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FOREWORD BY THE PIMS DIRECTOR

The PIMS Graduate Industrial Math Modeling Camp (GIMMUC) is held every year in one of
the PIMS universities as part of the annual PIMS Industrial Forum. It is part of PIMS commitment to
providing training for young mathematical scientists who are either pursing careers in academia or in
industry.

The goal of the GIMMC is to provide experience in the use of mathematical modelling as a problem
solving tool for graduate students in mathematics, applied mathematics, statistics and computer science.
In addition to this it helps prepare them for the Industrial Problem Solving Workshop which is
the other component of the PIMS Industrial Forum.

At the workshop students work together in teams, under the supervision of invited mentors. Each men-
tor poses a problem arising from an industrial or engineering application and guides his or her team of
graduate students through a modelling phase to a resolution.

The 1999 GIMMC, which was the second, was held at University of Alberta, May 24-28, 1999. Twenty-
seven students came from eight universities across Canada to work with six mentors from industry.
These mentors came from Alberta Energy Utilities Board, Telecommunications Research Laboratories,
Syncrude, Alberta Research Council, Enbridge Pipelines Ltd and Lockheed Martin Canada.

It my pleasure to announce that the workshop was an unqualified success for all the six project teams.

I want to extend my thanks to the organisers (Abel Cadenillasi, Douglas Kelker, Mike Kouritzin, Henry
Leung, Bryant Moodie, Bruce Sutherland, Yanhong Wu), mentors (Stefan Bachu, Wayne Grover, Mike
Lipsett, John Oliver, Don Scott, Pierre Valin) and students involved in this workshop. Future camps
are something I truly look forward to.

Dr. Nassif Ghoussoub, Director
Pacific Institute for the Mathematical Sciences



PREFACE

This year’s GIMMC adopted a novel approach to introducing graduate students to the mathematical
techniques that arise in industrial R&D. Rather than tutoring students through solutions to artificially
posed problems or to problems that have already been solved, this camp asked students to tackle a set of
six, unsolved, modelling problems brought to them by industrial mentors. These problems arose directly
from the R&D activities of the mentor’s organisation. Based on team-project approach, each group of
students, a faculty partner and an industrial mentor, worked together to solve one of the six problems.

Judging from the written feedback, the Second PIMS Graduate Industrial Math Modelling Camp
was an unqualified success for all the six project teams. Everyone praised the camp’s impeccable organ-
isation. The Industrial Mentors were unanimous in their praise of the camp’s concept and execution.
The industrial mentor from Lockheed Martin Canada wrote that the results of the camp exceeded his
expectations. The industrial mentor from Telecommunications Research Laboratories, one of Canada’s
leading industrial telecommunications research organisations, was unequivocal in his assessment: “I
think it’s all a terrific idea. I overwhelmingly salute the whole initiative”. The graduate students got the
satisfaction of making meaningful progress on mathematical questions of timely interest to industry. As
one student from Montreal put it: “I really enjoyed working on a concrete problem”. Mathematicians
tend to work alone. Doing research as part of team was a new and rewarding experience for the students.
For one of the students in Project 4, “It was amazing how well we worked together ...we got a lot out
of it and I know we are all happy with our report”. Another student in Project 1 appreciated the expe-
rience of “learning how to contribute ideas with other students and write a report together”. Through
the interaction with the graduate students and faculty partners, the industrial mentors developed new
perspectives on their modelling problems. But most important, the camp exposed all the participants
to the rewarding possibilities that collaboration between mathematicians and industry can bring.

As with any undertaking, success starts with the quality of the people involved. GIMMC was
fortunate to have had enlisted senior members from some of Canada’s most prominent organisations to
act as “industrial mentors”.

The faculty partners were critical to the success of this camp. They provided the needed bridge
between the mentor’s industrial expertise and the graduate students’ mathematical skills. PIMS wants
to give special thanks to all the faculty partners for their selfless participation.

Finally, the camp’s success was assured by the participation of bright and motivated graduate stu-
dents. Twenty-seven students were selected for this year’s camp. They were a diverse group whose
backgrounds ranged from pure and applied mathematics to statistics. They were also geographically
heterogeneous group: four from Quebec, one from Ontario, one from Saskatchewan, eight from Alberta,
and thirteen from British Columbia. PIMS is particularly pleased that a camp on Industrial Mathematics
attracted as many women as it did men.
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Chapter 1

Regional - Scale Variation of Rock
Properties in the Viking Formation
in Alberta

Participants: Stefan Bachu (Mentor), Andrea Amariel, Brenda Hawkins, Emmanuel Ngimbi Ngembo,
Shelly Pinder, Grace So.

PROBLEM STATEMENT: The Cretaceous sedimentary succession in the Alberta basin is comprised
of sandstone and shale formations. The main sandstone units are, in descending order from the surface:
Paskapoo, Scollard, Belly River, Milk River, Dunvegan, Cardium, Viking and Mannville. Oil and gas
exploration and production has produced a wealth of information regarding porosity and permeability
in these units. The data are filed in electronic form with the Alberta Energy and Utilities Board and
are publicly available. So far no analysis of rock properties in these units has been performed at the
basin scale. The main issue is to identify if there are regional-scale trends in porosity and permeability
variations that would allow prediction of these rock properties for areas and strata lacking data. The
Viking Formation has been selected for testing for trends in rock properties and for the development of
methodology to be applied in the analysis of the other sandstone units in the Alberta basin.

More specifically, the objective is to statistically analyze permeability and porosity distributions in
the Viking Formation in order to identify at the regional scale any of the following;:

e if there is any correlation of rock properties with depth;
e if there is any correlation between the two rock properties;

e if there is a particular spatial distribution of rock properties.
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1.1 Introduction

Except for the northeast corner of Alberta where Precambrian crystalline rocks are exposed at the
surface, Alberta’s subsurface is comprised of a wedge of sedimentary rocks that thickens from a zero-
edge in the northeast to more than 6000 m in the southwest at the Rocky Mountain foothills. One of
the main characteristics of sedimentary rocks is porosity, ¢, which is defined as the ratio of “empty”
space in a rock volume to the total rock volume. This empty space is actually filled, or saturated, with
fluids, mostly water. In hydrocarbon reservoirs, abundantly found in Alberta, the pore space is filled
with oil or gas. While essential for the existence of fluids in the sedimentary rocks, porosity is not
indicative of the ability of fluids to flow through the pore space. Permeability, usually denoted by &, is
the rock property that indicates the ability of fluids to flow through rocks when a hydraulic gradient is
applied as a result of either natural processes, such as elevation differences, or of human activity, such
as pumping or injection of fluids. Permeability is an essential rock property for pumping oil and gas out
of hydrocarbon reservoirs, and for injecting residual water, liquid wastes and carbon dioxide into deep
saline aquifers and depleted reservoirs. Both rock properties are geo-spatially distributed, exhibiting a
dependence on location and depth.

As siliciclastic sediments (sand, mud, clay) are deposited in a sedimentary basin, they are mechan-
ically compacted by the weight of the overburden, such that their porosity decreases with depth from
about 45% at deposition to a few % at great depths. The following empirical relation, Athy’s Law, was
observationally found to be valid in many cases:

¢ = poe "%, (1.1)

where 7 is depth, ¢g is the sediment porosity at deposition (~ 45%), and b is an empirical constant.
Permeability is linked to porosity, but not in a simple direct way. Sediments with high porosity such
as clays and shales, have extremely low permeability, making them aquitards (rock formations unable to
transmit water on a human time scale). Other rocks such as sandstones may have a smaller porosity, but
a significantly higher permeability, making them aquifers (if they contain water) or reservoirs (if they
contain oil or gas) from which fluid can be extracted. For the same lithological unit, e.g. sandstones,
permeability may be highly variable, by several orders of magnitude, from 107® to 10~'%mn2. The oil
industry uses for permeability another unit, the Darcy (1 D = 107*2m?). Permeability displays a much
weaker correlation with depth, but in some cases an empirical relation with porosity was found, of the
form [7]:
log(k) = A¢ + B, (1.2)

where k is expressed in Darcies, and the coefficients A and B have values around 15 and -3, respectively.

The values of porosity and permeability must be determined through experiments and field mea-
surements. Porosity is measured in the laboratory on plug samples, several cm long, extracted from
core. Unlike variables like temperature and pressure, permeability cannot be directly measured, and it
has to be back-calculated from the measurement of other variables, such as pressure and flow rate, and
application of Darcy’s Law for flow in porous media. Permeability can be determined in the laboratory
on the same plug samples as porosity. Also, it can be determined in the field in either pump or drillstem
tests. In the case of field tests, the volume of rock sampled is several orders of magnitude greater than in
the case of laboratory determinations on core plugs. Porosity and permeability values measured at the
plug scale (1072 m) can be scaled up to the well, or drillstem test, scale (10° — 10! m) using effective-
averaging procedures [3, 5]. Because of sampling bias, measurement scale and rock heterogeneity, the
permeability values measured by the two methods are different.

Porosity and permeability are known only at specific locations. Natural porous formations in sed-
imentary basins are heterogeneous, i.e. they display porosity and permeability variability at various
scales. This irregular and complex variability defies a precise quantitative description because of: 1) in-
sufficiency of information, and 2) lack of interest in knowing the structure and flow field in every minute
detail, which, even if known, cannot be handled. Prediction of porosity and permeability is important
for the exploration and production of oil and gas, and for the selection of sites for injection of residual
water and liquid wastes.
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| || X | Y | THETA | DIST | GROUND | CORDEPTH | ELEV | SCALEPER | POROS | CORLEN |
X 1.000 -.507 -. 772 .768 -.469 -.690 727 .147 .636 -.047
Y 1.000 .935 .136 -.294 -.068 .000 .190 .070 -.082
THETA 1.000 -.200 -.045 217 -.284 .069 -.197 -.035
DIST 1.000 -.802 -.903 .897 .312 .828 -.075
GROUND 1.000 .893 -.826 -.288 -.698 .064
CORDEPTH 1.000 -.991 -.278 -.805 .029
ELEV 1.000 .263 .805 -.018
SCALEPER 1.000 .382 -.026
POROS 1.000 -.026
CORLEN 1.000

Table 1.1: Pearson Correlations among variables from core analysis data.

1.2 Method

Alberta Geological Survey provided three data files, core.dat, dst.dat, and dstcore.dat, which were read
into the statistical application SPSS 8.0. Inconsistencies in the data were resolved, and then multiple
linear regression strategies and statistical inferencing techniques were used to seek correlations among
the variables, to attempt to verify relations 1.1 and 1.2, to produce useful models, and to address the
specific questions posed by Alberta Geological Survey.

The geographical location of a well site is specified in the data as X and Y coordinates (in centimeters,
transformed from the latititude - longitude system of coordinates to a UTM map at scale 1:2,500,000)
from the origin at 49°N and 126°W. This suggested the introduction of two other variables, the polar
coordinates of the well location, calculated as the distance from the origin, labelled DIST, and the angle
from the polar axis, labelled THETA.

1.3 Porosity and Permeability Measured in Core

The first file, core.dat, has 4079 records of plug sample data, with measurements of permeability and
porosity already scaled up from the plug to the well scale. We removed 133 records which were found
to be from other formations, leaving 3946 valid records. Another 196 records for which the permeability
measurement was zero, were removed for any work with that variable, so that those results are based on
3750 records. The variables used for investigation are:

Xand Y geographical coordinates in cm
DIST distance = v/ X* + Y?
THETA tan—'(Y/X)

GROUND ground elevation (m)

CORDEPTH depth (m) of the cored and analyzed interval

ELEV elevation (m) above sea level of the cored and analyzed interval

SCALEPER effective well-scale permeability in millidarcies (1md = 10715 m? ),
scaled up from plug-scale values

GEOAVE geometric average of plug-scale permeability values, same units
POROS effective well-scale porosity, scaled up from plug-scale values
CORLEN length (m) of the cored and tested interval

Pairwise correlations were produced and examined for links between variables (Table 1.1). Several of
the significant spatial correlations are not surprising: GROUND = ELEV + CORDEPTH, so of course
they are related. We also expect DIST to be correlated with ELEV, CORDEPTH, and GROUND
because the elevation contour lines on the maps form, approximately, radial arcs to the coordinate
origin. A scatterplot of ELEV vs DIST in Figure 1.1 depicts the strength of the relationship between
these two variables. We also note that POROS is strongly correlated with the spatial variables, whereas
neither of the permeability variables, SCALEPER nor GEOAVE, are significantly related to the spatial
variables. There is only a weak correlation of POROS with the permeability variables.

The large negative correlation of DIST with GROUND is due to the topography decreasing northest-
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Figure 1.1: Elevation of Tested Interval vs Distance from Origin.

ward (a geographic-erosional feature). The large negative correlation between DIST and ELEV is due
to the elevation of the formation increasing northeastward (a depositional feature). Since porosity de-
creases with depth, the large correlations of POROS with DIST and CORDEPTH is closely related to
the relations of DIST with GROUND and DIST with ELEV.

First, we looked at permeability as a function of porosity. Using the subset of 3750 records, we
defined a new variable, LOGE, as the logarithm base 10 of (SCALEPER, + 1000) and tried to relate it
to POROS, as in Relation 1.2 (This relation was suggested by Rubey and Hubbert [7]):

LOGk = —3.398 + 11.126 *« POROS, with R% = 0.450.

Comparing this equation to Relation 1.2, we observe the constant term, -3.398, is very close to the value
of -3 reported by Bethke and Marshak [2], and the coefficient of POROS, 11.126, is not far off their
observed value of 15.

The standardized residuals for this model are not evenly distributed, as seen in Figure 1.2(a). A
curve in the scatterplot of LOGk vs POROS suggested the inclusion of POROS? in the model. With
this improvement we obtain a slightly better R? value and the scatterplot of the standardized residuals
versus the standardized predicted values displays a more even distribution (Figure 1.2(b)).

LOGE = —3.995 + 20.559 * POROS — 29.461 * POROS?, with R? = 0.474.

Again using the subset of 3750 records, we considered permeability as a function of depth or elevation.
Using the variable LOGE defined earlier, we experimented with independent variables ELEV, GROUND,
and CORDEPTH. The results were similar for all cases, with a near normal distribution of residuals
(Figures 1.3(a) and 1.3(b)), but even the best model has a very low R? value.

LOGEk = —0.597 + 0.00122 * ELEV — 0.00068 *x GROUND, with R? = 0.322.

Next, we sought a relationship between POROSITY and the depth of the formation, using the full set
of 3946 records. Beginning with Athy’s Law, Relation 1.1, we took the natural logarithm of both sides,
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Figure 1.4: Standardized Residual Plots

giving In¢ = Ingy — bz. To find a regression model of this form, we defined a new variable, LNPOROS,
to be the natural logarithm of POROS, and using CORDEPTH as the variable z, we produced:

LNPOROS = —1.013 — 0.00078 * CORDEPTH, with R* = 0.678.

The constant term of -1.013 implies that ¢g is approximately 36%, less than the 45% as found
elsewhere. Similarly, we allowed ELEV to be the independent variable z, again looking for a model of
the form In¢g = Ingg — bz:

LNPOROS = —1.582 + 0.000982 « ELEV, with R? = 0.678.

Here, the constant term, -1.582, implies that ¢¢ is approximately 21%, significantly less than the
45% as found elsewhere. The residual plots are very similar for both models, skewed to the low end of
values, and revealing a departure from normality (Figures 1.4(a), 1.4(b)). Based on the knowledge of
the proosity of sands at deposition, the first model is better than the second one.

Exploring the notion that the constant b in Athy’s Law might be a function of geographical location,
we created a number of variables that are products of a function of X and Y, with CORDEPTH or
ELEV. Correlations between LNPOROS and these product variables are shown in Table 1.3. The
highest correlation is between LNPOROS and ELEV xDIST with a value of 0.827, but this is only .004
greater than the correlation between LNPOROS and CORDEPTH. In fact, very little improvement in
the R? value of a regression model can be achieved using any of the product variables, so, as mentioned
above, the model containing the single variable CORDEPTH is the preferred model.

1.4 Permeability Measured in Drillstem Tests

The file dst.dat containing 10,516 records of drillstem test data was found to be too large to work with
effectively. Using the variable for the quality of the drillstem test, the records of highest quality, with a
value of A, were extracted. This produced a much smaller file of 2806 records to work with. The type
of fluid recovered during the test, identified only as G for gas and L for liquid (water), was recoded as a
boolean variable so that it could be included in any models as a qualitative variable. The variables used
in the statistical investigations are:



CHAPTER 1. REGIONAL - SCALE VARIATION OF ROCK PROPERTIES IN ALBERTA 7

| [ LNPOROS [ | [ LNPOROS |
ELEV .824 CORDEPTH -.823
ELEVxX .819 CORDEPTH xX -.781
ELEVXY 792 CORDEPTHXY -.751
ELEVXXXY 817 CORDEPTHXXXY -.780
ELEVX(X+Y) 827 CORDEPTHX(X+Y) -.822
ELEV X (X-Y) 641 CORDEPTHX (X-Y) -.362
ELEVxDIST .827 CORDEPTHXxDIST -.821
ELEV xDIST? 827 CORDEPTHXDIST? -.811
ELEVXxX+Y 757 CORDEPTHXxX=+Y -.583
ELEVXY+X 732 CORDEPTHXY+X -.681
ELEV-+-DIST 817 CORDEPTH-=+DIST -.822
ELEV xDISTxTHETA 779 CORDEPTHXDISTxTHETA -.730
ELEV xDIST+-THETA et CORDEPTHXDIST+-THETA -.582
ELEVxX-+DIST .816 CORDEPTHxX+DIST -.793
ELEVxY+DIST 787 CORDEPTHXY-+DIST -.761
ELEVXTHETA 774 CORDEPTHXxTHETA -.742

Table 1.2: Correlation between LNPOROS and product variables from core.dat

| [ X] Y [DIST | GROUND | DSTDEPTH [ ELEV | PERM | GAS [ DSTLEN |
X 1.000 [ -.409 [ .646 -.296 -.533 566 052 | 145 .006
Y 1.000 [ 404 -.551 -.290 143 081 | 141 097
DIST 1.000 -.743 -.813 740 115 | 215 049
GROUND 1.000 784 | -.593 -129 | -.204 -.076
DSTDEPTH 1.000 | -.965 -.095 | -.093 -.012
ELEV 1.000 069 | 034 -.017
PERM 1.000 | .488 -.177
GAS 1.000 .096
DSTLEN 1.000

Table 1.3: Pearson Correlations among variables from drillstem test data.

Xand Y geographical coordinates (still in centimeters)
DIST distance = VX2 + Y2

GROUND ground elevation (m)
DSTDEPTH depth (m) of the drillstem tested interval

ELEV elevation (m) above sea level of the tested interval
PERM logarithm base 10 of permeability (m?)

GAS boolean values: 1 for gas, 0 for liquid

DSTLEN length (m) of the tested interval

As with the previous file, bivariate correlations were produced and examined. In Table 1.3 we
again see the expected strength of correlation between the GROUND, CORDEPTH, ELEV, and DIST
variables. We note that PERM is not strongly correlated to any of the spatial variables, but that it does
show a correlation of 0.488 with GAS.

To further explore the significance of the type of fluid present in the sandstone, we divided the data
set into two groups, by fluid type. The result was a set of 733 records for which GAS = 0, or the fluid
is a liquid, and another set of 2,073 records for which GAS = 1. Using a t-test to compare the mean
PERM of the two samples, we found the difference between the sample means to be 1.70, with very
strong statistical evidence that the mean PERM is different for GAS = 0 and GAS = 1 (the t test
statistic is 36.69).

Multiple linear regression was attempted using both stepwise and backward elimination approaches
to identify the important predictors of permeability. In early attempts the residuals always displayed
increasing variability. To counter this result, we attempted several transformations of the permeability
variable, the most fruitful of which was PERMDEP, defined as PERM divided by the square root of DST-
DEPTH. We also experimented with several interactive terms, but found only one useful: GASXELEV,
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Figure 1.5: Standardized Residual Plots

which is equal to ELEV when GAS=1, otherwise 0. Using PERMDEP as the dependent variable, we
found that both X and Y were entered and retained as independent variables in the models, but DIST
was always excluded or removed. We present here the three best models.

PERMDEP = —0.368 — 0.0024 * Y + .082 « GAS — 0.0021 * DSTDEPTH
—0.00068 * DSTLEN — 0.00049 = DIST,

with R? = .698. This model was improved somewhat by the addition of the interactive term GASxELEV:

PERMDEP = —0.393 — 0.00233 « Y + 0.0826 * GAS + 0.00025 * DSTDEPTH — 0.00068 * DSTLEN
—.00518 x« DIST + .00009 * GAS x ELEV

with R? = .706. Inclusion of the variable GROUND improved the R? value again:

PERMDEP = —0.284 — 0.000293 * Y + 0.00028 * GAS + 0.081 * DSTDEPTH + 0.00071 * DSTLEN
—0.00567 « DIST, — .0001 * GAS x ELEV

with R? = .710. Unfortunately, each of these three models produces a large number of negative standard-
ized residuals below -3, that only increases with each additional independent variable. Residual plots for
all three models appear very similar so only those for the first model are shown here, as Figures 1.5(a)
and 1.5(b). These plots display the skewed distribution of the residuals.

1.5 Permeability Measured in Drillstem Tests and Core

The third file, dstcore.dat contains 441 records, representing the 441 locations for which we have both
the core analysis and drillstem test data, or, in other words, it is the intersection of the other two files,
by location. Each record then supplies measurements of all the variables defined for dst.dat as well as
those for core.dat. Some of the variables, such as ground elevation, are redundant in this file, and were
disregarded.
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| [ DSTPERM | SCALEPER |

X -.043 .103
Y 328 .243
DIST 221 318
GROUND -.286 -.252
DSTDEPTH -.202 -.234
ELEV 181 .259
GAS .014 -.008
POROS 291 .043
DSTPERM 1.000 .356
SCALEPER .356 1.000
GEOAVE .285 .952

Table 1.4: Correlations from dstcore.dat

| [ DSTPERM | SCALEPERM |

Minimum 0.3 0.1
Maximum 4172.5 6240
Interquartile Range 30 124.9
Median 58.5 4.6
Mean 180.6 57.4
Standard Deviation 257.2 468.4

Table 1.5: Descriptive Statistics

Alberta Geological Survey constructed this file to test the two measurements of permeability for
consistency. A core analysis, scaled up from plug-scale values, and a drillstem test were converted to
permeability in millidarcies. We considered the following set of variables in our analysis:

Xand Y geographical coordinates

DIST distance = VX2 4+ Y2

GROUND ground elevation (m)

DSTDEPTH depth (m) of the drillstem tested interval

ELEV elevation (m) above sea level of the tested interval

GAS boolean values: 1 for gas, 0 for liquid

DSTLEN length (m) of the tested drillstem interval

CORLEN length (m) of the cored and tested interval

POROS effective well-scale porosity, scaled up from plug-scale values, from core analysis

DSTPERM  logarithm of permeability (m?), from drillstem test
SCALEPER effective well-scale permeability (md), scaled up from plug-scale values,
from core analysis, (Imd = 10715 m? )

We were looking for a relationship between DSTPERM and SCALEPER and similar trends between
them and the other variables. Between DSTPERM and SCALEPER, there exists a correlation of only
173, indicating little consistency. As we did with the file dst.dat, we decided to select from dstcore.dat
only those records for which the drillstem test quality is of the highest level, A. The following results
are based on the 109 records that remained after filtering.

Bivariate correlations are shown in Table 1.4. There are some deviations in the trends between the
permeability variables and the other variables. For the variables X and GAS, the correlations with DST-
PERM and SCALEPER even have different signs. The correlation of DSTPERM with SCALEPERM
is .356, better than that for the whole data set, but still weak. The descriptive statistics in Table 1.4
show significant differences between the two variables, which are supposed to be measuring the same
property. The scatterplot of values in Figure 1.6 illustrates this disparity.

These results indicate that there is not a consistent relation between permeability measurements
in the drillstem test and the core analysis. Inference based on a combination of the two data sets is
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Figure 1.6: Scatterplot of the two methods of measuring permeability.
inappropriate and dst.dat and core.dat should be analysed separately.

1.6 Conclusion

The two measurements of permeability, the drillstem test at the well scale and the scaled up measure-
ment from the core analysis, are found to be inconsistent. For this reason, the two files were analysed
separately, with no mixing of the data sets.

The regression models developed for permeability measured in drillstem tests were less than satis-
factory because of the non-normal distribution of the residuals. The presence of gas in the sandstone
appears to be a more significant factor of permeability than geographic location or depth.

Permeability measured in core and scaled up is modelled by Relation 1.2, although with an R? value
of only 0.442. These data do not confirm the coefficients previously observed for Relation 1.2.

Regression reveals a much stronger relationship between porosity and elevation above sea level or,
almost equivalently, depth below ground level, as modeled by Relation 1.1. Approximately 70% of the
increase in porosity is explained by an increase in elevation or a decrease in depth. These data, however
do not support or contradict the value of 45% as the sediment porosity at deposition.

Our investigations fail to indicate specific locations for CO5 sequestration.

Permeability measured in the core (1072 metres scale) is not representative for formation perme-
ability, as measured in drillstem tests (10° — 10' metres), therefore not for the formation (10% — 10%
metres).
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Performance Modelling of a Novel
Scheme for Telecommunications
Network Synchronization

Participants: Wayne Grover (Mentor), Tamar Dakic, Scott MacLachlan, Todd Oliynyk, Paul Wiebe.

PROBLEM STATEMENT:
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Chapter 3

Oilsand Dynamics

Participants: Mike Lipsett (Mentor), Vincent Lemaire, Devom McCrea, Luz Palacios, Peilin Shi.

PROBLEM STATEMENT: In surface mining operations, large face shovels are used to break out
ore and load trucks which transport the material to a mill for processing. In the oilsands industry, the
processing results in synthetic crude oil. At Syncrude, over 150 million tons of oilsand is excavated each
year to produce 80 million barrels of oil (about 12% of Canada’s energy supply). Efficient excavation
operations are thus very important for this economy of scale. Several factors are related to efficient
excavation, including shovel/bucket design, shovel-soil interactions, equipment design, and automated
operations.

Surprisingly, this is not a solved problem. Despite millions of earthmoving machines that carve the
earth, we don’t really understand the physics of moving dirt. We here examine the specific problem of
bucket-soil interaction.

12
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3.1 Introduction

In the oilsands, the performance of a shovel is often much poorer than its equivalent performance digging
blasted hard rock or coal. Oilsand is a mixture of sand, clay, water, and bitumen. It has the consistency
of old asphalt. It is extremely abrasive. In the summer it oozes tar, and sticks to anything it touches.
In the winter, it freezes solid and becomes hard to break. It has very high friction against steel.

The difficulty in modeling tool interaction is not limited to the oilsands industry. There exist no good
models for how bulk solids break and flow into a bucket or hopper. Efforts to date have concentrated
on empirical formulae for capturing the important physical parameters of a machine in simple (and thus
inexact) terms. Empirical formulae apply to specific machine types, and neither scale well for new larger
machines of the same type nor translate well to other machine types.

3.2 Statement of Problem

We examine oilsand excavation using a front end bucket to extract material from a sloped wall of oilsand.
In practice, it has been observed that the timing and motion of the scooping action greatly affects the
amount of material recovered in a single scoop. We wish to model this extraction process and examine
how various parameters affect the volume of material recovered. Parameters of interest include the soil
properties, the angle of the wall of oilsand relative to vertical, the angle of bucket insertion, and the
forces applied to the bucket.

3.3 Method of Approach

To model the bank of oilsand, we make use of a specialized program called FLAC (Fast Lagrangian
Analysis of Continua). FLAC is a two dimensional explicit finite difference program for engineering
mechanics computation. It simulates the behaviour of structures built of soil, rock or other materials that
may undergo plastic flow when their yield limits are reached. We began by constructing a quadrilateral
to model the oilsand, which looks like the graph in Figure 3.1.

Model geometry was specified, as well as soil properties. The following values were used:

parameter description typical value
lengthb depth of insertion of shovel 1m

theta angle of sand face to vertical 18°

phi angle to normal of inserted shovel 10°

b bulk modulus 200 MPa

s shear modulus 200 MPa

¢ cohesion 1MPa

t tension 5.67 MPa

f friction 10°

di dilation 10°

d density 2000 kg/m?

We assumed that the shovel was already inserted into the sand.

Force was applied to the inserted part of the bucket with a linear variation to simulate the scooping
motion, as shown in Figure 3.2.

The graphs in Figure 3.3 are obtained after 100 (upper left), 200 (upper right), 500 (lower left) and
1000 (lower right) steps:

The graph of the change of the vertical displacement after 500 time steps is shown in Figure 3.4.

A difference can be seen when changing theta to 15°. The graph of the change of the vertical
displacement after 500 time steps is shown in Figure 3.5.
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3.4 Summary

A basic structure for modeling oilsand excavation was implemented using a specialized engineering
mechanics software package. We were able to perform some simple investigations on parameter changes
to our model. Some methods were discussed in our group which would allow us to determine the volume
of oilsands recovered in a single scoop.

In the future, there are commands available in the FLAC program to determine the individual element
displacements and area. A count could be performed over the whole grid to determine the total number
of elements which were fractured during the scooping process. There are several metrics to determine
whether an individual element is fractured. One way is to measure the change in area of the element,
and if this change is greater than some fixed value, it will be assumed that there was a fracture within
that element.

Many interesting parameters can now be investigated using our model together with some small
variations. Various soil properties can be changed to model changes in temperature.

3.5 Sample File Used to Run Simulations

;-—— Oilsands: May 29/99 -—-
;-—- program to calculate shift in sand due to inserted model shovel ---

;-—- set domain parameters ---
new

def length height theta ybucket phi thickness lengthb
length=7

height=7

theta=18

ybucket=4

phi=10

thickness=0.05

lengthb=1

end

def dev
dev=height*tan(degrad*theta)
end

def xbucket
xbucket=ybucket*tan(degrad*theta)
end

def alpha
alpha=theta+phi
end

def ybuckett
ybuckett=ybucket-(length-xbucket)*tan(degrad*alpha)
end

def gamma
gamma=90-theta-phi
end

def xbucketthick
xbucketthick=xbucket+(thickness*sin(degrad*theta))/cos(degrad*phi)
end

def ybucketthick
ybucketthick=ybucket+(thickness*cos(degrad*theta))/cos(degrad*phi)
end
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def ybuckettt
ybuckettt=ybuckett+thickness/sin(degrad*gamma)
end

def x1
x1=xbucket+lengthb*sin(degrad*gamma)
end

def yl
yl=ybucket-lengthb*cos(degrad*gamma)
end

def x11
x11=x1+(thickness*sin(degrad*theta))/cos(degrad*phi)
end

def yll
yll=yl+(thickness*cos(degrad*theta))/cos(degrad*phi)
end

def xbottom
xbottom=x1-yl/tan(degrad*(90-theta))
end

def xtop
xtop=xbottom+height/tan(degrad*(90-theta))
end

;-—— look at calculated parameters ---

print length height theta ybucket phi thickness lengthb

print dev xbucket alpha ybuckett gamma xbucketthick ybucketthick ybuckettt
print x1 yl x11 yll xbottom xtop

grid 40 40

;-—- set up Mohr-Coulomb model and its parameters ---
model mohr

prop b=2e8 c=1eb5 d=2e3 di=10 f=10 s=2e8 t=5.67e6
;prop bulk=2e8 shear=2e8 fric=10

;prop dens=2000 coh=0 ten=5.67e6 di=10

mn i=1,9 j=15

;prop bulk=4el10 shear=2e10 dens=2000

;-—- ensure bottom and right side of domain does not move ---
;struc beam begin xbucket,ybucket end x1,yl

;struc prop 1 den=2000 he=3

fix y j=1

fix x i=41

;-—- set large shows motion of grid element ---
set large
set grav=9.81

gen 0,0 xbucket,ybucket x1,yl xbottom,0 i=1,10 j=1,15

gen xbucketthick,ybucketthick dev,height xtop,height x11,yll i=1,10 j=16,41
gen x11,yll xtop,height length,height length,ybuckettt i=10,41 j=16,41

gen xbottom,0 x1,yl length,ybuckett length,0 i=10,41 j=1,15

;-—- various ways to apply forcing at boundary ---
;apply pres=1e6 var 1e7 O from 1,16 to 10,16
;apply yforce=0 var 1e6 0 i=1,10 j=16

apply yvel=0.0005 var 0.002 O from 1,16 to 10,16
apply xvel=0.0001 var -0.0004 O from 1,16 to 10,16
;apply xvel=0.001 from 1,16 to 10,16

plot hold model bou fix apply beam
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Print Quality on Paper: Modelling
Missing and Perturbed Half-Tone
Dot Images

Participants: John Oliver (Mentor), Seema Ali, Ella Huszti, Nathan Krislock, Marni Mishna.

PROBLEM STATEMENT: During printing, statistically, it is possible for ink to transfer to either the
paper’s pores, the fibrous land areas, or to combinations of these two physical extremes. Consequently,
depending on the paper quality, serious limitations may arise in print quality. It would be invaluable
to papermakers if, for a pulp of a given average fibre size distribution, they could predict the optimum
surface pore size distribution which would have the least effect on the shape and registration of ink dots
and hence print quality. Specifically, this project set out to:

e Estimate the statistical probability for microscopic ink drops to miss microscopic land areas, trans-
fer through pores to a sub-layer resulting in mis-register on paper

e Estimate the roundness of microscopic drop images on a porous paper surface with different fibre
formation (land/pore distributions).
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Modelling Batch Interfaces

Participants: Don Scott (Mentor), Jesse Bingham, Andriana Davidova, Margaret Liang, Gordon
O’Connell, Hope Serate.

PROBLEM STATEMENT: Petroleum products are most economically shipped in long distance
pipelines. There can be significant differences between the characteristics of the various petroleum
products that are shipped, so they are shipped in batches of fluids with similar characteristics. When
different products with different properties (such as density and molecular viscosity) are transported, it
is important to be able to distinguish the boundary between them so that upon arrival at the terminal
consecutive products can be separated into their respective tanks with a minimum of contamination.

The process of separation is made difficult because during shipping an interface develops between
adjacent batches as one component diffuses into the other. This interface degrades the quality of the
petroleum product. If it were possible to understand which parameters determine the rate of growth of
this interface it may be possible to optimize batch shipments to reduce product degradation.

Here we explore a model of batch interface growth when two fluids flow through a pipe of cylindrical
geometry under the driving force of a constant pressure gradient. These fluids may have different viscosity
or different densities or both.

20
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5.1 Introduction

Enbridge Pipelines, Inc. presented a problem regarding interface mixing when two different petroleum
products are shipped together in a single pipeline. The company maintains a 20 inch diameter pipeline
and has observed that the volume of the interface stabilizes at some point during shipping.

Our approach to modeling the interface between two fluids is to present it as a time-dependent
diffusion process. Turbulent flow throughout the pipeline ensures homogeneous mixing except at batch
interfaces. Once an appropriate solution to the diffusion equation is presented, the remainder of the
report, describes one way to estimate the volume of the batch interface.

5.2 Model assumptions and fluid properties
Model Assumptions The model described in Section 5.3 makes the following assumptions:

e The pipeline is straight and smooth.
e Pipeline flows are fully turbulent.

e The viscosity and density of adjacent batches in the pipeline are similar. Assume homogeneous
mixing.

e The petroleum products in adjacent batches are miscible.

In addition to the model assumptions, the following model parameters are constant:

e U =2.235m/s (flow speed).

e d = 0.508 m or 0.610 m (pipe diameter).
Fluid Properties Table 5.1 summarizes the fluid properties for a number of petroleum products being
shipped in Enbridge’s pipeline. The viscosities and densities were provided by Enbridge. This table also

contains the Reynolds numbers and coefficients of diffusion for each petroleum product, calculated for
20 inch and 24 inch pipes. The Reynolds number is defined by

_ud

v

R (5.1)
where U is the horizontal velocity of flow in m/s, d is the diameter of the pipe in meters and v is the
viscosity of the fluid in centistokes (107% m?/s).

The coefficient of diffusion was calculated for each petroleum product using the following relation
(after Equation 5.1 in [9]):

K=101aU (%) (5.2)

where a is the radius of the pipe in meters, U is the velocity of flow in m/s and the quotient (%) was
estimated using the following regression equation

<v£*> = 5.033602 (logy(R)) — 4.013663 (5.3)

where R is the Reynolds number estimated using Equation 5.1. This regression was fitted to the data

provided in Table 2 in [9]. Notice that the quotient (%) is completely determined by the Reynolds

number.

L Rog is the Reynolds number for a 20 inch pipe, Ra4 is the Reynolds number for a 24 inch pipe.
2K»o is the coefficient of diffusion (m?/s) for a 20 inch pipe, K24 is the coefficient diffusion (m?/s) for a 24 inch pipe.
K was estimated using Equation 5.2.
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Density

. Viscosit 1 2
Fluid kg/m3 centistost Rao Kz Bas Kz
NGL 560 0.1 | 11,353,800 | 0.1820 | 13,624,560 | 0.2157
Gasoline 700 0.4 2,838,450 | 0.2014 3,406,140 | 0.2383
Diesel Fuel 800 0.9 1,261,533 | 0.2148 1,513,840 | 0.2539
Synthetic Crude 585 5.5 206,433 | 0.2522 247,719 | 0.2974
Condensate 672 0.5 2,270,760 | 0.2049 2,724,912 | 0.2424
Sweet Lights 830 6.0 189,230 | 0.2543 227,076 | 0.2998
Sour Lights 852 15.0 75,692 | 0.2791 90,830 | 0.3285
Medium Crude 886 55.0 20,643 | 0.3238 24,772 | 0.3801
Heavy Crude 920 170.0 6,679 | 0.3763 8,014 | 0.4400

Table 5.1: Fluid Properties

5.3 Diffusion model

Suppose that a pipe initially contains fluid A moving at some flow velocity U. At time ¢ = 0 fluid B
is injected into the pipe at position X = 0 immediately adjacent to fluid A. If the flow is turbulent, a
region develops along the pipe where fluids A and B mix. This region is called the interface.

Assuming a diffusion model, the above situation can be modeled using Fick’s second law which is
defined by

where C(z,t) is the concentration of fluid B in fluid A at time ¢, x is some axial displacement from the
origin X = 0 moving in the direction of flow, and, K is the coefficient of diffusion due to the longitudinal
components of turbulent velocity [9]. For our purposes the flow velocity, U, is constant. Assume that
the concentration of fluid B at the center of the interface is C' = %

An appropriate solution to this diffusion equation is

1 1 1 11
C(x,t) = 57567’]( (5.731(5155) (5.5)
f6) = = [ e (5.6
erf(z) = — e .
Vr Jo g’
We now show that Equation 5.5 is a solution to Equation 5.4. Let
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and
2

e . 5.13
AK%t3 /7 exP( 4Kt> (5.13)

T

So
Cy = K Cypy (5.14)

5.4 Results

5.4.1 Determining the length of the interface

For the model described in Section 5.3 the relation between the length of the interface, S, and the
effective diffusivity, K, can be defined as [9, 8]:

S=4VKterf '(2y—1) (5.15)

where ¢t is the elapsed time of flow from the point of injection to the point of separation (shipping time),
K is the coefficient of diffusion and y is the allowable fractional purity. Equation 5.15 suggests that
Stz and S x K2,

The estimated values of K (Equation 5.2) for several petroleum products is summarized in Table 5.1.
Some values for the inverse error function are tabulated in Table 5.2[8].

y e @y—1)
0.50 0.000
0.80 0.594
0.90 0.901
0.95 1.165
0.97 1.328
0.99 1.640
1.00

Table 5.2: Inverse error function at selected values of fractional purity.

Figures 5.1 and 5.2 contain plots of the shipping time versus batch interface volume for NGL, synthetic
crude and heavy crude in a 20 inch and 24 inch pipeline respectively.

As an example of how to interpret these plots, consider a scenario where fluid A is synthetic crude
and fluid B is NGL. Then by Equation 5.15, if the fractional purity is set to y = 0.99, we would expect
a 504 m? interface to develop between these batches along Enbridge’s pipeline between Edmonton and
Superior WI assuming a 20 inch pipe and a shipping distance of 1100 miles. For a 24 inch pipe the
interface volume would be about 790 m?. If the relative positions of fluid A and fluid B are reversed
(synthetic crude diffusing into NGL), we would expect an interface volume of 593 m? for the 20 inch
pipe and 928 m? for the 24 inch pipe, over the same shipping distance.

5.5 Conclusion

In this report we have studied how the diffusion model described by Taylor [9] might be used to predict
batch interface volumes in a bifluid petroleum pipeline. How the predicted interface volumes compare
to the observed volumes of contamination is a good subject for future work.

During the analysis of this diffusion model two major concerns arose:

1. The most critical model parameter appears to be K, the coefficient of diffusion. The estimators for
K given by Taylor [9] and Sjeitzen [8] are very similar, both authors assuming straight pipelines
with smooth walls. Aunicky [1] on the other hand suggests that Taylor’s estimator for K is
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more appropriate for short haul pipelines. The estimator cited in [1] for long haul pipelines gives
estimates two orders of magnitude lower. If this class of diffusion coefficients were used with
Equation 5.15 the estimated interface volumes would be significantly lower.

. The equation used to estimate the volume of batch interfaces (Equation 5.15), contains the pa-
rameter y, the fractional purity at the tails of the interface. We found no adequate explanation of
how one might use this parameter. Should this value be set high when shipping fluids which are
sensitive to contamination? Can this parameter be lowered if a higher degree of contamination is
acceptable?
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Figure 5.1: Estimated interface volume for a 20 inch pipe.
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Figure 5.2: Estimated Interface volume for a 24 inch pipe.



Chapter 6

Initiating 3-D Air Target Tracks
from 2-D and 1-D Sensor Reports
for the Canadian Patrol Frigate

(CPF)

Participants: Pierre Valin (Mentor), Hassan Aurag, Vesselin Jungic, Mounia Kijri, Tamara Koziak,
Joe Sawada.

PROBLEM STATEMENT: The 2 topics studied here involve target tracking from the Canadian
Patrol Frigate (CPF) and can be also used in civilian applications such as airport traffic management.
The single target problems presented here are relatively straightforward and will be later used by industry
for multiple target problems where association becomes the key issue. The added sensory components
furnished by these problems will help resolve the association problem by providing information hidden
from the sensors and revealed only through mathematical modeling and related algorithmic processing.
In particular, one wishes to initiate a 3-D track from lower-dimensional (2-D for radar and 1-D for
Electronic Support Measures) contact data.
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Figure 6.1: The geometry for an aircraft at constant speed and altitude seen by the CPF.

6.1 Introduction

The situation studied is that of an air target being tracked by a 2-D naval radar or a 1-D Electronic
Support Measures (ESM) sensor and consists in initiating at long range (or promoting it at a later time)
a 3-D track from the 2-D and 1-D sensor reports. The radar is an active sensor that can report slant
range and bearing to target, while the ESM is a passive sensor that only detects changes in bearing.

The problem is to find an aircraft’s altitude, speed and trajectory (say for a sub-Mach 1 plane) from
the CPF’s slant range and bearing (w.r.t. true North) report sequence which can be assumed to be at
regular intervals (say 5 seconds equivalent to 12 RPM), hereafter referred as contacts (R;, 8;), i € [1, N].
At large distances the target aircraft will not have moved significantly enough to affect the assumption
of nearly regular intervals. Furthermore, we assume that the Earth can be considered flat when the
radar range is much smaller than the Earth’s radius. The extension to a curved earth involves standard
curvilinear coordinates and geodesics. Figure 6.1 shows a simple case of a plane travelling in a straight
line at an unknown altitude, an expected behaviour for a plane just entering the radar’s outer range
extent (and therefore cruising nonchalantly, unaware of the CPF’s presence through its own ESM).

Having an answer for the problem above is important when the target has a malfunctioning Interrog-
ative Friend and Foe (IFF) sensor (which can report altitude of a friendly aircraft) or decides to remain
circumspect (as would be the case for an enemy aircraft).

Throughout this report, we shall work in the cylindrical coordinates shown in Figure 6.1 and assume
that the earth can be considered flat, which is reasonable for a ship with a limited sensor range and thus
a limited horizon. This assumption is however not reasonable for an aircraft flying at high altitudes,
where the curved earth becomes relevant due to the extended horizon. The cylindrical system centered on
the CPF consists therefore of plane polar coordinates in the flat Earth’s zy-plane together with altitude
forming a righthanded coordinate system. It is related to the traditional Cartesian system (z,y, z) by the
convention that the y-axis is in the direction of the true north and that increasing bearing is measured
from true north (in a CW direction) as opposed to the traditional method of increasing polar angle from
the z-axis in CCW fashion. It is not difficult to see that

x = psinf y = pcosf 7? = R? R? = p* + 22

We will first describe the simulator from ground truth information from a 2-D radar. This is followed by
a description of how this simulated data is used by several cascaded algorithms to correctly extract all the
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desired quantities from the target’s sensor reports (speed, altitude and trajectory) in the noiseless case.
The algorithms are then submitted to noisy data (unclassified sensor accuracies are used). Algorithm
design development for 1-D ESM reports then follows. Finally conclusions explain the use of such
extracted data for Multi-Sensor Data Fusion (MSDF) and follow-on work is outlined, in particular the
need to use classified data for the simulations (especially for the ESM), which is out-of-scope for this
unclassified report.

6.2 Radar Data Simulation

When a target is tracked by a naval radar, the sensor reports information regarding the slant range and
the bearing (w.r.t. true north) of the target. To simulate this data we create discrete 3-D co-ordinates
(zi,yi,2;) to indicate the target’s position at time ¢ with respect to the radar sensor. We then use this
data to determine the slant range and the bearing. The slant range R = /22 + y2 + 22 and the bearing
is computed by 8 = arctan(z;/y;). In the simulated data it is assumed that the radar reports at constant
time intervals of 5 seconds (12 RPM). The simulation program was written in C.

In the first simulation we assumed that the radar gave exact information regarding range and bearing,
i.e. noiseless data. In practice, however, the data will be perturbed by white noise. We assume that the
noise follows a Gaussian distribution. Thus to generate reports with white noise we need to randomly
generate Gaussian distributed values to perturb the exact range and bearing. Algorithms to generate
normally distributed random numbers with 0 mean and unit variance are given in ”Numerical Recipes”
by Press et al. Since these numbers are generated with unit variance, we multiply these values by the
standard deviation for both the range (100 m) and the bearing (1 degree or 1/57 radians) respectively.
The resulting values are then added to the exact range and bearing to simulate reports with white noise.
The above numbers are meant only as a guide because in reality radar parameters values tend to be
smaller than these values: indeed, for the long range SPS-49, the standard deviations are about half the
above quoted values and for the short range SG-150 about 5 times smaller (or better). Throughout this
report, representative values are used and the industrial partner will put in the true (often classified)
values later.

In one simulation shown in Figure 6.1 we have a target starting at location (in km) (100,100,6)
travelling at 0.2 km/s in the negative z direction. If we assume that y is fixed, then we can use the
perturbed data to get perturbed values for the positions z and z. We compute z by multiplying the
fixed value for y by the tangent of the perturbed angle 8y. For z we use use fixed y, and perturbed zn
and Ry. Thus: zny = ytan Sy and zy = \/(RN)2 — (zn)? — y>.

Note that in this case if the true z is small relative to the actual range R, then by perturbing R even
by a small amount we will see a large difference between actual z and zy. As the target gets closer
however (z larger w.r.t. R), this difference decreases as can be seen in Figure 6.2.

6.3 Construction and solution of sets of coupled nonlinear equa-
tions for radar reports

Two separate approaches can be investigated, the first can obtain speed and altitude but not the tra-
jectory, while the second can obtain altitude and the trajectory but not the speed. Since all of these
quantities are useful, the final solution will consist of a mixture of the two methods described below.

Both the speed and altitude are attributes needed by a Multi-Sensor Data Fusion (MSDF) module
for identification. Indeed, one can exclude from all possible air platforms, all those whose documented
maximum speed is less than the measured speed and whose documented maximum altitude is less than
the measured altitude. The trajectory itself is needed to initialize a Kalman filter with the proper state
vector.
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Figure 6.2: Noisy range and bearing data affecting the perceived altitude.

6.3.1 Obtaining speed and altitude

From Figure 6.1, it is easy to see that we have the following relation in the zy plane, since the speed V
is constant:
|Prt1 — Ak|? = v* At

Here, pj, is the projection of the position vector of the plane at contact k onto the zy plane. Explicitly
taking the modulus and using p?> = R? — 22 we have

R+ R} —22° — 2\/Ri+1 - zﬂ/Ri — 22 cos(Brr1 — Br) = v2AL

For convenience, one can rescale by a fixed value of R (say the first value R;) and obtain in terms of

R = % and zZ = Ril. This allows dimensionless variables to appear in computer programs, obviating

1
the decision for a system of units.

—2 —2 _ 2 5 [=2 vALN 2
Ry + Ry —22° — 2\/Rlc+1 - 22\/Rk — 722 cos(Br1 — i) = (IT)
1
This equation involves only two unknowns, namely the speed v and altitude z, but does not allow
determination of the actual trajectory in the projected x — y plane.

6.3.2 Obtaining the actual trajectory

We represent each point M'(z,y,0) belonging to the zy-plane in the terms of p and 3 (see Figure 6.3).
Here p' is the orthogonal projection of p into the zy-plane.

Note that we assume that the line p is parallel to the zy-plane ( at constant z) and that we can
measure the values of the range r and the bearing § for a number of points M from the line p. Clearly, the
problem is to find the distance between the line p and the zy-plane. Indeed, let the set {M7, Mo, ..., My}
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Mi(x;,Y;,2)

Figure 6.3: Notation for deriving the actual aircraft trajectory.

represents N points of the line p and let the pair (r;, §;) represents the range and bearing w.r.t. M;, for
i € [1, N] (see Figure 6.3). Let P be the plane that contains p and p’. We assume that the line p’ does

not pass through the origin, i.e., we consider the case where the airplane does not fly overhead. Let
¢ € R and let a,b € R be such that the equation of P is

ar +by =c.

Hence a and b depend of the choice of ¢. The idea behind this approach is that with the suitable choice
of ¢ we can make our future calculations faster.
From the definition of  and y in terms of p and S and the fact that M} € p', we have that for all
i €[1,N]
pi(asinB; +bcosfB;) =c .

From the triangle OM; M/ we have that R} — z? = p} and, consequently,
(asin B; + bcos 3;)* (R? — 2%) = ¢* .

Let Z = Z and R; = % (for example ¢ can be conveniently chosen to be R;). Then, for all i € [1, N]
(asin B; + bcosﬁi)2(ﬁ? -7 =1.

Hence, the values of Z, a, and b are solutions of this system of N nonlinear equations with 3 unknowns.
In the noiseless case, i.e., in the case where the exact values of R; and f;, i € [1, N], are obtained, the
system has a solution and that solution is unique.

This approach has three unknowns and experience has shown that any routine that tries to find the
simultaneous solution to (at least) 3 such equations is likely to experience problems. In the noisy case,
finding the "best fit” to a set of such equations often leads to false minima.

6.3.3 Combined solution

The best solution is obtained by finding v and z through method 1, then inserting that value of z into
method 2 to find a and b. Note that although both methods involve equalities in the noiseless case,
roundoff errors from the simulator and noisy data in the real-life cases warrant, the use of finding only
approximate solutions to the sum of squares of such equations. We then have a problem of finding the
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NG Fitted z True z Fitted v True v b/a
4.26992 10 4.9708 5. 0.360553 0.3605 -0.666669
4.25659 10 7.0107 7. 0.360557 0.3605 -0.666676
4.25963 10 8.9964 9. 0.360555 0.3605 -0.666673
4.25678 10 11.005 11. 0.360556 0.3605 -0.666675

Table 6.1: Table of results for constant speed for varying altitude.

x> Fitted z True z Fitted v True v -a/b True -a/b
4.67839 10 5.91902 6. 0.399611 04 -0.297673 -0.3
2.43387 10 6.07964 6. 0.399998 04 0.000028634 0.0

2.1768 10 5.9749 6. 0.399604 0.4 0.297641 0.3
4.99305 16 5.99207 6. 0.398733 0.4 0.599412 0.6
3.05118 16 6.00072 6. 0.399372 04 0.898990 0.9
4.94943 10’ 6. 6. 0.398808 0.4 -1.11642 1.0

Table 6.2: Table of results for constant speed and altitude but varying attack angles.

least, square solution to an arbitrary number (> 2) of such solutions. We therefore consider the set of
the functions

=2 —2 . 2 _, [=2 vAEY 2
g(v,z) = Rk+1 + R, — 272 _ 2\/Rk+1 — Zz\/Rk — 72 cos(Br+1 — Br) — (R—l)
fila,b,Z fized) = (asin Bx + beos Br)2(Ry — 22) — 1, kel,N]

The goal is then to minimize the sum of squares of any of the above equations. One thus starts by
minimizing the sum of squares of the first one min Z,?;l g2(v,z) to obtain speed and altitude, then
inserts the results in the second equation min chvzl f#(a,b,Z) to obtain a and b. Note that results are
expected to improve as N increases, particularly for noisy data, since the batch fit includes more points
that would fit the straight line. The computation of the least squares solution has been implemented
using Mathematica’s FindMinimum utility. The usage and implementations notes for the FindMinimum
utility are the following. With Method — Automatic (which is the one we chose), FindMinimum uses
various methods due to Brent: the conjugate gradient in one dimension, and a modification of Powell’s
method in several dimensions; With Method — Newton, FindMinimum uses Newton’s method; With
Method — QuasiNewton FindMinimum uses the BFGS version of the quasi-Newton method.

6.4 Noiseless case for radar contacts

In the first simulation, we take a constant speed, given trajectory and vary the altitude by steps of 2 km.
The inputs are various slant range and bearing readings. The output is speed, altitude and direction, as
measured by the ratio of b and a.

In the second simulation, we take different angles of approach for the target (or trajectories). The
input and output types are the same.

An implementation of such a process should be done in C. Such a C-routine should first start by
getting a good speed evaluation. With the speed obtained after N-steps at an acceptable precision,
the routine should then restart by setting the speed correctly. It then should discard any off-range
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d, t

Figure 6.4: ESM geometry construction in the z — y plane.

readings of slant ranges. The previously shown Figure 6.2 shows how noise affects readings of the
altitude and explains the failure of the straightforward approach to compute the altitude. One should
also recall, that we do obtain the correct speed even in noisy environment. Benchmarking can be done
through simulated noiseless data versus noisy data. The bias in noisy data can be tabulated and the
outliers removed through these simulations. Real data, being intrinsically noisy, would then use the
same outlier truncation mechanism. One also probably will have to use something different from least
squares minimization. An example would be using maximum logarithm likelihood.

6.5 ESM Bearing-only Reports - two approaches

The sensor being used to track targets on Electronic Support Measures unit (ESM) only reports a time-
sequence of their bearing ((t;) when the bearing change attains a certain value AS. This naval sensor
cannot report the airborne target’s slant range nor its projected range on the Earth. Because of the
classified nature of the ESM parameters A and its maximum range, no simulations were performed
at the Workshop and the methods will be tested for effectiveness by the industrial partner at a later
time. The problem that we discuss in this section is how one can obtain a rough estimate of the
target’s slant range (and ultimately its range and altitude, by using the result s of Section 6.3.1) from
the observed bearing rate (i.e., a sequence of different ¢; for a constant AfJ) through analytical and
numerical analysis/simulations. Again there are two competing approaches which have the potential to
be combined into a final optimized solution.

6.5.1 Omne Approach

Figure 6.4 shows the projection on the plane Oy of the trajectory of the aircraft.

The purpose of this part is to be able to determine the direction of the aircraft. We must keep in
mind that we suppose that the velocity v of the aircraft is constant. If A#; is the variation of time
between to and t;, and d; is the associate displacement, then we have

d1 = 'UAtl .
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Similarly, if Aty is the variation of time between t;,_1 and #j, and dy, is the associate displacement, then
we have

dr = vAtyg.
So using those two equations, we get
Aty
dp = ——d;.
k At 1

Now, using the law of sines for the two triangles obtained in the case where £ = 1 and k = 2, we get
two equations:

sin A sinay
dy Co

and
sin2Af  sinap

dy + dy h Co
Since A+ a1 +v =m and 2A8 + as + v = 7, we get as = a; — AB. On the other hand, we also have
dy = ﬁ—ﬁdl. So the two equations become:

sin a e
sin Aﬂ a dl
and
Atg sin(a1 7AB) N Co

( Atl) sin2A38 di
We finally have:

Aty sin(ag — Af)

. _ (14 2k
s (+At1) 2cos AS

We then obtained a4, and since A + a; + v = 7, we get -, and so we have the direction of the plane.
If we go back to the law of sines, we have

sin A sinay

d; Co

and . .

sin kA __ siny

AT = .
d1(1+22 ﬁfi) Ck

So if we just have ¢p, we then get d; (so we know the plane’s speed), and so all the ¢;. We then have the
trajectory of the plane and not only its direction. This could be achieved for example by using only a
few radar returns (ensuring near electromagnetic silence of the CPF) or by using Link-11 time-updated
tracks from Participating Units for an approximate range.

6.5.2 Another Approach
Suppose that the velocity of the target is given by

— e g
U =10zl + UyJ .

Also suppose that N contacts have been reported. Let {My, Mo, ..., M,} is the set of points so that the

point M,, represents the position of the target at the time ¢,, of the nth contact. Let At,, = t,11 —t, and

let 8, = B(t,) be the bearing reported at the time ¢,. We assume that 1,...,8x form an arithmetic

progression with the common difference equal AB, where Af is positive but very small. As before, 7, is

the slant range of M,, and p, is its projected range. Figure 6.5 illustrates the situation we shall discuss.
Since the velocity is & = v,i + vyf, we have that

Tpt1 = Ty + v, - Aty
Yn+1 = YUn + Uy - Atn
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Figure 6.5: ESM geometry construction.

such that, as before,
Pr+1 80 Bi1 — pnsin By, = vy - Aly
Pr+1COS Bpi1 — pr oS By = vy - Aty .

We consider these two equations as a linear system with p,41 and p, as unknowns. Note that

sin Bp41 —sinf, | o
cosBusr  —cosBy | = sinAf #0 .

Thus,
Uy COS Bn+1 — Uy sin 811

= N
P sin A8

Consequently, for any n € [1, N]

2 2 (v €OS Bry1 — vy Sin ﬁn+1)2 2
= — - (At,)° .
@ =Ry (sin AB)? (Atn)

Hence, from the given data, we have obtained a nonlinear system with N equations and N + 3 unknowns
2,Vz,0y, R1,..., Ry One observes that the projections of M, ---, My into zy plane belong to the line

Uyl — VpYy = C
where c¢ is such that

cos By — vy, si si — vy COS
¢ = vypy $in f1 — vapy 08 By = (va cos B2 — vy n52)212 npi — vz cosfi) Aty .
sin

Thus, the line p is given, as before, by Az + By = C where

A= o

(vg cos B2 — vy sin Bo)(vy sin By — vy cos fBy)

Uz

B =—
(vg co8 Ba — vy sin Ba) (v, sin 1 — v, cos f1)

3
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and
Aty

sin AB

To obtain an approximate value of z we follow these steps.

1. Choose ¢ € R™.
2. Define, for each n € [1, N]

(02 005 Brgs vy 5i0 Burr)?
— B . 2
Tn¢ = Tn¢(Va,vy) = \/§ + (sin AF)? (At,)? .

3. Solve the system
2

(Asin 8, + BCOSﬁn)Q(En,C -7 =1

where
) Rn,(
R,=—7=>.
< C

Note that the unknowns are 2, v,, and v,. Also, this situation is the same as the problem that we
discussed in Section 6.3.1.

Alternatively, find (Z¢,ve ¢, vy.c) € R? so that if

9i(z,v,vy) = (Asin B, + Bcosﬁn)2(ﬁi’< -7 -1

then
N N
Z(gi(z4=vz,4=vy,4))z = min{Z(gi(z,vm,vy))z : (2,00,0y) € R?}.
i=1 i=1

4. If (Z¢,va2,¢,vy,¢) is the solution of the system from 3. above, find
zZ¢ =2¢ - C.

5. Compare z¢ and (. If z; and ¢ are “close”, we are done. If they are not, iterate over ¢, which
describes a family of possible solutions, until z¢; and ¢ are “close” enough.

6.6 Conclusions and Outlook

This project studied how to initiate (or promote) higher dimensional air tracks from lower-dimensional
contacts. At least two design solutions were constructed for each of the two cases: a 2-D radar and
an ESM sensor. The complete solution was implemented for the 2-D radar with perfect results in the
noiseless case and promising results for the noisy case. Due to the classified nature of ESM specifications,
the ESM designs will be implemented at a later date by the industrial partner.

The techniques used in this report determine first the speed and altitude which are attributes needed
by a Multi-Sensor Data Fusion (MSDF) module for identification. Indeed, one can exclude from all
possible air platforms all those whose documented maximum speed is less than the measured speed, and
whose documented maximum altitude is less than the measured altitude. These values have been tabu-
lated by Lockheed Martin (LM) Canada in a Platform Database which now contains over 140 platforms.
For each of these deduced attributes, propositions can be constructed that contain all platforms with
consistent attributes and these propositions are then fused in an evidential reasoning scheme such as a
truncated Demspter-Shafer algorithm developed at LM Canada. Finally, the trajectory itself is needed
to initialize a Kalman filter with the proper state vector. In addition, optimization routines can provide
an estimate of parameter errors (here velocity and altitude, as well as the actual trajectory), which can
be used to construct an initial covariance matrix for the Kalman filter.
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