icting segment.To maximize e�ciency, we maintain a list of the con
icting segments, sorted in increasing order tothe right endpoint of each segment. If the segment won't �t, we move on to the next con
ictingsegment and try again.Using cliquesA clique in the con
ict graph yields a lower bound on the length of the tra�c light cycle. Speci�cally,since all members of a clique con
ict with one another, the cycle cannot be any shorter than thesum of the weights of the elements of the clique.This fact implies that one should employ a preprocessing step consisting of �nding the clique ofmaximum weight and placing the elements of this clique one after another. We note that the cliqueof maximum weight and the clique containing the largest number of vertices may not be the same,since the vertices are weighted. However, �nding the maximum-weight clique is almost certainlyNP-hard, since we know that �nding a maximal clique, which appears to be easier, is NP-hard.



CHAPTER 2. TRAFFIC SIGNALS 2-5Nevertheless, a limited version of this preprocessing step may be both useful and feasible. If werestrict ourselves to �nding the clique of maximum weight of three or fewer nodes, for example,this can be accomplished in O(n3) time by checking all combinations of three nodes, which takesn(n� 1)(n� 2) steps. Since the greedy algorithms, for example, are also in O(n3) on dense graphs,doing this is `free', asymptotically speaking, and yields a solution that is at least as good, and ingeneral better, than a solution which starts from an arbitrary vertex. In the current implementation,we use a trivial form of this preprocessing by choosing the clique of maximum weight of size 1.Some result on local optimalityIn this section we will argue that the solution produced by the greedy algorithm cannot be compactedany more (or at least not in a straightforward fashion; we do not claim that the greedy algorithmyields an optimal answer). We will assume that the reader is familiar with the basic results aboutinterval graphs (for a nice introduction see Graph Theory by West). Consider the solution obtainedby the greedy algorithm. If we construct a graph in which the nodes are the intervals and edgescorrespond to overlapping intervals, then the graph is an Interval Graph. Interval graphs have perfectelimination orderings. This means that we can compute the shortest interval needed to representthe interval graph on the number line in polynomial time.Without loss of generality we can assume that the shortest interval on which the interval graph canbe laid out starts at 0. The greedy algorithm tries to �t the next interval at the earliest possiblelocation. This constraint tells us that it is not possible to move the interval any more to the left,and thus reduce the total width. In fact it can be shown that the greedy algorithm computes theperfect elimination ordering. This implies that the solution obtained by the greedy algorithm cannotbe compacted, and is therefore locally optimal.Compressing the solution onto a circleGiven a solution on the interval, the following procedure places the solution on the circle. In theprocess, it tries to decrease the circumference of the circle from its initial value of the length of theinterval. This is accomplished by allowing segments to \wrap around" the endpoints of the interval,which are now identi�ed as a single point on the circle.Case 1: Only 1 interval touches the boundary, say x.(a) We save S �max(intervalends 6= x).(b) Look at all intervals adjacent to x in the graph, and calculate min(start(y) � end(x)) 6= 0(mod S)1. For all y adjacent to x such that start(y) = end(x), we put y into A.(c) For all x 2 A repeat (b).(d) Terminate when either the original x appears in A (in which case we have a tight circle, andwe cannot compress), or A = ;, in which case we compress by the minimum of all the numberscalculated.Case 2: If there is more than one interval then we calculate this value for each of them and compressby the minimum of all of them.We repeat this process until no more compressions are possible.1Note if we wrap around the circle n times, to get there we use (start(y) � end(x))=n.



CHAPTER 2. TRAFFIC SIGNALS 2-62-2.3 Optimal Solution Using Ilog SolverThe problem of �nding the weighted star-chromatic number of a graph can be formulated as thefollowing constraint satisfaction problem:In what follows we assume that xi denotes the mid-point of interval i (which corresponds to thenode i in the incompatibility graph). wi denotes the weight of the node i (or the length of the arcassociated with node i). The incompatibility graph is G = (V;E).Minimize y subject towi + wj2 � jxi � xj j � y � wi + wj2 for all (xi; xj) 2 E(G)and 0 � xi � y for any iWe used the Ilog Solver2 to �nd optimal solutions to the above mentioned set of constraints. Wegratefully acknowledge Junas Adhikary for the help provided on the Ilog package.2-3 TestingThere were two approaches considered for testing: creating a series of random graphs, which wouldallow us to characterize the overall performance of the various approaches and creating a series ofgraphs which corresponded to what we considered realistic intersections. Since the motivation forthis project was to derive useful approaches for calculation e�cient tra�c signal cycles, rather thanapproaches for calculating the weighted star-chromatic number of a graph, we decided on the latterscheme.The tests were constructed as follows: we created three classes of graphs, corresponding to 3-way,4-way and 5-way intersections. Since we lacked experimental data, we assigned weights to the tra�c
ows (vertices) that seemed to accord with our empirical knowledge of tra�c patterns. Each memberof a given class of graphs di�ered from the other members of its class by an amount that dependedon a single variable, which corresponded roughly to time of day.We hoped to use these tests to determine two things. We wanted to measure the relative performanceof the heuristics on graphs whose structure was reminiscent of actual tra�c patterns observed innature (as well as their performance relative to the optimal solution). We also wished to do some sen-sitivity analysis on the weights of the nodes, to determine, among other things, how these algorithmsmight be used in an adaptive tra�c signal network.Unfortunately, we did not have the time to collect su�cient data to come to any de�nite conclusions,or to engage in a great deal of analysis. Based on our limited results, however, it appears that theLP method and the two greedy algorithms have comparable results on the classes of graphs that weinvestigated. No algorithm had signi�cantly better performance overall, although there were somedi�erences in the quality of the solution in a few cases.2A C++ library for Constraint Programming.



CHAPTER 2. TRAFFIC SIGNALS 2-72-4 ConclusionIn this document, we modeled the problem of �nding a signal plan for an isolated intersection as agraph theoretic problem. In particular, we have computed the weighted star-chromatic number ofan undirected graph.We tested the three approaches on almost real world data (constructed over a period of a day).We modeled intersections with 3, 4 and 5 roads converging. We generated 11 instances for eachintersection size by varying the tra�c 
ows in a systematic fashion. Optimal solutions computedusing Ilog were used to rate the performance of the greedy and the local search approaches. Localsearch and greedy almost always found the optimal solution. However, given the size of the data setand the assumptions, we cannot comment on the robustness of the approach. It remains to be seenhow the techniques would perform on real world data.2-5 Future WorkIn this document we have studied the case for an isolated intersection. The real world applicationis closer to the online version of the problem of �nding the weighted star-chromatic number. Inthe online version the tra�c 
ows change continuously. Ideally, what we would like to do is obtaina family of related solutions, which have the property that while the sizes of the intervals mightchange, the relative orderings will remain relatively stable. This would allow the tra�c signal toadapt to tra�c patterns without unduly confusing the drivers. We believe that our algorithms canbe adapted to the online version of the problem.It should be noted that the problem is NP-hard (Garey and Johnson). Furthermore, even �ndingapproximations within a factor or n1+� is NP-hard (Arora et. al.). Not much is know aboutthe special classes of graph for which the problem can be solved in polynomial time. It would beinteresting to investigate the existence of a dichotomy theorem (similar to Schaefer's for satis�ability,Hell et al. for graph homomorphism). Given the abundance of the negative results for the problem,we advocate the use of greedy approaches tailored to the input data as a cost e�ective solution.The local search method can be made complete (so that it would �nd solution if one exists) by usingthe reserve search technique (Avis and Fukuda) for enumerating the vertices of a convex hull. Itremains to be seen if a complete algorithm based on reverse search would perform any better orworse in practice when compared to the current implementation based on tabu search. It should benoted that such an algorithm would take exponential time in the worst case.



Chapter 3Optimal Policies for QueueingSystems
Participants: R. Kuske (Mentor), B. Bart, M. Titcombe, Y. Lucet, S. Kavousian, S. Jensen, A.Sheshnev, K. El-Yassini, M. NeaguPROBLEM STATEMENT: There are several conceptually simple problems which could bestudied. These include make-to-stock production systems in which costs are incurred in productionand held inventory, with competition between processes for a server, and queueing networks in whichcustomers require more than one type of service, with again competition for service. These problemscan be studied using either stochastic processes or deterministic 
uid 
ow models. One can startby studying small systems to gain some intuition and works his/her way up to larger systems. Onecan use simulations as well as analytical tools.
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single biscuits
(Stage 2)

biscuits + cream
(Stage 3)

holders (Stage 1)
empty cookie

Stage 1 Stage 3

finished cookies

Machine 1 Machine 2

Figure 3-1: The Oreo Cookie Queuing Model.3-1 Modeling a Queueing System - Simulation Approach3-1.1 IntroductionThe production of Oreo cookies can be modelled by a 3-step process. The Oreo cookie factoryhas two machines. The �rst machine adds a biscuit to a cookie in a progress and the second addsthe cream �lling. The process is analogous to the queuing system shown in Figure 3-1. Becausemachine 1 can service only one of stage 1 or stage 3 at any given time, it is equipped with a switchto de�ne which service it is providing. Each stage is equipped with a queue which will begin to �llif the machine's service rate is slower than the arrival rate of the queue. We shall now de�ne somequantities.De�nition 1 For the Oreo cookie system, let Qi represent the queue at stage i and let Qi(t) representthe number of partially completed cookies in Qi at time t: Furthermore, let �i be the service rate ofQi and let � be the arrival rate to Q1: The system is said to be neutrally stable if the all queue sizesare bounded above for all time.Stability is highly dependent on the algorithm we use to change the switch. It is known that if weuse the optimal switching strategy, then the system is neutrally stable if1� > 1�1 + 1�3 and 1� > 1�2 (3-1)Unfortunately, to employ the optimal switching strategy, we must assume that we can constantlymonitor the system and its queues. This would be a realistic model if a computer was monitoringthe system.But suppose that for reasons of a�ordability, job unions, etc. that Nabisco does not have such amonitor available. Instead, they will pay a human to change the switch. Hence, we introduce Mr.Christie, our factory worker hero who, of course, makes good cookies. Mr. Christie's switchingalgorithm is as follows.



CHAPTER 3. OPTIMAL POLICIES FOR QUEUEING SYSTEMS 3-2loopdrink co�ee for t1 minutesa: dummy statementchange the switchend loopwhere the co�ee break time t1 is Mr. Christie's single parameter. There are two questions to beanswered.1. (Nabisco's Problem) If Nabisco wants to provide Mr. Christie with co�ee breaks of t1 minutes,then what size will Nabisco need to build the queues so that no cookies over
ow a queue?2. (Mr. Christie's Problem) If Mr. Christie runs a machine with speci�ed queue lengths, thenwhat is the longest time that Mr. Christie can have a co�ee break without over
owing any ofthe queues?It is clear that these questions are the converses of each other.3-1.2 AnalysisAnalysis of each possible step was found to be too di�cult because there were too many cases toconsider. In light of practicality, we have chosen the simulation approach. In our simulation, we let1�1 = 3 minutes1�2 = 8 minutes1�3 = 6 minutes1� = 10 minutesOne important simulation issue is how Mr. Christie handles partially serviced cookies when hisco�ee break ends. He could abort the service and leave it to be processed until later, but then (3-1)would not hold anymore. To ensure that (3-1) holds, we add dummy statement a to the algorithm.a: wait until partially serviced cookie in machine 1 has �nishedThe simulation was carried out on a SPARC ULTRA 1. A graph of maximum queue size againsttime is shown in Figure 3-2.3-1.3 ResultsFor all choices of t1, the system reached an equilibrium state (i.e. the system was neutrally stable).The graphs of Q1(t) and Q2(t) are clearly linear with slopes 0:2000 and 0:1786, respectively. Thegraph of Q3(t) appears to be a region, rather than a line. Upon closer examination of this graph inFigure 3-3, Q3(t) is very jumpy. The slope of the peaks of Q3(t) is 0:2194 and the troughs drop by
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Figure 3-2: Queue size virsus co�ee break time.

Figure 3-3: Queue size virsus co�ee break time: a close-up.
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Figure 3-4: Queue size virsus non-deterministic co�ee break time.7% of the peaks from time to time. It has been suggested that dummy statement a is the cause ofthis occasional drop.Given that Mr. Christie is only human, it might be fair to assume that his co�ee break time is arandom function. Figure 3-4 shows a graph of the maximum queue sizes if Mr. Christie's co�eebreak times are random subject to a binomial distribution. Notice that the sporadic nature of Q3(t)has ceased. The trendlines have slopes 0:2098, 0:1893 and 0:2255, for queues 1, 2 and 3, respectively-a 6% increase.3-1.4 ConclusionsIn a practical sense, running a simulation to determine the appropriate way to build a machine isan e�ective solution to the Oreo cookie problem. We have concluded that for regularly spaced co�eebreaks, the maximum queue size is a linear function of the co�ee break time, t1: The maximum queuesize almost remains linear for the random co�ee break times. To justify the practicality of long co�eebreaks, Nabisco may require Mr. Christie to monitor many cookie machines on the factory 
oor,thereby 
ipping many switches at interval t1, rather than drinking so much co�ee.



CHAPTER 3. OPTIMAL POLICIES FOR QUEUEING SYSTEMS 3-53-2 Queueing Problem for an Open System - Discrete Ap-proach3-2.1 IntroductionWe consider a simple system on which we study di�erent queueing strategies. In section 3-2.2 weconsider the objectives of the company's management. Mathematical model of the above problem isde�ned in section 3-2.3. The transition diagram between di�erent states of the system is described insection 3-2.4. In section 3-2.5 we state the necessary conditions for the existence of neutrally stablecycles. We also present results for various system parameters. The participants of this subgroup areJanez Ales, Shane Jensen and Yves Lucet.3-2.2 Management ObjectivesWe consider a simple system devoted to the construction of an OREO cookie. Two servers arepresent, one for the wafer component of the cookie, and one for the creme �lling. A total of threeprocesses are needed, which are: (1) a bottom wafer being generated by Server I; (2) white �llingbeing added by Server II; and (3) a top wafer being added by Server I. This is illustrated in Figure 3-5.Since our �rst server must process two di�erent jobs, a priority policy must be introduced. Threedistinct priority policies are considered: Job 1 �rst, Job 3 �rst and Job 1 and 3 weighted equally.Based on intuition, we make two assumptions: (1) Job 1 and Job 3 are individually faster than Job2 and (2) Job 1 and Job 3 together take more time than Job 2. The objective of the company'smanagement is to minimize the processing time for a cookie.
Process 2

Process 3

Process 1
Server I Server IIFigure 3-5: Schematics of the model.3-2.3 Mathematical ModelIn order to simulate the states of the above mentioned system we introduce some system parameters.Let � be the arrival rate of the cookie holders to the Server I in a unit time (objects/time), let �ibe the processing speed for Job i (objects/time), let ui be the dedication of a server to Job i, andlet xi be the queue size of Job i (objects), for i = 1; 2; 3.Assumptions made in section 3-2.2 lead to the following conditions imposed on system parameters:�2 � min(�1; �3); (3-2)and 1�2 � 1u1�1 + 1u3�3 : (3-3)To ensure stability of the system the time needed to process one object on Server I must be smallerthan the interval time in which objects are arriving to the queue for Job 1. Also, the processing



CHAPTER 3. OPTIMAL POLICIES FOR QUEUEING SYSTEMS 3-6Table 3-1: State variables of the integral system.Queue State 1 State 2 State 3 State 4 State 5 State 6 State 7x1 ��1 � 1 ��2 ��3 ��1 � 1 ��3 ��1u1 � 1 ��2 � �1u1�2x2 1 -1 0 1� �2�1 ��2�3 1 �1u1�2 � 1x3 0 1 -1 �2�1 �2�3 � 1 -1 ��3u3�2 + 1time for Job 2 has to be smaller than the interval time of the arrivals. Hence, we get the followingtwo conditions: 1u1�1 + 1u3�3 � 1�for Server I and 1�2 � 1�for Server II.Three distinct priority policies are considered: Job 1 �rst, that is, u1 = 1 and u3 = 0, Job 3 �rst,u1 = 0 and u3 = 1, Job 1 and 3 weighted equally, u1 = �1�1+�3 and u3 = �3�1+�3 ,3-2.4 States of the SystemWe describe all the possible states of the system in the state transition diagram in Figure 3-6. Forexample, when system is in idle state (State 0) we have all queues empty, that is, x1 = x2 = x3 = 0,and State 7 corresponds to all queues being non-empty, x1; x2; x3 > 0. As one will notice the numberof possible states can grow exponentially in the number of queues considered.3-2.5 Stability of CyclesUnder each of the three priority policies mentioned in section 3-2.3 three types of cycles are possible:stable, neutrally stable, and unstable, depending on the stability conditions (3-2) and (3-3).Neutrally stable cycles appear when the system cycles between the states without queue growth orreturn to the idle state. In order for the system to reach idle state it has to have all queues emptyfor a non-zero time interval. That is, whenever the system gets a new arrival at the same time thenall queues are emptied we consider a direct transition from State 3 to State 1, (see Figure 3-6). Thenecessary condition for the existence of a cycle is that the sum of the changes in the queue size has toadd up to zero for every queue. All the state variables are listed in Table 3-1. In order to satisfy ournecessary condition for a neutrally stable cycle, we must �nd all combinations of the columns whichsum to zero, i.e., A~y = ~0 with yi = 0 or 1 where ~y = (y1; y2; :::; y7)T and the elements of matrixA are the state variables listed in the table. Diaz-Rivera, Armbruster, and Taylor [2] consideredthis integral system in a re-entrant queueing problem. Integer solutions to linear system are used todetermine neutrally stable cycles for an entire range of arrival rates and processing speeds under theequal weight priority policy. Notice, that the above condition is only necessary, but not su�cient.Thus, not all integral solutions lead to cycles. Therefore, it is necessary to check if the given integralsolution is indeed a cycle in the transition diagram.Our objective was to characterise the periodicity between the di�erent states this system can achievefor given arrival rates and processing speeds of our servers. Several examples of stable and unstable
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State 7Figure 3-6: Diagram of state transition with the arrows indicating the transitions between states. Inaddition to an idle state, seven non-idle states are possible for our system, each corresponding to adi�erent combination of non-zero queue sizes.cycles were examined under each priority policy. This determines the behaviour of the system forgiven initial conditions, and some of the results are summarized in the following.1. Neutrally stable system (� = 1, �1 = 3, �2 = 2, �3 = 6, and time is 1).For priority u1 = 0 and u2 = u3 = 1, two solutions are~y = (1; 1; 0; 0; 0; 1; 0)T ;~y = (1; 1; 1; 0; 0; 0; 0)T :For priority u1 = u3 = 0:5 and u2 = 1, there is only one solution~y = (1; 1; 1; 0; 0; 0; 0)T :For priority u1 = u2 = 1 and u3 = 0, there are two solutions~y = (0; 1; 1; 0; 0; 1; 0)T ;~y = (1; 1; 1; 0; 0; 0; 0)T :



CHAPTER 3. OPTIMAL POLICIES FOR QUEUEING SYSTEMS 3-82. Stable system (� = 1, �1 = �2 = �3 = 4 and time is 3/4).For three di�erent priorities tested: u1 = u3 = 0:5 and u2 = 1; u1 = u2 = 1 and u3 = 0; andu1 = 0 and u2 = u3 = 1, there exists only one solution~y = (1; 1; 1; 0; 0; 0; 0)T :3. Unstable system (� = 4, �1 = �2 = �3 = 1 and time is 2).For priority u1 = u3 = 0:5 and u2 = 1, there are two solutions~y = (0; 0; 0; 1; 1; 1; 0)T ;~y = (1; 0; 1; 1; 1; 0; 0)T :For priority u1 = u2 = 1 and u3 = 0, we have four solutions~y = (0; 0; 0; 0; 1; 1; 0)T ;~y = (0; 0; 1; 0; 1; 1; 1)T ;~y = (0; 0; 1; 1; 1; 1; 0)T ;~y = (1; 0; 1; 1; 1; 0; 0)T :For priority u1 = 0 and u2 = u3 = 1, we also have four solutions~y = (0; 0; 0; 1; 0; 1; 0)T ;~y = (1; 0; 0; 1; 0; 1; 1)T ;~y = (1; 0; 0; 1; 1; 1; 0)T ;~y = (1; 0; 1; 1; 1; 0; 0)T :These solutions correspond to cycles in the transition diagram from Figure 3-6. State i belongs tothe cycle if the ith component of the solution is 1, otherwise the state is not in the cycle.3-2.6 SummaryWe have considered a simple system devoted to the construction of an OREO cookie. Two servers arepresent in the system and a total of three processes are needed. The objective is to characterise theperiodicity between the di�erent states this system can achieve for given arrival rates and processingspeeds of our servers. Since our �rst server must process two di�erent jobs, a priority policy mustbe introduced. Three distinct priority policies have been considered: Job 1 �rst, Job 3 �rst, Job 1and 3 weighted equally. Under each of these three priority policies, three types of cycles are possible:stable, neutrally stable, and unstable. Integer solutions to a linear system are used to determineneutrally stable cycles for an entire range of arrival rates and processing speeds under the equalweight priority policy. Several examples of stable and unstable cycles are examined under eachpriority policy.



CHAPTER 3. OPTIMAL POLICIES FOR QUEUEING SYSTEMS 3-93-3 Single Server Re-entrant Systems - Continuous Approach3-3.1 IntroductionOur subgroup of the Optimal Policies for Queueing Systems/Networks group examined the optimiza-tion based on a speci�c performance measure of a simple re-entrant manufacturing system using acontinuous 
uid model approach. The participants of this subgroup are Khalid El-Yassini, MikeNeagu, David Saunders, and Mich�ele Titcombe.3-3.2 Statement of the ProblemWe considered the system in Figure 3-7(a) consisting of a single server with two job classes, thesecond of which re-enters the server. The complication of this re-entrant system is the competitionbetween job classes 1 and 2 at the server. We examined the optimization strategies based on theperformance measure of minimizing the total holding cost of the system.
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λ(a) Single server re-entrant (b) Tandem queuesFigure 3-7: Flow diagrams of the two related systems: the single server re-entrant system (SSRS)and the tandem queues system (TQS).The parameters of the problem are� = rate of incoming jobs�i = rate at which server processes job class ici = cost incurred by job class i waiting to be servedui = dedication of server to job class ixi(t) = amount of job class i waiting to be served;where i = 1; 2. Feasibility of the system requires thatui � 0; (3-4)xi � 0; (3-5)u1 + u2 � 1: (3-6)The stability of the system requires ��1 + ��2 < 1: (3-7)



CHAPTER 3. OPTIMAL POLICIES FOR QUEUEING SYSTEMS 3-10Given the initial conditions xi(0), the arrival rate �, the service rates �i and the costs ci, for i = 1; 2,the problem is to determine the optimal controls ui(t) that minimize the total holding costZ T0 (c1x1(t) + c2x2(t)) dt (3-8)subject to (3-4)-(3-7). For this system, the job class amounts, xi, satisfy the ordinary di�erentialequations _x1 = �� �1u1 (3-9)_x2 = �1u1 � �2u2: (3-10)In (3-8), T is the time at which both job classes have been depleted, i.e. x1 = x2 = 0. The �xedtime T is possible in view of the stability condition (3-7).Figure 3-7(b) shows a related system, consisting of two servers in tandem, that Avram et al. [1]considered in their study of 
uid models of sequencing problems. In the case of the tandem queuesproblem, the stability condition is ��1 < 1; ��2 < 1:Since the simple tandem network has no competition of job classes in the server, they were ableto develop the optimal policy for this network using Pontryagin's maximum principle. We havereproduced their tandem queues network results for Cases 3 and 4 in Figure 3-8, containing theswitching curve of server dedication, and the corresponding optimal controls for the tandem queuesproblem in Table 3-2. In both the �gure and the table, � is the slope of the switching curve, and is� = c1(�2 � �1)c2(�1 � �) : (3-11)Table 3-2: Optimal controls for related tandem queue problem. (reproduced from Avram et al. [1]).Case Conditions u(t)1 c1 � c2 (1; 1)2 c1 < c2, (0; 1)�1 � �2c1 < c2,3 �1 < �2, (0; 1)x1(t)x2(t) < 1� , � = c1(�2��1)c2(�1��)c1 < c2,4 �1 < �2, (1; 1)x1(t)x2(t) � 1�We claim that if the two systems, the single server re-entrant system (SSRS) and the tandem queuessystem (TQS), are in the same state (i.e., the same x1 and x2 at t = 0) and if the optimal controlsu1(t) and u2(t) for the tandem queues problem satisfy (3-6) for some time t1 > 0, then the optimalcontrols for the two problems coincide on the time interval [0; t1].Now, we outline the argument behind this claim, �rst noting that if the dedications u1 and u2minimize the cost integral (3-8) up to some time T , then these dedications also minimize the costintegral up to any time t1 < T .
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Figure 3-8: Switching curve for cases 3 and 4 of the tandem queues network optimal policy (repro-duced from Avram et al. [1]).Let u1 and u2 be optimal controls for the tandem queues system (TQS), satisfying (3-6) for all t in[0; t1]. Also, let v1 and v2 be optimal controls for the single server re-entrant system (SSRS). Wewant to show that u1(t) = v1(t) and u2(t) = v2(t) for all t in [0; t1].Since u1 and u2 minimize the cost integral for TQS up to time T , they also minimize the costintegral for TQS up to time t1 from the note above. But u1 + u2 � 1 on the interval [0; t1], so u1and u2 are acceptable controls for SSRS on [0; t1]. Since the two systems are governed by the sameset of di�erential equations in (3-9), and start with the same initial conditions, and any acceptablecontrols for SSRS are also acceptable for TQS, it follows that u1 and u2 minimize the cost integralfor SSRS up to time t1. But v1 and v2 also minimize the cost for SSRS up to time t1. Assuminguniqueness of the optimal controls, it follows that u1 = v1 and u2 = v2 on the interval [0; t1].Next, we describe a version of the claim which does not invoke uniqueness of the optimal controls.Suppose that u1 and u2 minimize the cost integral for TQS up to time T and satisfy (3-6) for all tin the interval [0; t1]. Then, there exist optimal controls v1 and v2 for SSRS such that u1(t) = v1(t)and u2(t) = v2(t) for all t in [0; t1]. The argument is similar to the one above.To back up our claim, we have plotted the total holding cost from (3-8) versus x2(0), the initialqueue size of job class 2, for various dedication strategies in the cases that satisfy (3-6). In all theplots, we �xed the arrive rate at � = 1 and the initial queue size of job class 1 at x1(0) = 10. Theinset in each plot displays the dedication strategies in the x1x2 state space for given initial queuesizes (x1(0); x2(0)).Figures 3-9 and 3-10 correspond to Case 1 of the tandem queue system, in which the cost at queue 1is greater than or equal to that at queue 2. Our claim does not include Cases 1 and 4 in the tandemqueue network, since those dedications violate (3-6) for the single server re-entrant network. Thetwo dedication strategies that we used for Case 1 (c1 � c2) are: (i) serve queue 1 to depletion, thensplit the server so that queue 1 remains depleted while serving queue 2 to depletion, and (ii) servequeue 2 to depletion, then split the server so that queue 2 remains depleted while serving queue 1 to
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Figure 3-9: Case 1(a): c1 > c2, �1 > �2. Total holding cost C versus initial queue size of job class2, x2(0). Parameter set=f(c1; c2) = (10; 5), (�1; �2) = (3; 2), � = 1, x1(0) = 10g.depletion as well. Figure 3-9 indicates that the total holding cost is lower if the dedication strategyis to serve queue 1 to depletion, whereas Figure 3-9 displays a critical initial queue size of job class2 of approximately x2(0) � 7 below which it would be cheaper to serve queue 2 to depletion �rst.Figure 3-11 corresponds to Case 2 of the tandem queue system. For Case 2, we used the samededication strategies as in Case 1. The plot validates our claim for this case, since the total holding
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CHAPTER 3. OPTIMAL POLICIES FOR QUEUEING SYSTEMS 3-13cost for the single server re-entrant system is lowest using the dedication strategy of the tandemqueues system for the same case, that is, to serve queue 2 to depletion �rst.Figure 3-12 essentially combines Cases 3 and 4 of the tandem queue system, in which we havecomputed the total holding cost for three strategies: (i) serve queue 1 to depletion �rst, (ii) servequeue 2 to depletion �rst, and (iii) serve queue 2 until the switching curve x2 = �x1, then split theserver dedication to stay on the line until both queues are depleted. Case 4 is included since theswitching curve itself belongs to this case. For this plot, the initial point (x1(0); x2(0)) lies abovethe switching curve x2 = �x1, which corresponds to Case 3 of the tandem queue system. The �gurevalidates our claim for this case, showing that the cheapest strategy is to serve queue 2 to depletion.Although we cannot use the strategy of the tandem queue Case 4 since the dedication violates (3-6),Figure 3-12 suggests that the dedication for Case 4 of our single server re-entrant system is to servequeue 2 to depletion �rst, as in our Case 3.In Figures 3-13 to 3-15, we have plotted the results for simulations of the single server re-entrantsystem with exponentially distributed interarrival and service times. The total cost C is computedas an average over ten realizations for integer values of the initial queue length of job class 2, x2(0).We used the same parameter values as in Figures 3-9 to 3-11.Comparing Figures 3-9 and 3-13 and Figures 3-10 and 3-14, we see that the results of the simulationsdo not agree with the predictions of the analysis in the case of c1 > c2. Assuming that we followstrategy (i) of our Case 1, then we empty queue 1 �rst and then divide the server so that it willattempt to keep queue 1 empty while also emptying queue 2. However, in the case of the simulationwith discrete random arrivals, queue 1 will not remain empty. After one or more arrivals, there willbe customers in the queue for a period of time during which costs are incurred. The simulationsuggests that it may be better to dedicate more of the server to queue 1 when this occurs.The simulation results in Figure 3-15 agree with the predictions of the analysis in the case withc1 < c2 and �1 > �2.
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Chapter 4Synchrony of Pituitary Cells
Participants: Y.-X. Li (Mentor), N. Costanzino, A. Dawes, T. Ewen, S. Reinker, J. WilliamsPROBLEM STATEMENT:Calcium is the primary trigger for initiating a large variety of biological processes. Thus, hormonesecretion by endocrine cells in the pituitary gland is triggered by an increase in intracellular calciumconcentration. Such a calcium increase, induced by an extracellular messenger, is often oscillatory.This pulsatile calcium pro�le has been shown to correlate to the secretory activities in pituitarycells. However, individual cells only secrete a tiny amount of hormone. Therefore, coherent, syn-chronized secretory activity is of great physiological importance. Whether and how intracellularcalcium oscillations in individual pituitary cells synchronize with each other remain obscure. Recentexperiments suggest that plasma membrane electrical activities in neighboring cells can synchro-nize. The question remains if synchronized plasma membrane electrical activity causes synchronyin agonist-induced intracellular calcium oscillations between neighboring cells. The experimentalistscannot answer this question yet. We here answer the question by using mathematics.
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CHAPTER 4. SYNCHRONY OF PITUITARY CELLS 4-14-1 Introduction and Statement of the ProblemThe systems studied in mathematical biology are exceedingly complex. In modeling any complexphenomena, it is important to include only the mechanisms that play a fundamental role in thedynamics of the system. In this way, one hopefully obtains a simpler system that captures the`essential features' of the more complex phenomena. Therefore, having some background informationof the mechanisms involved is essential in order to properly model any system. With this in mind,we present some biological background in Section 4-1.1. Then in Section 4-1.2 we state the problemwhich we want to investigate. Finally, in Section 4-1.3 we propose a method by which we willapproach the problem.4-1.1 BackgroundCalcium is the primary trigger for initiating a large variety of biological processes. Thus, hor-mone secretion by endocrine cells in the pituitary gland is triggered by an increase in intracellularcalcium concentration. Such a calcium increase, induced by an extracellular messenger, is oftenoscillatory. This pulsatile calcium pro�le has been shown to correlate to the secretory activities inpituitary cells. Individual cells however, only secrete a tiny amount of hormone. Therefore, coher-ent, synchronized secretory activity is of great physiological importance. It is not clear whetherthe intracellular calcium (IC) oscillations in individual pituitary cells synchronize with each other orhow this process takes place. Recent experiments suggest that plasma membrane (PM) electrical ac-tivities in neighboring cells can synchronize. However, the question remains if synchronized plasmamembrane electrical activity causes synchrony in agonist-induced intracellular calcium oscillationsbetween neighboring cells. This question has not been answered by the experimentalists yet. In thenext Section we pose the problem which we wish to study.4-1.2 Statement of the ProblemThe question of whether or not calcium oscillations of each individual pituitary cell can synchronizeor phase-lock with neighboring pituitary cells can be answered by investigating the behavior of theinner workings of a single pituary cell. Each individual cell is a coupled system of a plasma membrane(PM) oscillator and an intracellular calcium (IC) oscillator as shown in Fig. 4-1. We thus pose thefollowing problem: Can the intracellular calcium oscillations of each pituitary cell synchronize orphase-lock with those of neighboring cells? In answering this, we must �rst investigate the coupledIC-PM system and the coupled PM-PM system.4-1.3 Method of ApproachMathematically, the problem of two coupled pituitary cells can be simpli�ed to the problem of anetwork of four coupled oscillators. This is because each cell is by itself a coupled system of aplasma membrane (PM) oscillator and an intracellular calcium (IC) oscillator. It is known that thePM oscillator activates the IC oscillator but the latter inhibits the former. The coupling betweenthe two cells is di�usive, or nearest neighbor coupling, and is only between the two PM oscillators.Therefore, a su�cient condition is to show that since the IC oscillator in each cell is coupled to itsown PM oscillator and since the two PM oscillators synchronize, the two IC oscillators should alsobe synchronized, although they do not talk directly to each other. Hence, we will concentrate oure�orts on exploring whether the PM and IC oscillations are synchronized. Despite the outcome ofthis exploration, we will also brie
y explore synchronization between cells.
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Figure 4-1: Schematics of the coupled cells.4-2 The Two ModelsTo construct a model of the pituitary cell, we modi�ed two existing models for mechanisms that occurwithin the cell. The �rst is the Morris-Lecar model, which has successfully been used in describingthe potential di�erence across a membrane. To describe the intracellular calcium oscillations in thecytosol, we used the Li-Rinzel model. In the next two subsections, we brie
y present these twomodels.4-2.1 The Morris-Lecar ModelThese equations describe the potential v and channel gating w across the plasma membrane.Cm dvdt = Iapp � ICa � IK � IL (4-1)dwdt = �(v)(w1(v)� w) (4-2)where Iapp is the current externally applied to the membrane (for instance by an electrode), ICa andIK are the calcium and potassium currents respectively, and IL describes the cumulative e�ect ofother small currents and is called the leak currents. The functional forms of the currents are givenby ICa = �gCam1(v)(v � vCa) (4-3)IK = �gKw(v)(v � vK) (4-4)IL = �gL(v � vL) (4-5)where �g is the maximum conductance. The functionsm1(v) and w(v) are the activation probabilitieswhich are typically sigmoidal curves, and determine the gating or channel opening of the cell.



CHAPTER 4. SYNCHRONY OF PITUITARY CELLS 4-3Under certain parameter values the Morris-Lecar system exhibits periodic �ring as can be seen inFig. 4-2. Experiments have shown that the period is on the order of seconds.
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TimeFigure 4-2: Morris-Lecar plasma membrane voltage oscillator.4-2.2 The Li-Rinzel ModelThis model describes the IC oscillations in the cytosol. The calcium is introduced through both theplasma membrane (PM) and the endoplasmic reticulum (ER).dcdt = Jrel � Jfill + Jin � Jout (4-6)dhdt = h1(c)� h�(c) (4-7)dadt = Jin � Jout (4-8)where a = c+ �cER.The 
ux of calcium out of and into the cytosol is given by the following equations:Jrel = p(cER � c) (4-9)Jfill = vERc2k2ER + c2 (4-10)Jout = vPM c2k2PM + c2 (4-11)P = L+M � chda + c�3 (4-12)



CHAPTER 4. SYNCHRONY OF PITUITARY CELLS 4-4For a fairly robust set of parameter values, this system for the calcium concentration in the cytosolalso settles to a periodic oscillation (Fig. 4-3) which may also have a similar period to solutions ofthe Morris-Lecar system.
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TimeFigure 4-3: Li-Rinzel intra-cellular Calcium oscillator.4-3 CouplingRecall that our goal is to determine if the IC oscillations in two separate cells become synchronizedwhen the two PM oscillators become synchronized. As previously described, we attempt to do thisby taking two existing models, the Morris-Lecar mode- and the Li-Rinzel model, and model how theycouple based on experimental evidence. This will give a model for the calcium oscillations withinthe cell. We will then take two identical cells modeled in this manner and couple them across theplasma membranes. We want to see, if the PM becomes synchronized, whether the IC oscillationsalso become synchronized even though they are not directly a�ecting each other.4-3.1 Coupling Within the Pituitary CellHaving previously explored the uncoupled Morris-Lecar and Li-Rinzel models with XPP, we decidedit was time to model the coupling between the IC and the PM of each individual pituitary cell. Themodels were coupled by the addition of two extra terms. The �rst was through the equations for vand c, where these oscillations are related through the equation for Jin;Jin = J 0in � �ICa (4-13)Second, we introduced a calcium activated potassium current IK(Ca), which a�ects the voltage acrossthe plasma membrane due to the in
ux of potassium ions. Hence equation (4-2) becomesCm dvdt = Iapp � ICa � IK � IL � IK(Ca) (4-14)



CHAPTER 4. SYNCHRONY OF PITUITARY CELLS 4-5where IK(Ca) = �gK(Ca) (v � vK)c4c4 + k4Ca (4-15)See Fig 4-4 for an example of phase-locking. The resulting 5-dimensional system corresponds to afeedback loop between the PM and the IC regulation oscillator. Here PM activates the IC while ICinactivates the PM. Numerical explorations with the program XPP revealed that indeed the voltageoscillations of the PM and the calcium oscillations of the ER do phase-lock. In fact, they phase-lockover a large set of parameter values, and for each parameter value the basin of attraction for thephase-locked solution seemed to be the whole phase-space.

-40

-30

-20

-10

0

10

20

30

40

0 5 10 15 20 25 30
Time

v

c

Figure 4-4: Phase-lock between PM and IC.However, since we are only interested in solutions which are periodic, it is natural to ask ourselvesif the behaviour of the cell can be captured with a much simpler set of equations. Indeed, it is oftenthe case that the dynamics of oscillators, such as the two above, can be described solely though onevariable - their phase di�erence. Descriptions of this sort are called phase models. In these typesof models, the state of the oscillator during its cycle is parameterized by a phase variable. Thisgreatly simpli�es the analysis because the model reduces to a problem in one periodic variable. Weinvestigated a popular method for coupling mutually attracting/repelling oscillators, based on thework of Strogatz [4] and Li [3]. In Section 4-3.1, we describe this method, and (unsuccessfully applyit to our system). We also give an argument why this approach does not work.The Integrate and Fire Model of CouplingThis is a speci�c example of a phase model. Let � describe the phase of an oscillator with period 1and let f be a function such that x = f(�) subject to the conditions:i) d�dt = 1ii) f(0) = 0iii) f(1) = 1iv) f is concave down; i:e: f 0 > 0; f 00 < 0



CHAPTER 4. SYNCHRONY OF PITUITARY CELLS 4-6One function that satis�es these conditions is:f(�) = c(1� e��) (4-16)c = 11� e�1 (4-17)The time evolution of this function is shown in Fig 4-5, x increases towards its threshold value atwhich point it �res and then returns to 0 and the cycle repeats. When dealing with two coupledoscillators, the �ring of one causes a displacement of the other oscillator. It follows this timeevolution: xi(t) = 1) xj(t+) = minf1; xj(t) + "g; i = 1; 2j 6= i; j = 1; 2; " > 0Hence, we use the following equations for our integrate-and-�re model.f(�) = c(1� e��)g(x) = ln cc� xwhere g is the inverse function of f (ie. fg � 1)It is easy to see that to construct the return map R(�) = h2(h1(�)). We choseh1(�) = g(f(1� �)� "1);h2(�) = g(f(1� �) + "2):The size of "i > 0 determines the strength of the interaction between the oscillators. The sign changeof " describes an activating/inactivating process. For simplicity we considered the case "1 = "2. Thenthe return map in this case is given byR(�) = h2(h1(�))= �ln(e�1[e��1 � "c ]�1 + "c )Fixed points of R(�) correspond to synchronized or phase-locked solutions. Assuming the existenceof a �xed point R(��) = ��, we found that�� = ln "c �qe( "2c2 � 4)2 (4-18)This gives a lower bound on " : "c = 2cp" (4-19)At this critical value of ", the �xed point �� = 12 which corresponds to a solution with half a phasedi�erence. Unfortunately the lower bound on " is not valid in our region [0; 1]. It is easily veri�edthat R(�) does not have a �xed point.There are several reasons why this model does not work. The most simple and compelling reason canbe described by considering two runners on a circular track. Let us assume that runner A is aheadof runner B and A activates B while B inhibits A. When runner A crosses the mark, B gets pushedcloser to A by an amount �. Then when B crosses the mark, he pulls A closer to him by the same



CHAPTER 4. SYNCHRONY OF PITUITARY CELLS 4-7
1

0 T 2T 3T Time

Xi(t)

Figure 4-5: Integrate-and-Fire Oscillator.amount. We thus see that A and B get closer and closer together. However, as this continues, let ussay that A and B are now running side-by-side (ie. synchronized). Then as A and B simultaneouslycross the �nish line they will repell each other because B will push A backwards and A will push Bforwards. In this way, we can see that A and B can never synchronize or phase-lock. Hence, thismodel is not appropriate in describing the coupling between the IC and the PM.4-3.2 Coupling Between CellsHere we take two pituitary cells modeled as above and couple them proportional-y to the voltagedi�erence across the intercellular gap. The electrical gap junction coupling gives positive/positivefeedback (Fig. 4-1). The coupling takes the form:Cm dvdt = Iapp � ICa � IK � IL � IK(Ca) + "(�v � v) (4-20)Cm d�vdt = Iapp � ICa � IK � IL � IK(Ca) � "(�v � v) (4-21)(4-22)The voltage oscillations of the two cells synchronize over time, as do those for the IC oscillationsdespite there being no direct coupling between them (Figs.4-6 and 4-7). We determined numericallythe response and interaction functions (Figs. 4-8 and 4-9). The response function estimates thesystems phase-shift due to perturbation. Roots of the interaction function correspond to �xedpoints in the phase di�erence between oscillators. Here we found roots at zero and half-phase, withzero being the stable �xed point.4-4 ConclusionThe combination of the Morris-Lecar and and the Li-Rinzel model gave a similar behaviour toexperimentally observations in pituitary gland cells. We were able to obtain coupling of the two
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Chapter 5Air Impact on Green Sand
Participants: C. Please (Mentor), S. Bohun, A. Bona, D. Chertok, J. Modayil, J. Samuel, C.Stoica, A. WacherPROBLEM STATEMENT: Toowoomba Foundry is a producer of cast-iron parts for a numberof automobile and agricultural machinery manufacturers. To produce their cast-iron products, suchas truck brake drums and water pump housings, they use a conventional method involving makinga mould, for every item, out of sand. Once made, the mould is �lled with molten metal which isthen cooled and the mould then broken to reveal the cast object.The technology of creating a sand mould consists of placing sand over a pattern and then compressingthe sand to create compacted sand which has su�cient rigidity that the pattern can be removedeasily, and the sand will remain in place when molten metal is poured onto it.The sand itself has some very special properties and consists of relatively uniform grains of \Dune"sand mixed with water and very �ne particles of bentonite (clay) which cover the sand. The purposeof this project will be to investigate how the sand gets compacted. The method of interest consistsof using a sealed box with the pattern as the base in which the sand is loosely placed. The boxis then very suddenly subjected to high pressure air (around 7 atmospheres of pressure). If thepressure is applied too slowly very little compaction occurs while when applied very quickly thesand becomes very well compacted with at particularly strongly compacted region adjacent to thepattern. However, the rapid compaction tends to create regions relatively void of sand and hencecauses problems when the molten metal is poured in.Can a model be made to demonstrate how the sand compacts so that methods of creating goodcompaction without voids be suggested?
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CHAPTER 5. AIR IMPACT ON GREEN SAND 5-15-1 IntroductionAn Australian steel casting company, Toowoomba Foundry, employs a sand mould casting procedureas part of its operation. To produce a mould, a sand-based substance called green sand is pouredinto a box containing the moulding pattern. Subsequently, high pressure air at 0:7 MPa is quickly(on the time scale of 0:1s) applied to the top of the sand to compress it. The pro�le of the pressurepulse is shown in Figure 5-1. Upon compression, the sand is packed into a solid structure whichpreserves the shape of a pattern that is later used for casting.
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Figure 5-1: Compaction pressure pulse.To optimize the compaction process, the manufacturer wishes to reduce inhomogeneities in theecompacted sand that lead to imperfections in the mould. An empirical solution to this probleminvolves the application of two consecutive compacting air pulses as shown in Figure 5-2.
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Figure 5-2: Preceding pressure pulse with a pre-compaction pulse.It has been observed that the mould imperfections, soft spots, occur at speci�c positions in the mouldand that the size and location of such imperfections depend on the geometry of the pattern. Anexample of such a dependency is given in Figure 5-3. Other tools for reducing the size of soft spotsat the manufacturer's disposal include: 1) roughening of the pattern surface, 2) the introduction ofair vents at the outer surface of the mould.The object of this research was to develop a qualitative mathematical model of the problem andsuggest improvements for the manufacturing process.
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Soft Spot

Sand

Soft Spot

Pattern
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PatternFigure 5-3: Reduction of soft spots due to the change in mould shape: larger for sharp angles (left�gure), smaller for smooth pro�les (right �gure).5-2 Physical properties and assumptions1. The actual particles of solid in the sand mixture are assumed to be incompressible. However,the air fraction of the sand mixture is compressible. It is the air fraction that makes the sanda compressible material.2. During the compaction process, the permeability of the sand changes insigni�cantly. Thisassumption was made on incomplete experimental data and should be veri�ed experimentally.3. Based on experimental data, the sand never experiences decompression.4. Air is treated as an ideal isothermic Newtonian 
uid with constant viscosity.5. We consider a one-dimensional model in space. The equations are based on the classical con-servation laws of mechanics (i.e. the conservation of mass and the conservation of momentum).5-3 Formal Construction of the ModelVariables� y = vertical coordinate.� t = time.Constants� h0 = 0.4m.� K=� = 1=� = 10�6m3s=kg (Darcy's `constant' for green sand).� �0 = 0.6 (Fraction of air in un-compacted sand mixture).



CHAPTER 5. AIR IMPACT ON GREEN SAND 5-3State Variables� �(t; y): Volume percentage of air in green sand mixture.� �A(t; y): Density of air.� �S(t; y): Density of a sand particle.� �A(t; y): Velocity of air.� �S(t; y): Velocity of a sand particle.� h(t): Position of the top of sand mixture.� P0(t): Experienced pressure of air at top of the sand box.� PA(�A) = ��A, where � = (1atm=kg:m3): Air pressure as given by an ideal, isothermal gas.� PS(�): Pressure of sand on sand (Experimentally obtained).5-3.1 Conservation of Mass and MomentumMass 1. Air: @ (��A)@t + @ (��AvA)@y = 02. Sand: @((1� �)�S)@t + @ ((1� �)�SvS)@y = 0Momentum 3. Air: @@t (��AvA) + @@y (��Av2A) = �@PA@y � 
vA4. Sand: @@t ((1� �)�SvS) + @@y ((1� �)�Sv2S) = �@PS@x @�@y � @PA@�A @�A@y5-3.2 Non-dimensionalizationWe scale all variables with respect to a set of characteristic sizes P = (1MPa) �P , �A = �0��A, h =h0�h, y = h0�y, t = t0�t, v = (h0=t0)�v, �S = �S , � = �, 
 = 
. Now examine the changes to the aboveequations. 1. @ (��A)@t + @ (��AvA)@y = 02. @(1� �)@t + @ ((1� �)vS)@y = 03. �0h20t20(1MPa) � @@t (��AvA) + @@y (��Av2A)� = �@PA@y � 
h20t0(1MPa)vA4. �Sh20t20(1MPa) � @@t ((1� �)vS) + @@y ((1� �)v2S)� = �@ (PA(�A) + PS(�))@y



CHAPTER 5. AIR IMPACT ON GREEN SAND 5-4If the momentum of the air is signi�cant, then the proper scaling factor would be:�0h20t20(1MPa) = 1; or t0 ' 0:1ms:If the momentum of the sand was signi�cant then:�Sh20t20(1MPa) = 1; or t0 ' 3ms:If the friction of the air on the sand was signi�cant, then t0 ' 0:16s which is comparable to the 0:2ssupplied by the machine. Hence, the momentum of sand and/or air does not play any signi�cantrole. Therefore, the most signi�cant process is governed by the Darcy's law. The initial conditionsassociated with the momenta, vA(0; y) = 0 and vS(0; y) = 0, are discarded.5-3.3 Simpli�ed Equations@ (��A)@t + @ (��AvA)@y = 0 (5-1)@(1� �)@t + @ ((1� �)vS)@y = 0 (5-2)@@y (PS(�) + PA(�A)) = 0 (5-3)vA = �@PA@y (5-4)The initial value conditions and the boundary conditions become:�(0; y) = �0 vA(t; 0) = 0 (no vents)�A(0; y) = 1 vS(t; 0) = 0h(0) = 1 �A(t; 0) = 1 (vents)PS(�0) = 0 dh=dt = vS(t; h(t))PS(�) = experiment data �A(t; h(t)) = P0(t)Considering the third equation and the last boundary condition, we �ndPS(�) + �A = P0(t)since PA = �A.5-4 AnalysisThe relation PS(�) + �A = P0(t)



CHAPTER 5. AIR IMPACT ON GREEN SAND 5-5is critical. Through some mathematical consideration (omitted for brevity) we can investigate thecompression of the sand mixture in some special cases:1. Assume that the experienced pressure at the top of the sand box increases much faster thant0 '0.16s. In this case, no air 
ows through the sand and the sand compacts uniformly. Ventsat the bottom of the box do not play any role.2. Assume that the experienced pressure a the top of the sand box increases much slower thant0.(a) If there are no air vents at the bottom of the pattern, then no compression occurs.(b) If there are vents then compression increases linearly; the bottom will be the most com-pressed region.5-5 Conclusions� Ignore inertia: Inertia does not play any role in the compaction process.� No shock waves: Since momentum does not contribute to the compaction process, no wavescan be propagated.5-6 Recommendations� No shock waves: Shock waves should not be considered, even in higher dimensions.� Permeability: Values of permeability are neither easily, nor accurately calculated by theoreticalmeans. Moreover, the value of permeability can critically a�ect the compression of the sand,especially considering that the critical time t0 is so close to the machine's capability of raisingair pressure. The company is urged to calculate the permeability of the sand mixture forvarious values of �.� Partial �ll: Soft spots are believed to be formed by transverse motion of the sand particles.One method to reduce these defects is to �ll the box with sand to the `critical shoulder',followed by a fast compression. Now, �ll the box and perform another fast compression.� Shoulder air vents: Place air vents on the `shoulder' above the defect. For this to be e�ective,the increase in air pressure must occur over a time scale of ' 10t0� Plastic top: If an airtight cover were placed on top of the sand, then the air pressure in thesand-air mixture would be much lower than without the cover. Hence, the sand must compactmore. Moreover, as the air pressure in the sand-air mixture is lower, the time designated forpressure release can be shortened signi�cantly.� Special air vents: If air vents are placed at the bottom of the box and are opened shortlyafter the pressure reaches its maximum, we expect the e�ciency of the machine to increasedrastically. Installing such vents could lead to two advantages:{ Denser compaction for the same air pressure pulse;{ The relaxation time can be reduced.



Chapter 6Surface Tension in a Flowing Fluid
Participants: David Ross (Mentor), Vladislav Agapov, Roger Coroas, Tony Cabal, Charles Cuell,Andrew Irwin, Tim Rogalsky, Bruce RoutPROBLEM STATEMENT: Photographic �lm is made by coating a thin 
uid layer of gelatinsolution on a hard backing. The solution contains light-sensitive silver-halide crystals and dye-forming chemicals (and other stu�). The gelatin dries and hardens. Because of the importanceof gelatin to our manufacturing processes, we are interested in the viscosity of gelatin solutions.As we all know from experience with Jell-O, (yes, it's the same stu� that we use to make �lm),gelatin solutions start out a 
uids, they get thicker and thicker, and eventually turn into solids. Theproblem would be to �nd a mathematical model of the chemical process by which this happens.

6-0



CHAPTER 6. SURFACE TENSION IN A FLOWING FLUID 6-16-1 IntroductionEastman-Kodak Corporation presented a problem regarding the application of chemicals onto apolymer �lm using a long thin waterfall known as a coating curtain. The company wishes tokeep a low surface tension on the curtain to prevent the curtain from breaking up during chemicalapplication. One method the company has utilized is to add surfactant to the aqueous reservoir ofthe curtain.The surfactant molecules consist of a hydrophobic `tail' and neutral `head' which congregate at thesurface of the curtain, thereby lowering surface tension.The company expected that by using surfactants of higher hydrophobicity the surface tension of thecurtain would continually decrease in some well-behaved function. Although surfactants below a cer-tain level of hydrophobicity behave as expected, above this level surfactants of higher hydrophobicityactually increase the surface tension.It is believed micelles are responsible for this behaviour.6-2 Mathematical FormulationSurfactant accumulates on the surface of the curtain by 
uid transport (the emulsion is falling) andby di�usion through the curtain. However, experiments show that air bubbles transported by the
uid are essentially in free fall at all points in the curtain. This allows us to rule out the 
uidtransport process. A good estimate for di�usion transport is given by Dtx2 = 1. Using t = 0:1s (thelength of time the emulsion falls) we get x � 3�10�4cm, which allows for di�usion to be a possibility,since the typical cross section is 2� 10�3cm at the bottom of the curtain and the surfactant contentin this outer sheath, if transported to the clean surface, is su�cient to reduce the surface tension.In addition to di�usion, when the monomer concentration goes to some value typical for the sur-factant, groups of sixty monomers will form non{hydrophobic micelles so that the concentration ofmonomers remains constant at this value. This concentration is called the CMC (critical micelleconcentration). Given this, we can write the di�usion equations for the monomers and micelles as:@C@t = Dc@2C@x2 � 60KH(C � CMC) + 60KH(CMC � C)M (6-1)@M@t = Dm@2M@x2 +KH(C � CMC)�KH(CMC � C)M; (6-2)where C is the monomer concentration, M is the micelle concentration, K is the rate at whichmonomers form micelles, Dc is the monomer di�usion rate and Dm is the micelle di�usion rate. His the Heaviside function.The initial conditions are C(x; 0) = A (6-3)M(x; 0) = B; (6-4)where A and B are constants.The boundary conditions are d�dt = Dc @C@x ����x=0 (6-5)



CHAPTER 6. SURFACE TENSION IN A FLOWING FLUID 6-2= kfC(0; t)(�max � �)� kb� (6-6)@M@x ����x=0 = 0: (6-7)In the �rst boundary condition, � is the concentration of monomer on the surface of the curtain.The �rst equality comes from Fick's equation, � = �D @C@x , where � is the monomer 
ux. The secondequality comes from modelling the interaction of the monomer with the surface of the curtain as asecond order kinetic reaction, with forward (on to the surface) and backward rates given by kf andkb respectively.The boundary condition for M is a zero 
ux condition at the water/
uid boundary.We notice that if we add 60 times the equation for M to the equation for C, the Heaviside functionscancel and we end up with @C@t + @60M@t = Dc @2C@x2 +Dm@260M@x2 : (6-8)We can de�ne a new variable � = C+60M , and recognize that as we move from the surface into themedium, � increases from zero, and reaches CMC at some point (provided the initial concentrationis su�cient). Up to that point, M = 0, so @2M@t2 = 0. After that point, C = CMC, so @2C@t2 = 0.Given this, we can write the following with impunity@�@t = @@x �D(�)@(�)@x � ; (6-9)where D(�) = Dc; if � < CMC (6-10)= Dm; if � > CMC (6-11)Boundary conditions become�(x; 0) = A+ 60B (6-12)d�dt = kf min(�(0; t); CMC)(�max � �)� kb� (6-13)= Dc @�@x ����x=0 (6-14)6-3 Numerical Solution of the Partial Di�erential EquationTo verify the model, the di�usion equation was solved numerically. Three approaches to this wereattempted. An IMSL routine appeared promising, but was unable to deal with the non-linear bound-ary condition. However, consistent results were obtained from two algorithms using the method oflines in Matlab.The method of lines is a technique which reduces a partial di�erential equation to a system ofordinary di�erential equations. This system can then be solved using standard techniques. Oneteam used the Matlab routine ODE45 to solve it. The other team wrote an Euler solver. Bothresulted in the same solution when the initial concentration was lower than the CMC.



CHAPTER 6. SURFACE TENSION IN A FLOWING FLUID 6-3The method of lines discretizes the partial di�erential equation along the x-axis. That is, �(x; t) issubdivided into N + 1 functions �i(t), where�i(t) = �(i�x; t); i = 0; 1; : : : ; N; (6-15)for some given interval �x. Each of these is then followed along a `line' in the t-direction by theordinary di�erential equation solver.In the interior of the domain, the relationship between the functions �i(t) is determined by thedi�usion equation (6-9) using the �nite di�erence method. Thus,d�idt = D ��i+1+�i2 ���i+1��i�x ��D ��i+�i�12 ���i��i�1�x ��x ; i = 1; : : : ; N � 1: (6-16)Assuming symmetry, the boundary at i = N , corresponding to the inside of the waterfall, requiresno 
ux of surfactant. That is, @�N@x = 0. This is enforced by settingd�Ndt = d�N�1dt ; (6-17)ensuring a horizontal slope there. Initial conditions are given by the initial concentration,�i(0) = 10�6; i = 1; : : : ; N: (6-18)In the �rst numerical scheme, the equation in �0 was removed and equation (6-13) in � was added tothe system. Then �0(t) was found algebraically, using the �nite di�erence form of equation (6-14),Dc �1 � �0�x = kf min(�0; CMC)(�max � �)� kb�: (6-19)The results were encouraging, and are presented below for the surfactants having a CMC greaterthan the initial concentration of surfactants.In the second numerical scheme, the boundary condition given in equation (6-13) is simpli�ed.Analyzing the stability for the worst-case scenario (when �0(t) > CMC), we require that(kfCMC + kb)�t < 1: (6-20)Since kb=kf = 10�3CMC, and kb = 10�5, this ordinary di�erential equation requires �t < 10�8.The condition for stability of the partial di�erential equation, however, is Dc�t�x2 < 1, where Dc =10�6. Thus the partial di�erential equation requires �t < 10�2.This is a sti� system, with the time-scale of � being much smaller than the time-scale of �. What thisreally means, however, is that the concentration at the surface equilibrates virtually instantaneouslywith the concentration at the subsurface. That is, on the micro scale, d�dt = 0. Solving equation(6-13) gives � = �max min(�0(t); CMC)min(�0(t); CMC) + 10�3CMC : (6-21)Di�erentiating this (on the macro scale!) and recalling that d�dt = Dc @�@x ����x=0, we haved�0dt = Dc @�@x ���x=0 ��0(t) + 10�3CMC�2�max10�3CMC ; �0 < CMC: (6-22)



CHAPTER 6. SURFACE TENSION IN A FLOWING FLUID 6-4Critical Micelle Dynamic Surface TensionConcentration (mol cm�3) (dynes cm�2) at 0.1 s1 � 10�4 53.04321 � 10�5 41.981 � 10�6 30.541 � 10�7 30.765 � 10�8 40.721 � 10�8 60.022 � 10�8 55.0450Table 6-1: Computed dynamic surface tension as a function of initial surfactant concentration.When �0 > CMC, the concentration at the subsurface is above critical. Therefore a no 
ux conditionis required. In �nite di�erence form, the partial di�erential equation at the boundary becomes@�0@t = 2Dm (�1 � �0)(�x)2 ; �0 > CMC: (6-23)Finally, since we are assuming that �0(0) � �(0), initially�0(0) = 0: (6-24)The numerical scheme is now complete. Ordinary di�erential equations (6-16), (6-17), (6-22), and(6-23) together with initial conditions (6-18) and (6-24) form the system comprising the method oflines.6-4 ResultsWe solved the di�usion equation (6-9) numerically for a variety of critical micelle concentrationsof surfactant. The initial surfactant concentrations and computed surface tensions are reported inTable 6-1 and experimental data obtained from Eastman-Kodak are in Table 6-2. These data areplotted on the same set of axes in Figure 6-1.Critical Micelle Dynamic Surface TensionConcentration (mol cm�3) (dynes cm�1) at 0.1 s1:0 � 10�7 411:5 � 10�7 301:566 � 10�7 591:95 � 10�7 56.53:5 � 10�7 292:0 � 10�6 332:0 � 10�5 43Table 6-2: Experimentally measured dynamic surface tension as a function of critical micelle con-centration (CMC). The initial surfactant concentration is �0 = 10�6.
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Figure 6-1: Comparison of experimental and theoretical dynamic surface tensions as a function ofcritical micelle concentration. A small CMC corresponds to a strongly hydrophobic surfactant (amolecule with a longer tail). The initial total surfactant density was �(0) = 10�6 mol/cm3.Figures 6-2 and 6-3 show a three-dimensional plot of the total surfactant density as a function ofspace and time for two important cases: (a) CMC > �(0) and (b) CMC < �(0). In the �rst case,all the surfactant is in the highly mobile monomeric form, and the surfactant rapidly accumulateson the surface. There is an early minimum in the sub-surface surfactant concentration folowed byan equlibration phase which is nearly complete in 0:1s. In the second case, much of the surfactant isin micelle form and the di�usion process slows down the accumulation of surfactant on the surface.Figures 6-4 and 6-5 shows the surfactant density on the surface of the curtain (�) as a function oftime for two important cases: (a) CMC > �(0) and (b) CMC < �(0). The slower accumulation ofsurfactant on the surface can be seen clearly in the second �gure.
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Figure 6-2: Total surfactant density �(t) (mol cm�3, vertical axis) as a function of space (measuredfrom the air-
uid boundary in cm, x-axis) evolving over time (for 0 � t � 0:1s, y-axis) and CMC=10�5 mol cm�3. Computations were performed with a �ner mesh than shown; the spatial mesh widthwas �x = 10�5cm and approximately 5000 time steps were used.
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Figure 6-3: Total surfactant density �(t) (mol cm�3, vertical axis) as a function of space (measuredfrom the air-
uid boundary in cm, x-axis) evolving over time (for 0 � t � 0:1s, y-axis) and CMC=10�8 mol cm�3. Computations were performed with a �ner mesh than shown; the spatial mesh widthwas �x = 10�5cm and approximately 5000 time steps were used.
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Figure 6-4: Surfactant density on the surface of the curtain (�, mol cm�2, vertical axis) evolvingover time (for 0 � t � 0:1s, horizontal axis) for CMC= 10�5 mol cm�3.
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Figure 6-5: Surfactant density on the surface of the curtain (�, mol cm�2, vertical axis) evolvingover time (for 0 � t � 0:1s, horizontal axis) for CMC= 10�8 mol cm�3.6-5 ConclusionsThe excellent agreement between the experimental data and a simpli�ed computational methodsuggest that the anomalous increase in dynamic surface tension (DST) for increasingly hydrophobicsurfactants is in large part explained by our di�usion model. The initial decrease in DST withincreasing hydrophobicity (shown by decreasing CMC on the right hand side of Figure 6-1) is easilyunderstood. The longer surfactants are better at reducing the DST. Surfactants with a CMC smallerthan the initial surfactant density of 10�6 mol/cm3 form micelles in the holding tank and the slowermobility of the micelles in the di�usion process described above accounts for the larger DST after0:1s.
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