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FOREWORD BY THE PIMS DIRECTORThe PIMS Graduate Industrial Math Modeling Camp (GIMMC) is held every year in one ofthe PIMS universities as part of the annual PIMS Industrial Forum. It is part of PIMS 
ommitment toproviding training for young mathemati
al s
ientists who are either pursing 
areers in a
ademia or inindustry.The goal of the GIMMC is to provide experien
e in the use of mathemati
al modelling as a problemsolving tool for graduate students in mathemati
s, applied mathemati
s, statisti
s and 
omputer s
ien
e.In addition to this it helps prepare them for the Industrial Problem Solving Workshop whi
h isthe other 
omponent of the PIMS Industrial Forum.At the workshop students work together in teams, under the supervision of invited mentors. Ea
h men-tor poses a problem arising from an industrial or engineering appli
ation and guides his or her team ofgraduate students through a modelling phase to a resolution.The 1999 GIMMC, whi
h was the se
ond, was held at University of Alberta, May 24{28, 1999. Twenty-seven students 
ame from eight universities a
ross Canada to work with six mentors from industry.These mentors 
ame from Alberta Energy Utilities Board, Tele
ommuni
ations Resear
h Laboratories,Syn
rude, Alberta Resear
h Coun
il, Enbridge Pipelines Ltd and Lo
kheed Martin Canada.It my pleasure to announ
e that the workshop was an unquali�ed su

ess for all the six proje
t teams.I want to extend my thanks to the organisers (Abel Cadenillasi, Douglas Kelker, Mike Kouritzin, HenryLeung, Bryant Moodie, Bru
e Sutherland, Yanhong Wu), mentors (Stefan Ba
hu, Wayne Grover, MikeLipsett, John Oliver, Don S
ott, Pierre Valin) and students involved in this workshop. Future 
ampsare something I truly look forward to.Dr. Nassif Ghoussoub, Dire
torPa
i�
 Institute for the Mathemati
al S
ien
es
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PREFACEThis year's GIMMC adopted a novel approa
h to introdu
ing graduate students to the mathemati
alte
hniques that arise in industrial R&D. Rather than tutoring students through solutions to arti�
iallyposed problems or to problems that have already been solved, this 
amp asked students to ta
kle a set ofsix, unsolved, modelling problems brought to them by industrial mentors. These problems arose dire
tlyfrom the R&D a
tivities of the mentor's organisation. Based on team-proje
t approa
h, ea
h group ofstudents, a fa
ulty partner and an industrial mentor, worked together to solve one of the six problems.Judging from the written feedba
k, the Se
ond PIMS Graduate Industrial Math Modelling Campwas an unquali�ed su

ess for all the six proje
t teams. Everyone praised the 
amp's impe

able organ-isation. The Industrial Mentors were unanimous in their praise of the 
amp's 
on
ept and exe
ution.The industrial mentor from Lo
kheed Martin Canada wrote that the results of the 
amp ex
eeded hisexpe
tations. The industrial mentor from Tele
ommuni
ations Resear
h Laboratories, one of Canada'sleading industrial tele
ommuni
ations resear
h organisations, was unequivo
al in his assessment: \Ithink it's all a terri�
 idea. I overwhelmingly salute the whole initiative". The graduate students got thesatisfa
tion of making meaningful progress on mathemati
al questions of timely interest to industry. Asone student from Montreal put it: \I really enjoyed working on a 
on
rete problem". Mathemati
ianstend to work alone. Doing resear
h as part of team was a new and rewarding experien
e for the students.For one of the students in Proje
t 4, \It was amazing how well we worked together . . . we got a lot outof it and I know we are all happy with our report". Another student in Proje
t 1 appre
iated the expe-rien
e of \learning how to 
ontribute ideas with other students and write a report together". Throughthe intera
tion with the graduate students and fa
ulty partners, the industrial mentors developed newperspe
tives on their modelling problems. But most important, the 
amp exposed all the parti
ipantsto the rewarding possibilities that 
ollaboration between mathemati
ians and industry 
an bring.As with any undertaking, su

ess starts with the quality of the people involved. GIMMC wasfortunate to have had enlisted senior members from some of Canada's most prominent organisations toa
t as \industrial mentors".The fa
ulty partners were 
riti
al to the su

ess of this 
amp. They provided the needed bridgebetween the mentor's industrial expertise and the graduate students' mathemati
al skills. PIMS wantsto give spe
ial thanks to all the fa
ulty partners for their sel
ess parti
ipation.Finally, the 
amp's su

ess was assured by the parti
ipation of bright and motivated graduate stu-dents. Twenty-seven students were sele
ted for this year's 
amp. They were a diverse group whoseba
kgrounds ranged from pure and applied mathemati
s to statisti
s. They were also geographi
allyheterogeneous group: four from Quebe
, one from Ontario, one from Saskat
hewan, eight from Alberta,and thirteen from British Columbia. PIMS is parti
ularly pleased that a 
amp on Industrial Mathemati
sattra
ted as many women as it did men.
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Chapter 1Regional - S
ale Variation of Ro
kProperties in the Viking Formationin AlbertaParti
ipants: Stefan Ba
hu (Mentor), Andrea Amariel, Brenda Hawkins, Emmanuel Ngimbi Ngembo,Shelly Pinder, Gra
e So.PROBLEM STATEMENT: The Creta
eous sedimentary su

ession in the Alberta basin is 
omprisedof sandstone and shale formations. The main sandstone units are, in des
ending order from the surfa
e:Paskapoo, S
ollard, Belly River, Milk River, Dunvegan, Cardium, Viking and Mannville. Oil and gasexploration and produ
tion has produ
ed a wealth of information regarding porosity and permeabilityin these units. The data are �led in ele
troni
 form with the Alberta Energy and Utilities Board andare publi
ly available. So far no analysis of ro
k properties in these units has been performed at thebasin s
ale. The main issue is to identify if there are regional-s
ale trends in porosity and permeabilityvariations that would allow predi
tion of these ro
k properties for areas and strata la
king data. TheViking Formation has been sele
ted for testing for trends in ro
k properties and for the development ofmethodology to be applied in the analysis of the other sandstone units in the Alberta basin.More spe
i�
ally, the obje
tive is to statisti
ally analyze permeability and porosity distributions inthe Viking Formation in order to identify at the regional s
ale any of the following:� if there is any 
orrelation of ro
k properties with depth;� if there is any 
orrelation between the two ro
k properties;� if there is a parti
ular spatial distribution of ro
k properties.
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2 CHAPTER 1. REGIONAL - SCALE VARIATION OF ROCK PROPERTIES IN ALBERTA1.1 Introdu
tionEx
ept for the northeast 
orner of Alberta where Pre
ambrian 
rystalline ro
ks are exposed at thesurfa
e, Alberta's subsurfa
e is 
omprised of a wedge of sedimentary ro
ks that thi
kens from a zero-edge in the northeast to more than 6000 m in the southwest at the Ro
ky Mountain foothills. One ofthe main 
hara
teristi
s of sedimentary ro
ks is porosity, �, whi
h is de�ned as the ratio of \empty"spa
e in a ro
k volume to the total ro
k volume. This empty spa
e is a
tually �lled, or saturated, with
uids, mostly water. In hydro
arbon reservoirs, abundantly found in Alberta, the pore spa
e is �lledwith oil or gas. While essential for the existen
e of 
uids in the sedimentary ro
ks, porosity is notindi
ative of the ability of 
uids to 
ow through the pore spa
e. Permeability, usually denoted by k, isthe ro
k property that indi
ates the ability of 
uids to 
ow through ro
ks when a hydrauli
 gradient isapplied as a result of either natural pro
esses, su
h as elevation di�eren
es, or of human a
tivity, su
has pumping or inje
tion of 
uids. Permeability is an essential ro
k property for pumping oil and gas outof hydro
arbon reservoirs, and for inje
ting residual water, liquid wastes and 
arbon dioxide into deepsaline aquifers and depleted reservoirs. Both ro
k properties are geo-spatially distributed, exhibiting adependen
e on lo
ation and depth.As sili
i
lasti
 sediments (sand, mud, 
lay) are deposited in a sedimentary basin, they are me
han-i
ally 
ompa
ted by the weight of the overburden, su
h that their porosity de
reases with depth fromabout 45% at deposition to a few % at great depths. The following empiri
al relation, Athy's Law, wasobservationally found to be valid in many 
ases:� = �0e�bz; (1.1)where z is depth, �0 is the sediment porosity at deposition (� 45%), and b is an empiri
al 
onstant.Permeability is linked to porosity, but not in a simple dire
t way. Sediments with high porosity su
has 
lays and shales, have extremely low permeability, making them aquitards (ro
k formations unable totransmit water on a human time s
ale). Other ro
ks su
h as sandstones may have a smaller porosity, buta signi�
antly higher permeability, making them aquifers (if they 
ontain water) or reservoirs (if they
ontain oil or gas) from whi
h 
uid 
an be extra
ted. For the same lithologi
al unit, e.g. sandstones,permeability may be highly variable, by several orders of magnitude, from 10�15 to 10�10m2. The oilindustry uses for permeability another unit, the Dar
y (1 D = 10�12m2). Permeability displays a mu
hweaker 
orrelation with depth, but in some 
ases an empiri
al relation with porosity was found, of theform [7℄: log(k) = A� +B; (1.2)where k is expressed in Dar
ies, and the 
oeÆ
ients A and B have values around 15 and -3, respe
tively.The values of porosity and permeability must be determined through experiments and �eld mea-surements. Porosity is measured in the laboratory on plug samples, several 
m long, extra
ted from
ore. Unlike variables like temperature and pressure, permeability 
annot be dire
tly measured, and ithas to be ba
k-
al
ulated from the measurement of other variables, su
h as pressure and 
ow rate, andappli
ation of Dar
y's Law for 
ow in porous media. Permeability 
an be determined in the laboratoryon the same plug samples as porosity. Also, it 
an be determined in the �eld in either pump or drillstemtests. In the 
ase of �eld tests, the volume of ro
k sampled is several orders of magnitude greater than inthe 
ase of laboratory determinations on 
ore plugs. Porosity and permeability values measured at theplug s
ale (10�2 m) 
an be s
aled up to the well, or drillstem test, s
ale (100 � 101 m) using e�e
tive-averaging pro
edures [3, 5℄. Be
ause of sampling bias, measurement s
ale and ro
k heterogeneity, thepermeability values measured by the two methods are di�erent.Porosity and permeability are known only at spe
i�
 lo
ations. Natural porous formations in sed-imentary basins are heterogeneous, i.e. they display porosity and permeability variability at variouss
ales. This irregular and 
omplex variability de�es a pre
ise quantitative des
ription be
ause of: 1) in-suÆ
ien
y of information, and 2) la
k of interest in knowing the stru
ture and 
ow �eld in every minutedetail, whi
h, even if known, 
annot be handled. Predi
tion of porosity and permeability is importantfor the exploration and produ
tion of oil and gas, and for the sele
tion of sites for inje
tion of residualwater and liquid wastes.



CHAPTER 1. REGIONAL - SCALE VARIATION OF ROCK PROPERTIES IN ALBERTA 3X Y THETA DIST GROUND CORDEPTH ELEV SCALEPER POROS CORLENX 1.000 -.507 -.772 .768 -.469 -.690 .727 .147 .636 -.047Y 1.000 .935 .136 -.294 -.068 .000 .190 .070 -.082THETA 1.000 -.200 -.045 .217 -.284 .069 -.197 -.035DIST 1.000 -.802 -.903 .897 .312 .828 -.075GROUND 1.000 .893 -.826 -.288 -.698 .064CORDEPTH 1.000 -.991 -.278 -.805 .029ELEV 1.000 .263 .805 -.018SCALEPER 1.000 .382 -.026POROS 1.000 -.026CORLEN 1.000Table 1.1: Pearson Correlations among variables from 
ore analysis data.1.2 MethodAlberta Geologi
al Survey provided three data �les, 
ore.dat, dst.dat, and dst
ore.dat, whi
h were readinto the statisti
al appli
ation SPSS 8.0. In
onsisten
ies in the data were resolved, and then multiplelinear regression strategies and statisti
al inferen
ing te
hniques were used to seek 
orrelations amongthe variables, to attempt to verify relations 1.1 and 1.2, to produ
e useful models, and to address thespe
i�
 questions posed by Alberta Geologi
al Survey.The geographi
al lo
ation of a well site is spe
i�ed in the data as X and Y 
oordinates (in 
entimeters,transformed from the latititude - longitude system of 
oordinates to a UTM map at s
ale 1:2,500,000)from the origin at 49ÆN and 126ÆW. This suggested the introdu
tion of two other variables, the polar
oordinates of the well lo
ation, 
al
ulated as the distan
e from the origin, labelled DIST, and the anglefrom the polar axis, labelled THETA.1.3 Porosity and Permeability Measured in CoreThe �rst �le, 
ore.dat, has 4079 re
ords of plug sample data, with measurements of permeability andporosity already s
aled up from the plug to the well s
ale. We removed 133 re
ords whi
h were foundto be from other formations, leaving 3946 valid re
ords. Another 196 re
ords for whi
h the permeabilitymeasurement was zero, were removed for any work with that variable, so that those results are based on3750 re
ords. The variables used for investigation are:X and Y geographi
al 
oordinates in 
mDIST distan
e = pX2 +Y2THETA tan�1(Y=X)GROUND ground elevation (m)CORDEPTH depth (m) of the 
ored and analyzed intervalELEV elevation (m) above sea level of the 
ored and analyzed intervalSCALEPER e�e
tive well-s
ale permeability in millidar
ies (1md = 10�15 m2 ),s
aled up from plug-s
ale valuesGEOAVE geometri
 average of plug-s
ale permeability values, same unitsPOROS e�e
tive well-s
ale porosity, s
aled up from plug-s
ale valuesCORLEN length (m) of the 
ored and tested intervalPairwise 
orrelations were produ
ed and examined for links between variables (Table 1.1). Several ofthe signi�
ant spatial 
orrelations are not surprising: GROUND = ELEV + CORDEPTH, so of 
oursethey are related. We also expe
t DIST to be 
orrelated with ELEV, CORDEPTH, and GROUNDbe
ause the elevation 
ontour lines on the maps form, approximately, radial ar
s to the 
oordinateorigin. A s
atterplot of ELEV vs DIST in Figure 1.1 depi
ts the strength of the relationship betweenthese two variables. We also note that POROS is strongly 
orrelated with the spatial variables, whereasneither of the permeability variables, SCALEPER nor GEOAVE, are signi�
antly related to the spatialvariables. There is only a weak 
orrelation of POROS with the permeability variables.The large negative 
orrelation of DIST with GROUND is due to the topography de
reasing northest-



4 CHAPTER 1. REGIONAL - SCALE VARIATION OF ROCK PROPERTIES IN ALBERTA

Figure 1.1: Elevation of Tested Interval vs Distan
e from Origin.ward (a geographi
-erosional feature). The large negative 
orrelation between DIST and ELEV is dueto the elevation of the formation in
reasing northeastward (a depositional feature). Sin
e porosity de-
reases with depth, the large 
orrelations of POROS with DIST and CORDEPTH is 
losely related tothe relations of DIST with GROUND and DIST with ELEV.First, we looked at permeability as a fun
tion of porosity. Using the subset of 3750 re
ords, wede�ned a new variable, LOGk, as the logarithm base 10 of (SCALEPER � 1000) and tried to relate itto POROS, as in Relation 1.2 (This relation was suggested by Rubey and Hubbert [7℄):LOGk = �3:398+ 11:126 � POROS; with R2 = 0.450.Comparing this equation to Relation 1.2, we observe the 
onstant term, -3.398, is very 
lose to the valueof -3 reported by Bethke and Marshak [2℄, and the 
oeÆ
ient of POROS, 11.126, is not far o� theirobserved value of 15.The standardized residuals for this model are not evenly distributed, as seen in Figure 1.2(a). A
urve in the s
atterplot of LOGk vs POROS suggested the in
lusion of POROS2 in the model. Withthis improvement we obtain a slightly better R2 value and the s
atterplot of the standardized residualsversus the standardized predi
ted values displays a more even distribution (Figure 1.2(b)).LOGk = �3:995+ 20:559 � POROS� 29:461 � POROS2; with R2 = 0.474.Again using the subset of 3750 re
ords, we 
onsidered permeability as a fun
tion of depth or elevation.Using the variable LOGk de�ned earlier, we experimented with independent variables ELEV, GROUND,and CORDEPTH. The results were similar for all 
ases, with a near normal distribution of residuals(Figures 1.3(a) and 1.3(b)), but even the best model has a very low R2 value.LOGk = �0:597+ 0:00122 � ELEV� 0:00068 �GROUND; with R2 = 0.322.Next, we sought a relationship between POROSITY and the depth of the formation, using the full setof 3946 re
ords. Beginning with Athy's Law, Relation 1.1, we took the natural logarithm of both sides,
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(a) (b)Figure 1.2: Standardized Residual Plots

(a) (b)Figure 1.3: Standardized Residual Plots
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(a) (b)Figure 1.4: Standardized Residual Plotsgiving ln� = ln�0 � bz: To �nd a regression model of this form, we de�ned a new variable, LNPOROS,to be the natural logarithm of POROS, and using CORDEPTH as the variable z, we produ
ed:LNPOROS = �1:013� 0:00078 �CORDEPTH; with R2 = 0.678.The 
onstant term of -1.013 implies that �0 is approximately 36%, less than the 45% as foundelsewhere. Similarly, we allowed ELEV to be the independent variable z, again looking for a model ofthe form ln� = ln�0 � bz:LNPOROS = �1:582+ 0:000982 � ELEV; with R2 = 0.678.Here, the 
onstant term, -1.582, implies that �0 is approximately 21%, signi�
antly less than the45% as found elsewhere. The residual plots are very similar for both models, skewed to the low end ofvalues, and revealing a departure from normality (Figures 1.4(a), 1.4(b)). Based on the knowledge ofthe proosity of sands at deposition, the �rst model is better than the se
ond one.Exploring the notion that the 
onstant b in Athy's Law might be a fun
tion of geographi
al lo
ation,we 
reated a number of variables that are produ
ts of a fun
tion of X and Y, with CORDEPTH orELEV. Correlations between LNPOROS and these produ
t variables are shown in Table 1.3. Thehighest 
orrelation is between LNPOROS and ELEV�DIST with a value of 0.827, but this is only .004greater than the 
orrelation between LNPOROS and CORDEPTH. In fa
t, very little improvement inthe R2 value of a regression model 
an be a
hieved using any of the produ
t variables, so, as mentionedabove, the model 
ontaining the single variable CORDEPTH is the preferred model.1.4 Permeability Measured in Drillstem TestsThe �le dst.dat 
ontaining 10,516 re
ords of drillstem test data was found to be too large to work withe�e
tively. Using the variable for the quality of the drillstem test, the re
ords of highest quality, with avalue of A, were extra
ted. This produ
ed a mu
h smaller �le of 2806 re
ords to work with. The typeof 
uid re
overed during the test, identi�ed only as G for gas and L for liquid (water), was re
oded as aboolean variable so that it 
ould be in
luded in any models as a qualitative variable. The variables usedin the statisti
al investigations are:



CHAPTER 1. REGIONAL - SCALE VARIATION OF ROCK PROPERTIES IN ALBERTA 7LNPOROS LNPOROSELEV .824 CORDEPTH -.823ELEV�X .819 CORDEPTH�X -.781ELEV�Y .792 CORDEPTH�Y -.751ELEV�X�Y .817 CORDEPTH�X�Y -.780ELEV�(X+Y) .827 CORDEPTH�(X+Y) -.822ELEV�(X-Y) .641 CORDEPTH�(X-Y) -.362ELEV�DIST .827 CORDEPTH�DIST -.821ELEV�DIST2 .827 CORDEPTH�DIST2 -.811ELEV�X�Y .757 CORDEPTH�X�Y -.583ELEV�Y�X .732 CORDEPTH�Y�X -.681ELEV�DIST .817 CORDEPTH�DIST -.822ELEV�DIST�THETA .779 CORDEPTH�DIST�THETA -.730ELEV�DIST�THETA .777 CORDEPTH�DIST�THETA -.582ELEV�X�DIST .816 CORDEPTH�X�DIST -.793ELEV�Y�DIST .787 CORDEPTH�Y�DIST -.761ELEV�THETA .774 CORDEPTH�THETA -.742Table 1.2: Correlation between LNPOROS and produ
t variables from 
ore.datX Y DIST GROUND DSTDEPTH ELEV PERM GAS DSTLENX 1.000 -.409 .646 -.296 -.533 .566 .052 .145 .006Y 1.000 .404 -.551 -.290 .143 .081 .141 .097DIST 1.000 -.743 -.813 .740 .115 .215 .049GROUND 1.000 .784 -.593 -.129 -.204 -.076DSTDEPTH 1.000 -.965 -.095 -.093 -.012ELEV 1.000 .069 .034 -.017PERM 1.000 .488 -.177GAS 1.000 .096DSTLEN 1.000Table 1.3: Pearson Correlations among variables from drillstem test data.X and Y geographi
al 
oordinates (still in 
entimeters)DIST distan
e = pX2 + Y 2GROUND ground elevation (m)DSTDEPTH depth (m) of the drillstem tested intervalELEV elevation (m) above sea level of the tested intervalPERM logarithm base 10 of permeability (m2)GAS boolean values: 1 for gas, 0 for liquidDSTLEN length (m) of the tested intervalAs with the previous �le, bivariate 
orrelations were produ
ed and examined. In Table 1.3 weagain see the expe
ted strength of 
orrelation between the GROUND, CORDEPTH, ELEV, and DISTvariables. We note that PERM is not strongly 
orrelated to any of the spatial variables, but that it doesshow a 
orrelation of 0.488 with GAS.To further explore the signi�
an
e of the type of 
uid present in the sandstone, we divided the dataset into two groups, by 
uid type. The result was a set of 733 re
ords for whi
h GAS = 0, or the 
uidis a liquid, and another set of 2,073 re
ords for whi
h GAS = 1. Using a t-test to 
ompare the meanPERM of the two samples, we found the di�eren
e between the sample means to be 1.70, with verystrong statisti
al eviden
e that the mean PERM is di�erent for GAS = 0 and GAS = 1 (the t teststatisti
 is 36.69).Multiple linear regression was attempted using both stepwise and ba
kward elimination approa
hesto identify the important predi
tors of permeability. In early attempts the residuals always displayedin
reasing variability. To 
ounter this result, we attempted several transformations of the permeabilityvariable, the most fruitful of whi
h was PERMDEP, de�ned as PERM divided by the square root of DST-DEPTH. We also experimented with several intera
tive terms, but found only one useful: GAS�ELEV,
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(a) (b)Figure 1.5: Standardized Residual Plotswhi
h is equal to ELEV when GAS=1, otherwise 0. Using PERMDEP as the dependent variable, wefound that both X and Y were entered and retained as independent variables in the models, but DISTwas always ex
luded or removed. We present here the three best models.PERMDEP = �0:368� 0:0024 �Y+ :082 �GAS� 0:0021 �DSTDEPTH�0:00068 �DSTLEN� 0:00049 �DIST;with R2 = .698. This model was improved somewhat by the addition of the intera
tive term GAS�ELEV:PERMDEP = �0:393� 0:00233 �Y+ 0:0826 �GAS + 0:00025 �DSTDEPTH� 0:00068 �DSTLEN�:00518 �DIST + :00009 �GAS� ELEVwith R2 = .706. In
lusion of the variable GROUND improved the R2 value again:PERMDEP = �0:284� 0:000293 �Y+ 0:00028 �GAS + 0:081 �DSTDEPTH + 0:00071 �DSTLEN�0:00567 �DIST;� :0001 �GAS� ELEVwith R2 = .710. Unfortunately, ea
h of these three models produ
es a large number of negative standard-ized residuals below -3, that only in
reases with ea
h additional independent variable. Residual plots forall three models appear very similar so only those for the �rst model are shown here, as Figures 1.5(a)and 1.5(b). These plots display the skewed distribution of the residuals.1.5 Permeability Measured in Drillstem Tests and CoreThe third �le, dst
ore.dat 
ontains 441 re
ords, representing the 441 lo
ations for whi
h we have boththe 
ore analysis and drillstem test data, or, in other words, it is the interse
tion of the other two �les,by lo
ation. Ea
h re
ord then supplies measurements of all the variables de�ned for dst.dat as well asthose for 
ore.dat. Some of the variables, su
h as ground elevation, are redundant in this �le, and weredisregarded.



CHAPTER 1. REGIONAL - SCALE VARIATION OF ROCK PROPERTIES IN ALBERTA 9DSTPERM SCALEPERX -.043 .103Y .328 .243DIST .221 .318GROUND -.286 -.252DSTDEPTH -.202 -.234ELEV .181 .259GAS .014 -.008POROS .291 .043DSTPERM 1.000 .356SCALEPER .356 1.000GEOAVE .285 .952Table 1.4: Correlations from dst
ore.datDSTPERM SCALEPERMMinimum 0.3 0.1Maximum 4172.5 6240Interquartile Range 30 124.9Median 58.5 4.6Mean 180.6 57.4Standard Deviation 257.2 468.4Table 1.5: Des
riptive Statisti
sAlberta Geologi
al Survey 
onstru
ted this �le to test the two measurements of permeability for
onsisten
y. A 
ore analysis, s
aled up from plug-s
ale values, and a drillstem test were 
onverted topermeability in millidar
ies. We 
onsidered the following set of variables in our analysis:X and Y geographi
al 
oordinatesDIST distan
e = pX2 + Y 2GROUND ground elevation (m)DSTDEPTH depth (m) of the drillstem tested intervalELEV elevation (m) above sea level of the tested intervalGAS boolean values: 1 for gas, 0 for liquidDSTLEN length (m) of the tested drillstem intervalCORLEN length (m) of the 
ored and tested intervalPOROS e�e
tive well-s
ale porosity, s
aled up from plug-s
ale values, from 
ore analysisDSTPERM logarithm of permeability (m2), from drillstem testSCALEPER e�e
tive well-s
ale permeability (md), s
aled up from plug-s
ale values,from 
ore analysis, (1md = 10�15 m2 )We were looking for a relationship between DSTPERM and SCALEPER and similar trends betweenthem and the other variables. Between DSTPERM and SCALEPER, there exists a 
orrelation of only.173, indi
ating little 
onsisten
y. As we did with the �le dst.dat, we de
ided to sele
t from dst
ore.datonly those re
ords for whi
h the drillstem test quality is of the highest level, A. The following resultsare based on the 109 re
ords that remained after �ltering.Bivariate 
orrelations are shown in Table 1.4. There are some deviations in the trends between thepermeability variables and the other variables. For the variables X and GAS, the 
orrelations with DST-PERM and SCALEPER even have di�erent signs. The 
orrelation of DSTPERM with SCALEPERMis .356, better than that for the whole data set, but still weak. The des
riptive statisti
s in Table 1.4show signi�
ant di�eren
es between the two variables, whi
h are supposed to be measuring the sameproperty. The s
atterplot of values in Figure 1.6 illustrates this disparity.These results indi
ate that there is not a 
onsistent relation between permeability measurementsin the drillstem test and the 
ore analysis. Inferen
e based on a 
ombination of the two data sets is
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Figure 1.6: S
atterplot of the two methods of measuring permeability.inappropriate and dst.dat and 
ore.dat should be analysed separately.1.6 Con
lusionThe two measurements of permeability, the drillstem test at the well s
ale and the s
aled up measure-ment from the 
ore analysis, are found to be in
onsistent. For this reason, the two �les were analysedseparately, with no mixing of the data sets.The regression models developed for permeability measured in drillstem tests were less than satis-fa
tory be
ause of the non-normal distribution of the residuals. The presen
e of gas in the sandstoneappears to be a more signi�
ant fa
tor of permeability than geographi
 lo
ation or depth.Permeability measured in 
ore and s
aled up is modelled by Relation 1.2, although with an R2 valueof only 0.442. These data do not 
on�rm the 
oeÆ
ients previously observed for Relation 1.2.Regression reveals a mu
h stronger relationship between porosity and elevation above sea level or,almost equivalently, depth below ground level, as modeled by Relation 1.1. Approximately 70% of thein
rease in porosity is explained by an in
rease in elevation or a de
rease in depth. These data, howeverdo not support or 
ontradi
t the value of 45% as the sediment porosity at deposition.Our investigations fail to indi
ate spe
i�
 lo
ations for CO2 sequestration.Permeability measured in the 
ore (10�2 metres s
ale) is not representative for formation perme-ability, as measured in drillstem tests (100 � 101 metres), therefore not for the formation (102 � 104metres).



Chapter 2Performan
e Modelling of a NovelS
heme for Tele
ommuni
ationsNetwork Syn
hronizationParti
ipants: Wayne Grover (Mentor), Tamar Daki
, S
ott Ma
La
hlan, Todd Oliynyk, Paul Wiebe.PROBLEM STATEMENT:
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Chapter 3Oilsand Dynami
sParti
ipants: Mike Lipsett (Mentor), Vin
ent Lemaire, Devom M
Crea, Luz Pala
ios, Peilin Shi.PROBLEM STATEMENT: In surfa
e mining operations, large fa
e shovels are used to break outore and load tru
ks whi
h transport the material to a mill for pro
essing. In the oilsands industry, thepro
essing results in syntheti
 
rude oil. At Syn
rude, over 150 million tons of oilsand is ex
avated ea
hyear to produ
e 80 million barrels of oil (about 12% of Canada's energy supply). EÆ
ient ex
avationoperations are thus very important for this e
onomy of s
ale. Several fa
tors are related to eÆ
ientex
avation, in
luding shovel/bu
ket design, shovel-soil intera
tions, equipment design, and automatedoperations.Surprisingly, this is not a solved problem. Despite millions of earthmoving ma
hines that 
arve theearth, we don't really understand the physi
s of moving dirt. We here examine the spe
i�
 problem ofbu
ket-soil intera
tion.
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CHAPTER 3. OILSAND DYNAMICS 133.1 Introdu
tionIn the oilsands, the performan
e of a shovel is often mu
h poorer than its equivalent performan
e diggingblasted hard ro
k or 
oal. Oilsand is a mixture of sand, 
lay, water, and bitumen. It has the 
onsisten
yof old asphalt. It is extremely abrasive. In the summer it oozes tar, and sti
ks to anything it tou
hes.In the winter, it freezes solid and be
omes hard to break. It has very high fri
tion against steel.The diÆ
ulty in modeling tool intera
tion is not limited to the oilsands industry. There exist no goodmodels for how bulk solids break and 
ow into a bu
ket or hopper. E�orts to date have 
on
entratedon empiri
al formulae for 
apturing the important physi
al parameters of a ma
hine in simple (and thusinexa
t) terms. Empiri
al formulae apply to spe
i�
 ma
hine types, and neither s
ale well for new largerma
hines of the same type nor translate well to other ma
hine types.3.2 Statement of ProblemWe examine oilsand ex
avation using a front end bu
ket to extra
t material from a sloped wall of oilsand.In pra
ti
e, it has been observed that the timing and motion of the s
ooping a
tion greatly a�e
ts theamount of material re
overed in a single s
oop. We wish to model this extra
tion pro
ess and examinehow various parameters a�e
t the volume of material re
overed. Parameters of interest in
lude the soilproperties, the angle of the wall of oilsand relative to verti
al, the angle of bu
ket insertion, and thefor
es applied to the bu
ket.3.3 Method of Approa
hTo model the bank of oilsand, we make use of a spe
ialized program 
alled FLAC (Fast LagrangianAnalysis of Continua). FLAC is a two dimensional expli
it �nite di�eren
e program for engineeringme
hani
s 
omputation. It simulates the behaviour of stru
tures built of soil, ro
k or other materials thatmay undergo plasti
 
ow when their yield limits are rea
hed. We began by 
onstru
ting a quadrilateralto model the oilsand, whi
h looks like the graph in Figure 3.1.Model geometry was spe
i�ed, as well as soil properties. The following values were used:parameter des
ription typi
al valuelengthb depth of insertion of shovel 1mtheta angle of sand fa
e to verti
al 18ophi angle to normal of inserted shovel 10ob bulk modulus 200 MPas shear modulus 200 MPa
 
ohesion 1MPat tension 5.67 MPaf fri
tion 10odi dilation 10od density 2000 kg/m3We assumed that the shovel was already inserted into the sand.For
e was applied to the inserted part of the bu
ket with a linear variation to simulate the s
oopingmotion, as shown in Figure 3.2.The graphs in Figure 3.3 are obtained after 100 (upper left), 200 (upper right), 500 (lower left) and1000 (lower right) steps:The graph of the 
hange of the verti
al displa
ement after 500 time steps is shown in Figure 3.4.A di�eren
e 
an be seen when 
hanging theta to 15o. The graph of the 
hange of the verti
aldispla
ement after 500 time steps is shown in Figure 3.5.
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Figure 3.1: Initial Grid

Figure 3.2: Initial Grid with applied for
es
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Figure 3.3: For
es after 100, 200, 500 and 1000 steps
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Figure 3.4: For
es after 1000 steps

Figure 3.5: For
es after 1000 steps



CHAPTER 3. OILSAND DYNAMICS 173.4 SummaryA basi
 stru
ture for modeling oilsand ex
avation was implemented using a spe
ialized engineeringme
hani
s software pa
kage. We were able to perform some simple investigations on parameter 
hangesto our model. Some methods were dis
ussed in our group whi
h would allow us to determine the volumeof oilsands re
overed in a single s
oop.In the future, there are 
ommands available in the FLAC program to determine the individual elementdispla
ements and area. A 
ount 
ould be performed over the whole grid to determine the total numberof elements whi
h were fra
tured during the s
ooping pro
ess. There are several metri
s to determinewhether an individual element is fra
tured. One way is to measure the 
hange in area of the element,and if this 
hange is greater than some �xed value, it will be assumed that there was a fra
ture withinthat element.Many interesting parameters 
an now be investigated using our model together with some smallvariations. Various soil properties 
an be 
hanged to model 
hanges in temperature.3.5 Sample File Used to Run Simulations;=======================================================================;--- Oilsands: May 29/99 ---;--- program to 
al
ulate shift in sand due to inserted model shovel ---;=======================================================================;--- set domain parameters ---newdef length height theta ybu
ket phi thi
kness lengthblength=7height=7theta=18ybu
ket=4phi=10thi
kness=0.05lengthb=1enddef devdev=height*tan(degrad*theta)enddef xbu
ketxbu
ket=ybu
ket*tan(degrad*theta)enddef alphaalpha=theta+phienddef ybu
kettybu
kett=ybu
ket-(length-xbu
ket)*tan(degrad*alpha)enddef gammagamma=90-theta-phienddef xbu
ketthi
kxbu
ketthi
k=xbu
ket+(thi
kness*sin(degrad*theta))/
os(degrad*phi)enddef ybu
ketthi
kybu
ketthi
k=ybu
ket+(thi
kness*
os(degrad*theta))/
os(degrad*phi)end



18 CHAPTER 3. OILSAND DYNAMICSdef ybu
ketttybu
kettt=ybu
kett+thi
kness/sin(degrad*gamma)enddef xlxl=xbu
ket+lengthb*sin(degrad*gamma)enddef ylyl=ybu
ket-lengthb*
os(degrad*gamma)enddef xllxll=xl+(thi
kness*sin(degrad*theta))/
os(degrad*phi)enddef yllyll=yl+(thi
kness*
os(degrad*theta))/
os(degrad*phi)enddef xbottomxbottom=xl-yl/tan(degrad*(90-theta))enddef xtopxtop=xbottom+height/tan(degrad*(90-theta))end;--- look at 
al
ulated parameters ---print length height theta ybu
ket phi thi
kness lengthbprint dev xbu
ket alpha ybu
kett gamma xbu
ketthi
k ybu
ketthi
k ybu
ketttprint xl yl xll yll xbottom xtopgrid 40 40;--- set up Mohr-Coulomb model and its parameters ---model mohrprop b=2e8 
=1e5 d=2e3 di=10 f=10 s=2e8 t=5.67e6;prop bulk=2e8 shear=2e8 fri
=10;prop dens=2000 
oh=0 ten=5.67e6 di=10m n i=1,9 j=15;prop bulk=4e10 shear=2e10 dens=2000;--- ensure bottom and right side of domain does not move ---;stru
 beam begin xbu
ket,ybu
ket end xl,yl;stru
 prop 1 den=2000 he=3fix y j=1fix x i=41;--- set large shows motion of grid element ---set largeset grav=9.81gen 0,0 xbu
ket,ybu
ket xl,yl xbottom,0 i=1,10 j=1,15gen xbu
ketthi
k,ybu
ketthi
k dev,height xtop,height xll,yll i=1,10 j=16,41gen xll,yll xtop,height length,height length,ybu
kettt i=10,41 j=16,41gen xbottom,0 xl,yl length,ybu
kett length,0 i=10,41 j=1,15;--- various ways to apply for
ing at boundary ---;apply pres=1e6 var 1e7 0 from 1,16 to 10,16;apply yfor
e=0 var 1e6 0 i=1,10 j=16apply yvel=0.0005 var 0.002 0 from 1,16 to 10,16apply xvel=0.0001 var -0.0004 0 from 1,16 to 10,16;apply xvel=0.001 from 1,16 to 10,16plot hold model bou fix apply beam



Chapter 4Print Quality on Paper: ModellingMissing and Perturbed Half-ToneDot ImagesParti
ipants: John Oliver (Mentor), Seema Ali, Ella Huszti, Nathan Krislo
k, Marni Mishna.PROBLEM STATEMENT: During printing, statisti
ally, it is possible for ink to transfer to either thepaper's pores, the �brous land areas, or to 
ombinations of these two physi
al extremes. Consequently,depending on the paper quality, serious limitations may arise in print quality. It would be invaluableto papermakers if, for a pulp of a given average �bre size distribution, they 
ould predi
t the optimumsurfa
e pore size distribution whi
h would have the least e�e
t on the shape and registration of ink dotsand hen
e print quality. Spe
i�
ally, this proje
t set out to:� Estimate the statisti
al probability for mi
ros
opi
 ink drops to miss mi
ros
opi
 land areas, trans-fer through pores to a sub-layer resulting in mis-register on paper� Estimate the roundness of mi
ros
opi
 drop images on a porous paper surfa
e with di�erent �breformation (land/pore distributions).
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Chapter 5Modelling Bat
h Interfa
esParti
ipants: Don S
ott (Mentor), Jesse Bingham, Andriana Davidova, Margaret Liang, GordonO'Connell, Hope Serate.PROBLEM STATEMENT: Petroleum produ
ts are most e
onomi
ally shipped in long distan
epipelines. There 
an be signi�
ant di�eren
es between the 
hara
teristi
s of the various petroleumprodu
ts that are shipped, so they are shipped in bat
hes of 
uids with similar 
hara
teristi
s. Whendi�erent produ
ts with di�erent properties (su
h as density and mole
ular vis
osity) are transported, itis important to be able to distinguish the boundary between them so that upon arrival at the terminal
onse
utive produ
ts 
an be separated into their respe
tive tanks with a minimum of 
ontamination.The pro
ess of separation is made diÆ
ult be
ause during shipping an interfa
e develops betweenadja
ent bat
hes as one 
omponent di�uses into the other. This interfa
e degrades the quality of thepetroleum produ
t. If it were possible to understand whi
h parameters determine the rate of growth ofthis interfa
e it may be possible to optimize bat
h shipments to redu
e produ
t degradation.Here we explore a model of bat
h interfa
e growth when two 
uids 
ow through a pipe of 
ylindri
algeometry under the driving for
e of a 
onstant pressure gradient. These 
uids may have di�erent vis
osityor di�erent densities or both.
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CHAPTER 5. MODELLING BATCH INTERFACES 215.1 Introdu
tionEnbridge Pipelines, In
. presented a problem regarding interfa
e mixing when two di�erent petroleumprodu
ts are shipped together in a single pipeline. The 
ompany maintains a 20 in
h diameter pipelineand has observed that the volume of the interfa
e stabilizes at some point during shipping.Our approa
h to modeling the interfa
e between two 
uids is to present it as a time-dependentdi�usion pro
ess. Turbulent 
ow throughout the pipeline ensures homogeneous mixing ex
ept at bat
hinterfa
es. On
e an appropriate solution to the di�usion equation is presented, the remainder of thereport des
ribes one way to estimate the volume of the bat
h interfa
e.5.2 Model assumptions and 
uid propertiesModel Assumptions The model des
ribed in Se
tion 5.3 makes the following assumptions:� The pipeline is straight and smooth.� Pipeline 
ows are fully turbulent.� The vis
osity and density of adja
ent bat
hes in the pipeline are similar. Assume homogeneousmixing.� The petroleum produ
ts in adja
ent bat
hes are mis
ible.In addition to the model assumptions, the following model parameters are 
onstant:� U = 2.235 m=s (
ow speed).� d = 0.508 m or 0.610 m (pipe diameter).Fluid Properties Table 5.1 summarizes the 
uid properties for a number of petroleum produ
ts beingshipped in Enbridge's pipeline. The vis
osities and densities were provided by Enbridge. This table also
ontains the Reynolds numbers and 
oeÆ
ients of di�usion for ea
h petroleum produ
t, 
al
ulated for20 in
h and 24 in
h pipes. The Reynolds number is de�ned byR = Ud� (5.1)where U is the horizontal velo
ity of 
ow in m=s, d is the diameter of the pipe in meters and � is thevis
osity of the 
uid in 
entistokes (10�6 m2=s).The 
oeÆ
ient of di�usion was 
al
ulated for ea
h petroleum produ
t using the following relation(after Equation 5.1 in [9℄): K = 10:1 a U �v�U � (5.2)where a is the radius of the pipe in meters, U is the velo
ity of 
ow in m=s and the quotient � v�U � wasestimated using the following regression equation� Uv�� = 5:033602 (log10(R))� 4:013663 (5.3)where R is the Reynolds number estimated using Equation 5.1. This regression was �tted to the dataprovided in Table 2 in [9℄. Noti
e that the quotient � v�U � is 
ompletely determined by the Reynoldsnumber.1R20 is the Reynolds number for a 20 in
h pipe, R24 is the Reynolds number for a 24 in
h pipe.2K20 is the 
oeÆ
ient of di�usion (m2=s) for a 20 in
h pipe, K24 is the 
oeÆ
ient di�usion (m2=s) for a 24 in
h pipe.K was estimated using Equation 5.2.



22 CHAPTER 5. MODELLING BATCH INTERFACESFluid Densitykg=m3 Vis
osity
entistokes R201 K202 R24 K24NGL 560 0.1 11,353,800 0.1820 13,624,560 0.2157Gasoline 700 0.4 2,838,450 0.2014 3,406,140 0.2383Diesel Fuel 800 0.9 1,261,533 0.2148 1,513,840 0.2539Syntheti
 Crude 585 5.5 206,433 0.2522 247,719 0.2974Condensate 672 0.5 2,270,760 0.2049 2,724,912 0.2424Sweet Lights 830 6.0 189,230 0.2543 227,076 0.2998Sour Lights 852 15.0 75,692 0.2791 90,830 0.3285Medium Crude 886 55.0 20,643 0.3238 24,772 0.3801Heavy Crude 920 170.0 6,679 0.3763 8,014 0.4400Table 5.1: Fluid Properties5.3 Di�usion modelSuppose that a pipe initially 
ontains 
uid A moving at some 
ow velo
ity U . At time t = 0 
uid Bis inje
ted into the pipe at position X = 0 immediately adja
ent to 
uid A. If the 
ow is turbulent, aregion develops along the pipe where 
uids A and B mix. This region is 
alled the interfa
e.Assuming a di�usion model, the above situation 
an be modeled using Fi
k's se
ond law whi
h isde�ned by Ct = K Cxx (5.4)where C(x; t) is the 
on
entration of 
uid B in 
uid A at time t, x is some axial displa
ement from theorigin X = 0 moving in the dire
tion of 
ow, and, K is the 
oeÆ
ient of di�usion due to the longitudinal
omponents of turbulent velo
ity [9℄. For our purposes the 
ow velo
ity, U , is 
onstant. Assume thatthe 
on
entration of 
uid B at the 
enter of the interfa
e is C = 12 .An appropriate solution to this di�usion equation isC(x; t) = 12 � 12erf �12 x K� 12 t� 12� (5.5)erf (z) = 2p� Z z0 e�y2 dy (5.6)We now show that Equation 5.5 is a solution to Equation 5.4. LetCt = �� t 24� 1p� Z 12xK� 12 t� 120 e�y2 dy35 (5.7)Then by the fundamental theorem of 
al
ulusCt = � 1p� exp"��12 x K� 12 t� 12�2# 12 x K� 12 ��12� t� 32 (5.8)= x4K 12p�t 32 exp�� x24Kt� ; (5.9)Cx = �12 �� x 24 2p� Z 12xK� 12 t� 120 e�y2 dy35 (5.10)= � 1p� exp�� x24Kt� 12 K� 12 t� 12 (5.11)= � 12K 12 t 12p� exp�� x24Kt� ; (5.12)



CHAPTER 5. MODELLING BATCH INTERFACES 23and Cxx = x4K 32 t 32p� exp�� x24Kt� : (5.13)So Ct = K Cxx (5.14)5.4 Results5.4.1 Determining the length of the interfa
eFor the model des
ribed in Se
tion 5.3 the relation between the length of the interfa
e, S, and thee�e
tive di�usivity, K, 
an be de�ned as [9, 8℄:S = 4pKt erf �1(2y � 1) (5.15)where t is the elapsed time of 
ow from the point of inje
tion to the point of separation (shipping time),K is the 
oeÆ
ient of di�usion and y is the allowable fra
tional purity. Equation 5.15 suggests thatS / t 12 and S / K 12 .The estimated values of K (Equation 5.2) for several petroleum produ
ts is summarized in Table 5.1.Some values for the inverse error fun
tion are tabulated in Table 5.2[8℄.y erf �1(2y � 1)0.50 0.0000.80 0.5940.90 0.9010.95 1.1650.97 1.3280.99 1.6401.00 |Table 5.2: Inverse error fun
tion at sele
ted values of fra
tional purity.Figures 5.1 and 5.2 
ontain plots of the shipping time versus bat
h interfa
e volume for NGL, syntheti

rude and heavy 
rude in a 20 in
h and 24 in
h pipeline respe
tively.As an example of how to interpret these plots, 
onsider a s
enario where 
uid A is syntheti
 
rudeand 
uid B is NGL. Then by Equation 5.15, if the fra
tional purity is set to y = 0:99, we would expe
ta 504 m3 interfa
e to develop between these bat
hes along Enbridge's pipeline between Edmonton andSuperior WI assuming a 20 in
h pipe and a shipping distan
e of 1100 miles. For a 24 in
h pipe theinterfa
e volume would be about 790 m3. If the relative positions of 
uid A and 
uid B are reversed(syntheti
 
rude di�using into NGL), we would expe
t an interfa
e volume of 593 m3 for the 20 in
hpipe and 928 m3 for the 24 in
h pipe, over the same shipping distan
e.5.5 Con
lusionIn this report we have studied how the di�usion model des
ribed by Taylor [9℄ might be used to predi
tbat
h interfa
e volumes in a bi
uid petroleum pipeline. How the predi
ted interfa
e volumes 
ompareto the observed volumes of 
ontamination is a good subje
t for future work.During the analysis of this di�usion model two major 
on
erns arose:1. The most 
riti
al model parameter appears to be K, the 
oeÆ
ient of di�usion. The estimators forK given by Taylor [9℄ and Sjeitzen [8℄ are very similar, both authors assuming straight pipelineswith smooth walls. Auni
ky [1℄ on the other hand suggests that Taylor's estimator for K is



24 CHAPTER 5. MODELLING BATCH INTERFACESmore appropriate for short haul pipelines. The estimator 
ited in [1℄ for long haul pipelines givesestimates two orders of magnitude lower. If this 
lass of di�usion 
oeÆ
ients were used withEquation 5.15 the estimated interfa
e volumes would be signi�
antly lower.2. The equation used to estimate the volume of bat
h interfa
es (Equation 5.15), 
ontains the pa-rameter y, the fra
tional purity at the tails of the interfa
e. We found no adequate explanation ofhow one might use this parameter. Should this value be set high when shipping 
uids whi
h aresensitive to 
ontamination? Can this parameter be lowered if a higher degree of 
ontamination isa

eptable?
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Figure 5.1: Estimated interfa
e volume for a 20 in
h pipe.
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Chapter 6Initiating 3-D Air Target Tra
ksfrom 2-D and 1-D Sensor Reportsfor the Canadian Patrol Frigate(CPF)Parti
ipants: Pierre Valin (Mentor), Hassan Aurag, Vesselin Jungi
, Mounia Kijri, Tamara Koziak,Joe Sawada.PROBLEM STATEMENT: The 2 topi
s studied here involve target tra
king from the CanadianPatrol Frigate (CPF) and 
an be also used in 
ivilian appli
ations su
h as airport traÆ
 management.The single target problems presented here are relatively straightforward and will be later used by industryfor multiple target problems where asso
iation be
omes the key issue. The added sensory 
omponentsfurnished by these problems will help resolve the asso
iation problem by providing information hiddenfrom the sensors and revealed only through mathemati
al modeling and related algorithmi
 pro
essing.In parti
ular, one wishes to initiate a 3-D tra
k from lower-dimensional (2-D for radar and 1-D forEle
troni
 Support Measures) 
onta
t data.
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bFigure 6.1: The geometry for an air
raft at 
onstant speed and altitude seen by the CPF.6.1 Introdu
tionThe situation studied is that of an air target being tra
ked by a 2-D naval radar or a 1-D Ele
troni
Support Measures (ESM) sensor and 
onsists in initiating at long range (or promoting it at a later time)a 3-D tra
k from the 2-D and 1-D sensor reports. The radar is an a
tive sensor that 
an report slantrange and bearing to target, while the ESM is a passive sensor that only dete
ts 
hanges in bearing.The problem is to �nd an air
raft's altitude, speed and traje
tory (say for a sub-Ma
h 1 plane) fromthe CPF's slant range and bearing (w.r.t. true North) report sequen
e whi
h 
an be assumed to be atregular intervals (say 5 se
onds equivalent to 12 RPM), hereafter referred as 
onta
ts (Ri; �i), i 2 [1; N ℄.At large distan
es the target air
raft will not have moved signi�
antly enough to a�e
t the assumptionof nearly regular intervals. Furthermore, we assume that the Earth 
an be 
onsidered 
at when theradar range is mu
h smaller than the Earth's radius. The extension to a 
urved earth involves standard
urvilinear 
oordinates and geodesi
s. Figure 6.1 shows a simple 
ase of a plane travelling in a straightline at an unknown altitude, an expe
ted behaviour for a plane just entering the radar's outer rangeextent (and therefore 
ruising non
halantly, unaware of the CPF's presen
e through its own ESM).Having an answer for the problem above is important when the target has a malfun
tioning Interrog-ative Friend and Foe (IFF) sensor (whi
h 
an report altitude of a friendly air
raft) or de
ides to remain
ir
umspe
t (as would be the 
ase for an enemy air
raft).Throughout this report, we shall work in the 
ylindri
al 
oordinates shown in Figure 6.1 and assumethat the earth 
an be 
onsidered 
at, whi
h is reasonable for a ship with a limited sensor range and thusa limited horizon. This assumption is however not reasonable for an air
raft 
ying at high altitudes,where the 
urved earth be
omes relevant due to the extended horizon. The 
ylindri
al system 
entered onthe CPF 
onsists therefore of plane polar 
oordinates in the 
at Earth's xy-plane together with altitudeforming a righthanded 
oordinate system. It is related to the traditional Cartesian system (x; y; z) by the
onvention that the y-axis is in the dire
tion of the true north and that in
reasing bearing is measuredfrom true north (in a CW dire
tion) as opposed to the traditional method of in
reasing polar angle fromthe x-axis in CCW fashion. It is not diÆ
ult to see thatx = � sin� y = � 
os� ~r 2 = R2 R2 = �2 + z2:We will �rst des
ribe the simulator from ground truth information from a 2-D radar. This is followed bya des
ription of how this simulated data is used by several 
as
aded algorithms to 
orre
tly extra
t all the



CHAPTER 6. TARGET TRACKS FOR THE CANADIAN PATROL FRIGATE 27desired quantities from the target's sensor reports (speed, altitude and traje
tory) in the noiseless 
ase.The algorithms are then submitted to noisy data (un
lassi�ed sensor a

ura
ies are used). Algorithmdesign development for 1-D ESM reports then follows. Finally 
on
lusions explain the use of su
hextra
ted data for Multi-Sensor Data Fusion (MSDF) and follow-on work is outlined, in parti
ular theneed to use 
lassi�ed data for the simulations (espe
ially for the ESM), whi
h is out-of-s
ope for thisun
lassi�ed report.6.2 Radar Data SimulationWhen a target is tra
ked by a naval radar, the sensor reports information regarding the slant range andthe bearing (w.r.t. true north) of the target. To simulate this data we 
reate dis
rete 3-D 
o-ordinates(xi; yi; zi) to indi
ate the target's position at time i with respe
t to the radar sensor. We then use thisdata to determine the slant range and the bearing. The slant range R =px2 + y2 + z2 and the bearingis 
omputed by � = ar
tan(xi=yi). In the simulated data it is assumed that the radar reports at 
onstanttime intervals of 5 se
onds (12 RPM). The simulation program was written in C.In the �rst simulation we assumed that the radar gave exa
t information regarding range and bearing,i.e. noiseless data. In pra
ti
e, however, the data will be perturbed by white noise. We assume that thenoise follows a Gaussian distribution. Thus to generate reports with white noise we need to randomlygenerate Gaussian distributed values to perturb the exa
t range and bearing. Algorithms to generatenormally distributed random numbers with 0 mean and unit varian
e are given in "Numeri
al Re
ipes"by Press et al. Sin
e these numbers are generated with unit varian
e, we multiply these values by thestandard deviation for both the range (100 m) and the bearing (1 degree or 1/57 radians) respe
tively.The resulting values are then added to the exa
t range and bearing to simulate reports with white noise.The above numbers are meant only as a guide be
ause in reality radar parameters values tend to besmaller than these values: indeed, for the long range SPS-49, the standard deviations are about half theabove quoted values and for the short range SG-150 about 5 times smaller (or better). Throughout thisreport, representative values are used and the industrial partner will put in the true (often 
lassi�ed)values later.In one simulation shown in Figure 6.1 we have a target starting at lo
ation (in km) (100,100,6)travelling at 0.2 km/s in the negative x dire
tion. If we assume that y is �xed, then we 
an use theperturbed data to get perturbed values for the positions x and z. We 
ompute x by multiplying the�xed value for y by the tangent of the perturbed angle �N . For z we use use �xed y, and perturbed xNand RN . Thus: xN = y tan�N and zN =p(RN )2 � (xN )2 � y2.Note that in this 
ase if the true z is small relative to the a
tual range R, then by perturbing R evenby a small amount we will see a large di�eren
e between a
tual z and zN . As the target gets 
loserhowever (z larger w.r.t. R), this di�eren
e de
reases as 
an be seen in Figure 6.2.6.3 Constru
tion and solution of sets of 
oupled nonlinear equa-tions for radar reportsTwo separate approa
hes 
an be investigated, the �rst 
an obtain speed and altitude but not the tra-je
tory, while the se
ond 
an obtain altitude and the traje
tory but not the speed. Sin
e all of thesequantities are useful, the �nal solution will 
onsist of a mixture of the two methods des
ribed below.Both the speed and altitude are attributes needed by a Multi-Sensor Data Fusion (MSDF) modulefor identi�
ation. Indeed, one 
an ex
lude from all possible air platforms, all those whose do
umentedmaximum speed is less than the measured speed and whose do
umented maximum altitude is less thanthe measured altitude. The traje
tory itself is needed to initialize a Kalman �lter with the proper stateve
tor.
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Figure 6.2: Noisy range and bearing data a�e
ting the per
eived altitude.6.3.1 Obtaining speed and altitudeFrom Figure 6.1, it is easy to see that we have the following relation in the xy plane, sin
e the speed Vis 
onstant: j~�k+1 � ~�kj2 = v2�t2Here, ~�k is the proje
tion of the position ve
tor of the plane at 
onta
t k onto the xy plane. Expli
itlytaking the modulus and using �2 = R2 � z2 we haveR2k+1 +R2k � 2z2 � 2qR2k+1 � z2qR2k � z2 
os(�k+1 � �k) = v2�t2For 
onvenien
e, one 
an res
ale by a �xed value of R (say the �rst value R1) and obtain in terms ofR = RR1 and z = zR1 . This allows dimensionless variables to appear in 
omputer programs, obviatingthe de
ision for a system of units.R2k+1 +R2k � 2z2 � 2qR2k+1 � z2qR2k � z2 
os(�k+1 � �k) = �v�tR1 �2This equation involves only two unknowns, namely the speed v and altitude z, but does not allowdetermination of the a
tual traje
tory in the proje
ted x� y plane.6.3.2 Obtaining the a
tual traje
toryWe represent ea
h point M 0(x; y; 0) belonging to the xy-plane in the terms of � and � (see Figure 6.3).Here p0 is the orthogonal proje
tion of p into the xy-plane.Note that we assume that the line p is parallel to the xy-plane ( at 
onstant z) and that we 
anmeasure the values of the range r and the bearing � for a number of pointsM from the line p. Clearly, theproblem is to �nd the distan
e between the line p and the xy-plane. Indeed, let the set fM1;M2; : : : ;MNg
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Figure 6.3: Notation for deriving the a
tual air
raft traje
tory.represents N points of the line p and let the pair (ri; �i) represents the range and bearing w.r.t. Mi, fori 2 [1; N ℄ (see Figure 6.3). Let P be the plane that 
ontains p and p0. We assume that the line p0 doesnot pass through the origin, i.e., we 
onsider the 
ase where the airplane does not 
y overhead. Let
 2 R and let a; b 2 R be su
h that the equation of P isax+ by = 
 :Hen
e a and b depend of the 
hoi
e of 
. The idea behind this approa
h is that with the suitable 
hoi
eof 
 we 
an make our future 
al
ulations faster.From the de�nition of x and y in terms of � and � and the fa
t that M 0i 2 p0, we have that for alli 2 [1; N ℄ �i(a sin�i + b 
os�i) = 
 :From the triangle OMiM 0i we have that R2i � z2 = �2i and, 
onsequently,(a sin�i + b 
os�i)2(R2i � z2) = 
2 :Let z = z
 and Ri = Ri
 (for example 
 
an be 
onveniently 
hosen to be R1). Then, for all i 2 [1; N ℄(a sin�i + b 
os�i)2(R2i � z2) = 1:Hen
e, the values of z; a, and b are solutions of this system of N nonlinear equations with 3 unknowns.In the noiseless 
ase, i.e., in the 
ase where the exa
t values of Ri and �i, i 2 [1; N ℄, are obtained, thesystem has a solution and that solution is unique.This approa
h has three unknowns and experien
e has shown that any routine that tries to �nd thesimultaneous solution to (at least) 3 su
h equations is likely to experien
e problems. In the noisy 
ase,�nding the "best �t" to a set of su
h equations often leads to false minima.6.3.3 Combined solutionThe best solution is obtained by �nding v and z through method 1, then inserting that value of z intomethod 2 to �nd a and b. Note that although both methods involve equalities in the noiseless 
ase,roundo� errors from the simulator and noisy data in the real-life 
ases warrant the use of �nding onlyapproximate solutions to the sum of squares of su
h equations. We then have a problem of �nding the
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χ2 Fitted z True z Fitted v True v b/a

4.26992 10-9 4.9708 5. 0.360553 0.3605 -0.666669
4.25659 10-9 7.0107 7. 0.360557 0.3605 -0.666676
4.25963 10-9 8.9964 9. 0.360555 0.3605 -0.666673
4.25678 10-9 11.005 11. 0.360556 0.3605 -0.666675Table 6.1: Table of results for 
onstant speed for varying altitude.

χ2 Fitted z True z Fitted v True v -a/b True -a/b

4.67839 10-7 5.91902 6. 0.399611 0.4 -0.297673 -0.3
2.43387 10-7 6.07964 6. 0.399998 0.4 0.000028634 0.0
2.1768 10-7 5.9749 6. 0.399604 0.4 0.297641 0.3
4.99305 10-8 5.99207 6. 0.398733 0.4 0.599412 0.6
3.05118 10-9 6.00072 6. 0.399372 0.4 0.898990 0.9
4.94943 10-17 6. 6. 0.398808 0.4 -1.11642 1.0Table 6.2: Table of results for 
onstant speed and altitude but varying atta
k angles.least square solution to an arbitrary number (> 2) of su
h solutions. We therefore 
onsider the set ofthe fun
tionsg(v; z) = R2k+1 +R2k � 2z2 � 2qR2k+1 � z2qR2k � z2 
os(�k+1 � �k)� �v�tR1 �2fi(a; b; z fixed) = (a sin�k + b 
os�k)2(R2k � z2)� 1; k 2 [1; N ℄The goal is then to minimize the sum of squares of any of the above equations. One thus starts byminimizing the sum of squares of the �rst one minPNk=1 g2k(v; z) to obtain speed and altitude, theninserts the results in the se
ond equation minPNk=1 f2k (a; b; z) to obtain a and b. Note that results areexpe
ted to improve as N in
reases, parti
ularly for noisy data, sin
e the bat
h �t in
ludes more pointsthat would �t the straight line. The 
omputation of the least squares solution has been implementedusing Mathemati
a's FindMinimum utility. The usage and implementations notes for the FindMinimumutility are the following. With Method ! Automati
 (whi
h is the one we 
hose), FindMinimum usesvarious methods due to Brent: the 
onjugate gradient in one dimension, and a modi�
ation of Powell'smethod in several dimensions; With Method ! Newton, FindMinimum uses Newton's method; WithMethod ! QuasiNewton FindMinimum uses the BFGS version of the quasi-Newton method.6.4 Noiseless 
ase for radar 
onta
tsIn the �rst simulation, we take a 
onstant speed, given traje
tory and vary the altitude by steps of 2 km.The inputs are various slant range and bearing readings. The output is speed, altitude and dire
tion, asmeasured by the ratio of b and a.In the se
ond simulation, we take di�erent angles of approa
h for the target (or traje
tories). Theinput and output types are the same.An implementation of su
h a pro
ess should be done in C. Su
h a C-routine should �rst start bygetting a good speed evaluation. With the speed obtained after N-steps at an a

eptable pre
ision,the routine should then restart by setting the speed 
orre
tly. It then should dis
ard any o�-range
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Figure 6.4: ESM geometry 
onstru
tion in the x� y plane.readings of slant ranges. The previously shown Figure 6.2 shows how noise a�e
ts readings of thealtitude and explains the failure of the straightforward approa
h to 
ompute the altitude. One shouldalso re
all, that we do obtain the 
orre
t speed even in noisy environment. Ben
hmarking 
an be donethrough simulated noiseless data versus noisy data. The bias in noisy data 
an be tabulated and theoutliers removed through these simulations. Real data, being intrinsi
ally noisy, would then use thesame outlier trun
ation me
hanism. One also probably will have to use something di�erent from leastsquares minimization. An example would be using maximum logarithm likelihood.6.5 ESM Bearing-only Reports - two approa
hesThe sensor being used to tra
k targets on Ele
troni
 Support Measures unit (ESM) only reports a time-sequen
e of their bearing �(ti) when the bearing 
hange attains a 
ertain value ��. This naval sensor
annot report the airborne target's slant range nor its proje
ted range on the Earth. Be
ause of the
lassi�ed nature of the ESM parameters �� and its maximum range, no simulations were performedat the Workshop and the methods will be tested for e�e
tiveness by the industrial partner at a latertime. The problem that we dis
uss in this se
tion is how one 
an obtain a rough estimate of thetarget's slant range (and ultimately its range and altitude, by using the result s of Se
tion 6.3.1) fromthe observed bearing rate (i.e., a sequen
e of di�erent ti for a 
onstant ��) through analyti
al andnumeri
al analysis/simulations. Again there are two 
ompeting approa
hes whi
h have the potential tobe 
ombined into a �nal optimized solution.6.5.1 One Approa
hFigure 6.4 shows the proje
tion on the plane xOy of the traje
tory of the air
raft.The purpose of this part is to be able to determine the dire
tion of the air
raft. We must keep inmind that we suppose that the velo
ity v of the air
raft is 
onstant. If �t1 is the variation of timebetween t0 and t1, and d1 is the asso
iate displa
ement, then we haved1 = v�t1:



32 CHAPTER 6. TARGET TRACKS FOR THE CANADIAN PATROL FRIGATESimilarly, if �tk is the variation of time between tk�1 and tk, and dk is the asso
iate displa
ement, thenwe have dk = v�tk:So using those two equations, we get dk = �tk�t1 d1:Now, using the law of sines for the two triangles obtained in the 
ase where k = 1 and k = 2, we gettwo equations: sin��d1 = sin�1
0and sin 2��d1 + d2 = sin�2
0 :Sin
e �� + �1 + 
 = � and 2�� + �2 + 
 = �, we get �2 = �1 ���. On the other hand, we also haved2 = �t2�t1 d1: So the two equations be
ome: sin�1sin�� = 
0d1and (1 + �t2�t1 ) sin(�1 ���)sin 2�� = 
0d1 :We �nally have: sin�1 = (1 + �t2�t1 ) sin(�1 ���)2 
os�� :We then obtained �1, and sin
e �� + �1 + 
 = �, we get 
, and so we have the dire
tion of the plane.If we go ba
k to the law of sines, we have sin��d1 = sin�1
0and sin k��d1(1 +Pk2 �ti�t1 ) = sin 

k :So if we just have 
0, we then get d1 (so we know the plane's speed), and so all the 
k. We then have thetraje
tory of the plane and not only its dire
tion. This 
ould be a
hieved for example by using only afew radar returns (ensuring near ele
tromagneti
 silen
e of the CPF) or by using Link-11 time-updatedtra
ks from Parti
ipating Units for an approximate range.6.5.2 Another Approa
hSuppose that the velo
ity of the target is given by~v = vx~i+ vy~j :Also suppose that N 
onta
ts have been reported. Let fM1;M2; : : : ;Mng is the set of points so that thepointMn represents the position of the target at the time tn of the nth 
onta
t. Let �tn = tn+1�tn andlet �n = �(tn) be the bearing reported at the time tn. We assume that �1; : : : ; �N form an arithmeti
progression with the 
ommon di�eren
e equal ��, where �� is positive but very small. As before, rn isthe slant range of Mn and �n is its proje
ted range. Figure 6.5 illustrates the situation we shall dis
uss.Sin
e the velo
ity is ~v = vx~i+ vy~j, we have thatxn+1 = xn + vx ��tnyn+1 = yn + vy ��tn



CHAPTER 6. TARGET TRACKS FOR THE CANADIAN PATROL FRIGATE 33
Mn+1(xn+1,yn+1,z)

M’ n

βn

rn+1

ρn+1

x

y

rn

ρn

z

z

Mn(xn,yn,z)

M’ n+1

βn+1

Figure 6.5: ESM geometry 
onstru
tion.su
h that, as before, �n+1 sin�n+1 � �n sin�n = vx ��tn�n+1 
os�n+1 � �n 
os�n = vy ��tn :We 
onsider these two equations as a linear system with �n+1 and �n as unknowns. Note that���� sin�n+1 � sin�n
os�n+1 � 
os�n ���� = � sin�� 6= 0 :Thus, �n = vx 
os�n+1 � vy sin�n+1sin�� ��tn :Consequently, for any n 2 [1; N ℄z2 = R2n � (vx 
os�n+1 � vy sin�n+1)2(sin��)2 � (�tn)2 :Hen
e, from the given data, we have obtained a nonlinear system with N equations and N+3 unknownsz; vx; vy; R1; : : : ; Rn One observes that the proje
tions of M1; � � � ;MN into xy plane belong to the linevyx� vxy = 
where 
 is su
h that
 = vy�1 sin�1 � vx�1 
os�1 = (vx 
os�2 � vy sin�2)(vy sin�1 � vx 
os�1)sin�� ��t1 :Thus, the line p is given, as before, by Ax+By = C whereA = vy(vx 
os�2 � vy sin�2)(vy sin�1 � vx 
os�1) ;B = � vx(vx 
os�2 � vy sin�2)(vy sin�1 � vx 
os�1) ;



34 CHAPTER 6. TARGET TRACKS FOR THE CANADIAN PATROL FRIGATEand C = �t1sin�� :To obtain an approximate value of z we follow these steps.1. Choose � 2 R+.2. De�ne, for ea
h n 2 [1; N ℄rn;� = rn;�(vx; vy) =s�2 + (vx 
os�n+1 � vy sin�n+1)2(sin��)2 � (�tn)2 :3. Solve the system (A sin�n +B 
os�n)2(R2n;� � z2) = 1where Rn;� = Rn;�C :Note that the unknowns are z; vx, and vy. Also, this situation is the same as the problem that wedis
ussed in Se
tion 6.3.1.Alternatively, �nd (z� ; vx;� ; vy;�) 2 R3 so that ifgi(z; vx; vy) = (A sin�n +B 
os�n)2(R2n;� � z2)� 1then NXi=1(gi(z� ; vx;� ; vy;�))2 = minf NXi=1(gi(z; vx; vy))2 : (z; vx; vy) 2 R2g:4. If (z� ; vx;� ; vy;�) is the solution of the system from 3. above, �ndz� = z� � C:5. Compare z� and �. If z� and � are \
lose", we are done. If they are not, iterate over �, whi
hdes
ribes a family of possible solutions, until z� and � are \
lose" enough.6.6 Con
lusions and OutlookThis proje
t studied how to initiate (or promote) higher dimensional air tra
ks from lower-dimensional
onta
ts. At least two design solutions were 
onstru
ted for ea
h of the two 
ases: a 2-D radar andan ESM sensor. The 
omplete solution was implemented for the 2-D radar with perfe
t results in thenoiseless 
ase and promising results for the noisy 
ase. Due to the 
lassi�ed nature of ESM spe
i�
ations,the ESM designs will be implemented at a later date by the industrial partner.The te
hniques used in this report determine �rst the speed and altitude whi
h are attributes neededby a Multi-Sensor Data Fusion (MSDF) module for identi�
ation. Indeed, one 
an ex
lude from allpossible air platforms all those whose do
umented maximum speed is less than the measured speed, andwhose do
umented maximum altitude is less than the measured altitude. These values have been tabu-lated by Lo
kheed Martin (LM) Canada in a Platform Database whi
h now 
ontains over 140 platforms.For ea
h of these dedu
ed attributes, propositions 
an be 
onstru
ted that 
ontain all platforms with
onsistent attributes and these propositions are then fused in an evidential reasoning s
heme su
h as atrun
ated Demspter-Shafer algorithm developed at LM Canada. Finally, the traje
tory itself is neededto initialize a Kalman �lter with the proper state ve
tor. In addition, optimization routines 
an providean estimate of parameter errors (here velo
ity and altitude, as well as the a
tual traje
tory), whi
h 
anbe used to 
onstru
t an initial 
ovarian
e matrix for the Kalman �lter.
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