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FOREWORD BY THE PIMS DIRECTORThe annual PIMS Graduate Industrial Math Modelling Camp (GIMMC) is held in one of thePIMS universities as part of the PIMS Industrial Forum. It is part of PIMS 
ommitment to providingtraining for young mathemati
al s
ientists who are either pursing 
areers in a
ademia or in industry.The goal of the GIMMC is to provide experien
e in the use of mathemati
al modelling as a problemsolving tool for graduate students in mathemati
s, applied mathemati
s, statisti
s and 
omputer s
ien
e.In addition to this it helps prepare them for the Industrial Problem Solving Workshop whi
h isthe other 
omponent of the PIMS Industrial Forum.At the workshop students work together in teams, under the supervision of invited mentors. Ea
h men-tor poses a problem arising from an industrial or engineering appli
ation and guides his or her team ofgraduate students through a modelling phase to a resolution.The Fourth GIMMC was held at the University of Vi
toria, June 11{15, 2001. There were eight prob-lems posed, a re
ord, with a total of 56 students in attendan
e, another re
ord. The students mainly
ame from all a
ross North Ameri
a with 16 from the United States. They were sele
ted from over 130appli
ants.My sin
ere appre
iation and gratitude goes to everyone involved in this workshop, in parti
ular I wishto thank Chris Bose, the editor of these pro
eedings, the other organisers (Randy LeVeque, Huax-iong Huang, Mark Paulhus, Keith Promislow, Ian Frigaard) and mentors (Sergei Bespamyatnikh, JohnChadam, Ian Frigaard, Lisa Korf, Hedley Morris, Tim Myers, Miro Powojowski, Moshe Rosenfeld). Iam greatly looking foreward to the 2002 
amp at Simon Fraser University.Dr. Nassif Ghoussoub, Dire
torPa
i�
 Institute for the Mathemati
al S
ien
es
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EDITOR'S PREFACEFrom June 11 through June 15, 2001 a re
ord number of 56 graduate students gathered at theUniversity of Vi
toria for the Fourth Annual PIMS Graduate Industrial Mathemati
al Modelling Camp{ the GIMMC-4. This year marked a signi�
ant expansion of the Camp whi
h in previous years had beenlimited to approximately 40 students 
hosen mostly from the �ve PIMS Universities. The expansion wassuggested in re
ognition of the new role that PIMS is now playing on the broader Canadian mathemati
ss
ene, and also in view of the re
ent expansion of PIMS south of the border to in
lude the Universityof Washington as a sixth founding institution. By February of last year, the organizers of the 
ampwere struggling with the overwhelming response: more than 130 ex
ellent appli
ations from all over the
ontinent, and even some from Europe! After the dust had settled on June 15, looking over our listof parti
ipating students we found that we had hosted students from 25 North Ameri
an Universities.Approximately one-third of our parti
ipants were from US institutions and the parti
ipation from withinCanada had expanded to in
lude many students from 
entral Canada and the maritimes. The Camp,and it's senior sibling, the Industrial Problem Solving Workshop have indeed arrived as premier eventson the applied and industrial mathemati
s 
alendars throughout North Ameri
a.For those not yet familiar with the format of the 
amps or the industrial workshops let me say a fewwords about the organization, whi
h was typi
al. On
e the students got settled in, the week began byhaving ea
h of the a
ademi
 mentors give a short presentation des
ribing their sample problem to theassembled group. It takes a 
onsiderable amount of judgement, skill and e�ort to 
ome up with goodproblems for the 
amp, and this year we had eight ex
ellent problems presented by our outstandingmentors. From Monday afternoon through Thursday evening, the individual workshop groups metunder the guidan
e of the a
ademi
 mentor. Typi
al a
tivities during this period in
luded short le
tureson ba
kground material from the mentors, literature sear
hes, pen
il and paper 
al
ulations, work atthe 
omputers and so on. By Friday morning the groups were ready to present their �ndings (havingele
ted one student to stay up all Thursday night preparing the group's presentation!) and shortlyafter I was given the formal writeups, whi
h appear more or less as I re
eived them in the rest of thisdo
ument. While this may all sound fairly straightforward, in pra
ti
e it is an extremely intense weekfor all 
on
erned { students, mentors and organizers. The best way to appre
iate this is to look at a fewof the 
hapters whi
h follow, keeping in mind that they represent the work of perhaps seven or eightgraduate students having varied mathemati
al ba
kgrounds, working in groups with a minimal amountof interferen
e from the a
ademi
 mentor over a period of three and one-half days.An workshop of this size 
an only be su

essful through the e�ort and skill of numerous personalitesboth on stage and behind the s
enes. First, as the ba
kbone of the Camp, and the prin
ipal a
tors soto speak, let me thank the mentors. They were:� Sergei Bespamyatnikh (UBC, Wat
htower Pla
ement)� John Chadam (University of Pittsburgh, Portfolio Analysis)� Ian Frigaard (UBC, Metal Spray Casting)� Lisa Korf (University of Washington, Web Hosting Agreements)� Hedley Morris (San Jose State University, Imaging Problem)� Tim Myers (University of Capetown, S.A., Modelling I
e A

retion)� Miro Powojowski (Algorithmi
s Corp., Risk Neutral Measures)� Moshe Rosenfeld (University of Washington, Control of Streetlight Networks)Some of these names will be familiar to those who have been following the evolution of the PIMSindustrial program. Some were �rst-timers. All the mentors did outstanding work both leading up toand during the week, and I will never be able to thank them enough for their e�orts. This is mitigatedii



iiionly slightly by my suspi
ion that, in truth, they enjoyed themselves throroughly during the week andthey found the students to be a well-prepared, mathemati
ally stimulating and energeti
 bun
h.As for the stage-hands behind the s
enes, let me begin by thanking those in Vi
toria who anwered my
all for help with this event. Pauline van den Driess
he and Bill Reed 
ame forward to read over all thestudent �les during the sele
tion pro
ess. Administrative and te
hni
al matters were, as usual, expertlyand 
heerfully handled by Kelly Choo, our systems administrator and the PIMS Web Manager, alongwith Timea Halmai, administrative assistant at the PIMS UVi
 site oÆ
e. Ariana Clapton, one of ourdepartmental se
retaries, stepped in when the workload be
ame too great for the rest of us 
ombined.At some point it be
ame 
lear that we were not going to have enough borrowed 
omputers to dothe job. Eugeen Deen and his sta� at the Human and So
ial Development Computer Laboratory bailedus out, providing expertly managed and timely a

ess to all of the ma
hinery and software that is soessential for this sort of event.Finally, I must thank Mar
 Paulhus. Mar
 has been, in one way or another, instrumental in everyGIMMC and IPSW I have been involved with and by extrapolation, I suspe
t with all of them. Whenthings go wrong, and they always do, Mar
's wit and un
appable nature make short work of the kindof problem us lesser mortals tend to get bogged down in. Although I was the lo
al organizer for theGIMMC-4, in truth, it was Mar
 who on
e again pulled all the strings.Christopher J. Bose, EditorDepartment of Mathemati
s and Statisti
sUniversity of Vi
toria
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Chapter 1Lo
ating Wat
htowers in TerrainsParti
ipants: Sergei Bespamyatnikh (Mentor), Peter Anderson, Adrian Driga, Leslie Fairbairn, Ja
kyLi, Tatiana Marquez-Lago, Ling Zhao.PROBLEM STATEMENT: A problem of 
urrent interest to investigators in Computational Geom-etry is to position a number of verti
al wat
htowers above a polyhedral surfa
e su
h that every pointon the surfa
e 
an be seen from the top of some tower. With towers of zero height, the related prob-lem of determining the minimum number of towers whi
h 
olle
tively 
over the surfa
e by visibilityhas been shown to be NP-hard. The basi
 measurement of problem 
omplexity is the number of fa
es(equivalently, the number of segments) needed to spe
ify the surfa
e.Among all sets of k towers of �nite height whi
h permit every point of the surfa
e to be 
overed, weseek ones whose tallest tower is as short as possible. It is of some importan
e in the sequel that thenumber of towers is �xed in advan
e. Algorithms are presented to solve several di�erent versions of thisproblem.

1



2 CHAPTER 1. LOCATING WATCHTOWERS IN TERRAINS1.1 Introdu
tionWe 
onsider how to minimize the 
ommon height of k towers, while still providing unobstru
ted lines ofsight from the tops of the towers to ea
h point on a given polyhedral 'terrain.'Di�erently restri
ted 
ases of this problem are solved using new polynomial-time algorithms. Thesituations 
ontemplated involve general numbers k of towers, but only two-dimensional terrains 
onsistingof sequen
es of non-verti
al line segments in the plane joined at the ends. We denote by n the numberof segments in the terrain.The �rst algorithm produ
es an approximate optimum tower height a

urate to within an arbitrarilysmall additive 
onstant. The running time estimate is polynomial in n and the re
ipro
al of this 
onstant.The restri
tion for the se
ond algorithm is that the \lo
al visibility" regions of the towers must
olle
tively 
over the terrain. Su
h a region 
onsists of an interval 
ontaining the base of its tower, andextends in either dire
tion as far as the �rst obstru
tion. Subje
t to this restri
tion, we �nd an exa
tsolution with worst-
ase running time O((n log(n))k).The third algorithm seeks solutions in whi
h any segment of the terrain is 
ompletely visible fromsome single tower. The algorithm produ
es an exa
t optimum relative to this se
ond restri
tion, andoperates in time O(n4k+1 + n6).A full version of this paper is available athttp://www.
s.ub
.
a/~besp/towers.ps.gz1.2 Approximation Algorithm for 2D k-wat
htower problemProblem (k-wat
htower problem). Given a terrain P (polygonal line) and a positive integer k, �ndthe position of k towers Ti that 
an visually 
over the terrain P , and the height of the tallest tower, H�,has the property H� = minf maxfheight(Ti)j1 � i � kg j Ti; 1 � i � k; 
over Pg: (1.1)H� = H�(P; k) is the height of the optimal solution for the polygonal line P and the integer k (optimalheight for P ).Theorem 2.1 Let P be a 2D terrain without verti
al lines and k be a positive integer. Let H� bethe optimal height for the 
orresponding k-wat
htower problem. Then there is an algorithm su
h that:1. 8
 > 0, the algorithm solves the k-wat
htower problem and �nds the approximately optimal heightH with H < H� + 
;2. the algorithm has polynomial time 
omplexity in the number of segments of P , 1
 , and X , theupper bound for the x axis.Proof. Consider the algorithm in Figure 1.1. Let S be a division of the interval [0; X ℄, with Æ; �; and �
omputed by the algorithm. Initially, the problem is solved for the terrain P and only one wat
htower.Let H1 be the optimal height for the single-wat
htower problem for P . Clearly, H1 is an upper boundfor the optimal height of the k-wat
htower problem for P .Let D = f0 = h1 < h2 < ::: < hm = H1g be a division of stride Æ for the interval [0; H1℄. Thealgorithm Approx �nds the smallest point, H , of the division D su
h that there is a solution for P wherethe k towers have the height H , and their x-
oordinates belong to the division S. The algorithm usesbinary sear
h to lo
ate H .For ea
h point h of the division D 
onsidered by the binary sear
h a veri�
ation algorithm 
alledVerify (Figure 1.2) is used to 
he
k if a solution of height h 
an be found for the terrain P . The towersof this solution must be lo
ated at x-
oordinates that form a subset of S. This veri�
ation algorithm
onsiders all the possible 
ombinations of k distin
t x-
oordinates from S and 
he
ks if the terrain P
an be 
overed visually from the top of the k towers of height h built at the 
urrently 
onsidered x-
oordinates. The algorithm Cover de
ides if the k towers spe
i�ed as input 
over visually the terrain P .This is done by verifying that ea
h segment of P is visible from the k towers.



CHAPTER 1. LOCATING WATCHTOWERS IN TERRAINS 3Algorithm ApproxInput P: terrain, k: number of towers, 
: positive errorOutput x = (x1, x2, ..., xk): the position of the k solution towers,H: the optimal height found.delta = 
/2alpha = the measure of the smallest angle among the a
ute angles formed bythe segments of the polygon line with the y axisepsilon = (
 / 4) * tan( alpha )X = largest x 
o-ordinate of a polyline point (projX(P) = [0, X℄)S = { i * epsilon | i integer, i * epsilon <= X}H1 = OneTowerHeight( P ) //upper bound for the solution Hleft = 0right = int(H1 / delta)while (left <= right)mid = int( (left+right)/2 )h = mid * delta // 
urrent heightif Verify(P, k, S, h, x) thenright = mid-1elseleft = mid+1H = left * deltaFigure 1.1: Pseudo-
ode for the approximation algorithmThe following Lemma is essential for the proof of 
laim 1.Lemma 2.1 Let P be a 2D terrain without verti
al lines and k a positive integer. Let H� be theoptimal height for the 
orresponding k-wat
htower problem and 
 a positive error. Then, the veri�
ationalgorithm Verify returns \true" for all the heights h with h � H� + 
2 .Proof of Lemma 2.1 Inside the algorithm Approx the following quantities are set:� Æ = 
2 ,� � = the measure of the smallest angle among the a
ute angles formed by the segments of thepolygonal line with the y axis,� � = 
4 � tan(�),� X = largest x-
oordinate of a polygonal line point (projx(P ) = [0; X ℄),� S = fi� � ji integer; i� � � Xg.Let h; h � H� + 
2 , be the height that the algorithm Verify is verifying. Consider the situationdepi
ted in Figure 1.3. This situation (or a symmetri
 one) is guaranteed to o

ur during the exe
utionof Verify. The segment uu0 is a sub-segment of the polygonal line, uv is an optimal tower for P , andu0v0 is a tower of height h built at xS , the point of the division S 
losest to xopt. Be
ause the divisionS has the stride �, then s = abs(xopt � xS) < �: (1.2)The angle between uu0 and u0v0 is bigger than � (by de�nition of �); therefore, st = tan(
) � tan(�),and from this t � stan(�) < �tan(�) = 
4 : (1.3)



4 CHAPTER 1. LOCATING WATCHTOWERS IN TERRAINSAlgorithm VerifyInput P: terrain, k: number of towers,S: ve
tor of divisions, h: height og towersOutput x = (x1, x2, ..., xk): the position of the k solution towersfor x = (x1, x2, ..., xk) in SxSx ... xS, with xi <> xj for i<>jif Cover( P, k, h, x) thenreturn truereturn false Figure 1.2: Pseudo-
ode for the veri�
ation algorithm
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u

XFigure 1.3: Optimal tower and approximation towerBe
ause h = t+H� + r � H� + 
2 , it follows that r � 
2 � t � 
2 � 
4 = 
4 . Furthermore,tan(�) = sr < �� 4
 = tan(�); (1.4)and, be
ause both angles are in (0; �2 ), it follows that � < �. Lemma 2.2 is used to 
omplete the proofof Lemma 2.1.Lemma 2.2 If � < � in the setting des
ribed above, then the �eld of view of tower u0v0 in
ludes the�eld of view of the optimal tower uv.Proof of Lemma 2.2 In the proof of this result, the term segment above terrain denotes a segmentthat does not 
ontain any point lying below the polygonal line.Let q be a point in the �eld of view of the optimal tower uv, and xq the x-
oordinate of q. Considerthe situation from the proof of the Lemma. There are three 
ases: xq <= xopt, xopt < xq < xS , andxS � xq .Be
ause q is in the �eld of view of uv, then vq is a segment above the terrain in all 
ases. The segmentvv0 is also above terrain. If a tip of the terrain between the towers uv and u0v0 interse
t vv0, then thatregion of terrain will 
ontain a segment that forms with the y axis an angle smaller than � < �. This
ontradi
ts the 
hoi
e of �. Using the same argument it 
an be shown that, in the �rst 
ase (Figure1.4), the segment v0q is above vq and vv0, and thus above terrain. From this, it follows that q is in the�eld of view of u0v0.When q is between the two towers, it must be visible from v0. Otherwise, a segment of the terrainforms an angle sharper than �, whi
h is impossible.
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Figure 1.4: Field of view of the optimal tower in
luded in that of the approximation towerWhen xS � xq , be
ause u0v0 extend beyond the level of v, q must also be in the �eld of view of u0v0.This 
on
ludes the proof of the Lemma 2.2.Lemma 2.2 ensures that, for an h � H�+ 
2 , the algorithm Verify �nds k towers of height h that arelo
ated at lo
ations from the division S and 
over visually the entire terrain (ea
h tower has a �eld ofview whi
h in
ludes the �eld of view of an optimal tower). This proves Lemma 2.1.Lemma 2.1 is used to prove 
laim 1 of the Theorem. When Approx �nishes, left identi�es thesmallest height for whi
h Verify returns \true", while right identi�es the largest height for whi
h Verifyfails. Clearly, hright + Æ = hleft. It is also true that hright < H� + 
2 be
ause Verify fails for hright.Putting the two results together,hleft = hright + Æ < (H� + 
2 ) + 
2 = H� + 
; (1.5)whi
h proves 
laim 1 of the Theorem.In order to prove the 
laim 2 of the Theorem, let C
over; Cverify ; and Capprox denote the 
omputa-tional 
omplexity of the three algorithms involved in the solution algorithm Approx.C
over = n, the number of segments of the polygonal line P be
ause the algorithm 
he
ks the visibilityof ea
h segment in 
onstant time. It is easy to see that,Cverify � jSjk � C
over = (X� )k � n = ( 4X
�tan(�) )k � n; (1.6)where jSjk is an upper bound for the number of iterations performed by Verify.Approx applies the algorithm Verify for log(right) times; therefore,Capprox = log(right)� Cverify � log( 2H1
 )� ( 4X
�tan(�) )k � n: (1.7)Note that Capprox is upper bounded by a fun
tion linear in n and polynomial in 1
 ; X; and tan(�).1.3 Conne
ted Visibility ProblemLet us re
onsider the initial problem of optimizing the height of k wat
htowers in two dimensions. Weintrodu
e an extra 
onstraint: ea
h wat
htower will be responsible for seeing only a 
onne
ted regionsurrounding its base point. This 
onstraint 
ould arise if a guard did not wish to stay in 
onstant
ommuni
ation with other wat
htowers in order to know what was o

urring 
lose to his tower, or if we



6 CHAPTER 1. LOCATING WATCHTOWERS IN TERRAINSwanted to optimize visibility (as a guard will be able to see regions 
loser to his tower more easily thanse
tions further away). It will be shown in this paper that this method has time 
omplexity O((n logn)k),where n is the number of segments in the terrain.To treat the problem for k wat
htowers, we divide our problem into k parts (
onsidering individuallythe pla
ement of ea
h wat
htower in its own domain - sin
e the one-wat
htower 
ase 
an easily be solvedby linear programming). We need a poli
y for 
hoosing the wat
htowers' separate domains. To �nd thesedomains, we adjust their boundaries dynami
ally, moving the endpoints over the x-axis and 
onstru
tinglo
ally optimal 
on�gurations.In order to solve this, we will �rst develop a dis
retization of the x-axis based on inspe
tion of theverti
es of the terrain and the interse
tion points of the upper envelope (whi
h is the lower limit ofvisibility of the whole terrain).Theorem 3.1 The optimal position of one wat
htower in one domain 
an only be at a vertex of theterrain or an interse
tion point in the upper envelope for that domain.Proof. By linear programming, we know that the only 
riti
al points of the upper envelope will be atits interse
tion points, and by inspe
tion, we know that the verti
es of the terrain are the points 
losestto the upper envelope (they are lo
al maxima within the terrain - and therefore the height needed tobuild a tower from the terrain to the upper envelope would be a lo
al minimum at ea
h of these verti
es).So, when pla
ing one wat
htower in one domain, we need only 
onsider pla
ing it at a vertex of theterrain or of the upper envelope. This gives us a way to dis
retize the x-axis: let us 
all these points x1through to xN and divide the x-axis into intervals with x1; :::; xN as endpoints.Claim 3.1 N � 2n.Proof: Sin
e the upper envelope is 
onstru
ted only by extensions of the n segments of the terrain,it 
ould only have n possible di�erent se
tions (n di�erent slopes, or interse
tion points). Therefore,N � n+ n = 2n.Claim 3.2 The portions of the terrain and of the derived upper envelope between 
onse
utive divisionpoints are straight lines.Proof: This is a property of our 
hoi
e of intervals.De�nition: Let us denote by hx the minimum height of a single wat
htower to whi
h all of theterrain from 0 through x is visible.Dynami
s:Overall, in order to optimize the partitions of the terrain, we must examine how the height of a towerwill 
hange as we in
rease the boundaries of the region it must guard. So, let us look at the simplest
ase: how will the height 
hange as the region in
reases in one interval from xi�1 to xi.Lemma 3.1 As x (the boundary of our partition) in
reases along a subinterval [xi�1 , xi℄, hx eitherde
reases linearly or remains 
onstant.Case 1. If the slope of upper envelope segment is greater than that of the terrain segment, hx mustremain 
onstant.Proof. Sin
e we have no interse
tion points or verti
es within the interval, and sin
e the height ofthe terrain is getting further away from the upper envelope, the endpoint x 
annot be a lo
ation of atower.Case 2: If the slope of upper envelope segment is less than that of the terrain segment, and theterrain segment, in
reased by a height of hopt (the optimal height up until xi�1) interse
ts with theupper envelope segment then, from this interse
tion point until the endpoint xi, hx will de
rease with aslope of ST - SUE (slope of terrain minus slope of upper envelope) (Figure 1.5).To 
onstru
t hx as x varies 
ontinuously over the entire terrain, we need only 
onsider at most 4npoints: all x1; : : : ; xN and all interse
tion points de�ned in Case 2 of the above lemma. Hen
e ourproblem is dis
rete.The time 
omplexity of 
onstru
ting hx in this manner is O(n logn) - O(n) possible points to 
onsiderfor hx and within ea
h of the 4n possible intervals, the 
onstru
tion of the upper envelope is of order logn(sin
e to in
rease x from xi�1 to xi, we need only 
onsider one extra segment in the upper envelope).
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Terr
ain

Upper Envelope

Intersection Point

hopt

hopt

xi-1 xi x-axisFigure 1.5: Case 2: example of de
reasing height along one segment.
Partition 1 Partition 2

x-axisFigure 1.6: Dynami
 partitioning for 2 wat
htowers1.3.1 2 wat
htower problemTo pla
e 2 wat
htowers in the terrain, we will need to 
onsider two dynami
 regions instead of one. Theproposed approa
h is to let h1(x) be the dynami
 minimum height of tower 1 and h2(x) be that of tower2. Now, let the region of h1(x) in
rease as x in
reases (i.e., it grows from x = 0 to the right) and let theregion of h2(x) grow from x = xN to the left (Figure 1.6).Take the maxmin of h1 and h2. The x value of max/min(h1,h2) will be the best lo
ation of thepartition of the terrain into two regions. When we know the lo
ation of the partition, we 
an lo
ate theposition of the wat
htowers from our previous 
omputations and we know that the minimum height ofthese towers = max/min (h1, h2).Sin
e we are simply 
omputing two h(x), the order to time 
omplexity of the two wat
htower problemis still O(n logn).1.3.2 k-wat
htower problemAs in the 2-wat
htower problem, we 
an simply 
onsidering dynami
 partitions again, but this time
onsider k dynami
 partitions and the heights h1; : : : ; hk asso
iated with ea
h. We 
onsider these par-titions by �rst dividing the terrain into 2 partitions, then subdividing domain1 into 2 partitions, thensubdividing again in this manner until we have k partitions. Take the min/max of ea
h h within asubdivision, as we did for two wat
htowers. This gives a method of time 
omplexity O((n logn)k).1.4 Colouring algorithm in 2D k-wat
htower problemProblem(k-wat
htower problem with whole segment visibility) Given a terrain P with n seg-ments and a positive integer k, �nd the lo
ation of k towers su
h that every segment is visible from atleast one of the tower and the maximum height of towers is minimize.We propose 
olouring algorithm for solving the problem above.The steps of this algorithm are as follows.
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Y

XFigure 1.7: Extending edges
Y

X

A

B11

B1

C

D E

F1
F2Figure 1.8: Colouring1. Extend ea
h segment of the terrain to a 
omplete line (Figure 1.7).2. Introdu
e additionally all segments whose endpoints are verti
es of P and whi
h lie 
ompletelyabove P . Together with the lines drawn in step 1, these segments indu
e a partition of the regionof the plane above P . The sets of points on P visible to a point within su
h a region depend onlyon the region - not upon the parti
ular point sele
ted. Therefore, the �nest partition of P indu
edby visibility 
an be 
ompletely 
hara
terized by membership relative to a set of at most m = O(n2)intervals. Moreover, the smallest planar regions of the arrangement so indu
ed are r = O(n4) innumber (Figure 1.8).3. Indexing the set of regions by a variable i varying over index set 1; :::; r, identify the set of terrainsegments visible to ea
h region. This 
an be a

omplished by the visibility algorithm of Guibas etal. , whi
h runs in O(n) time.
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Figure 1.9: OptimizationIndex i Cover Segment (
olouring)1 a,b1,b2,b3,
,d,g2,i2,i32 a,b1,b2,b3,
,d,e,f1,f2,g1,g2,i2,i3::: :::i b1,b2,b3,
,d,e,f1,f2,g1,g2,h,i1,i2,i3::: :::Now for ea
h region, determine the minimum height of any tower with one endpoint on the bound-ary of that region and the other on the terrain. Ea
h of these minima 
an be determined by linearprogramming in O(n2) time.(Figure 1.9)Among all tops of towers whi
h a
hieve the linear programming optimum within a given region,
hoose the leftmost, rightmost, and highest. Let I be the set of all su
h points, C the 
onvex hullof I , and L the set of extreme points of the lower boundary of C.This leads to an overall time 
omplexity of O(n6) for determining L. This determination involvesonly the terrain, and does not involve k.Next, 
onsider all k-subsets of L; there are C(jLj; k) = O(n4k) of these. Test ea
h k-subset tode
ide whether the union of the 
orresponding k 
olle
tions of visibility segments 
overs P . Forea
h subset produ
ing a 
over of P , determine the largest of the 
orresponding tower heightsinherited from Step 3 above. (This maximum tower height is asso
iated with its originating k-subset.) After running through all feasible k-subsets, 
hoose the k-subset whi
h produ
es the leastmaximum height.Theorem 4.1 The method des
ribed above produ
es the desired optimal height for the k-wat
htowerproblem with whole segment visibility in O(n4k+1 + n6) time and O(n4) spa
e.We 
an extend the 
olouring algorithm in order to solve a similar problem in three dimensions andalso a
hieve polynomial running time.1.5 Con
lusionsWe have introdu
ed three algorithms for solving restri
ted versions of the k-wat
htower problem. The�rst algorithm �nds an approximate solution for k-wat
htower problem provided that the polygonal linedoes not 
ontain verti
al segments. The solution found by the algorithm is guaranteed to be a

uratewithin a spe
i�ed additive error. This algorithm runs in polynomial time, and the time upper boundis proportional to the re
ipro
al of the error. The se
ond algorithm solves the k-wat
htower problem



10 CHAPTER 1. LOCATING WATCHTOWERS IN TERRAINSproblem by �nding the shortest k towers whose lo
al visibility regions 
over the entire terrain. Finally,the last algorithm solves the k-wat
htower with whole segment visibility in two dimensions. This 
an beextended in three dimensions with polynomial running time.Referen
es[1℄ L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan, Linear time algorithms for visibilityand shortest path problems inside triangulated simple polygons, Algorithmi
a, 2(2):209{234, 1987



Chapter 2Problems in Portfolio AnalysisParti
ipants: John Chadam (Mentor), Mehmet Atilla Begen, Ali Ghodsi Boushehri, Yuriy Kazmer-
huk, Selly Kane, Viktoria Krupp, Eri
 Ma
horro, Eva-Marie Nosal, Limei Sun.PROBLEM STATEMENT: The group 
onsidered several problems in portfolio analysis. In parti
-ular, the group generated 
omputer 
odes for determining the optimal portfolio whi
h minimizes riskfor a given return. A data set was used to provide spe
i�
 examples with and without shorting. Inaddition, the group studied how to pri
e options on portfolios. Some spe
i�
 problems whi
h were ad-dressed in
luding 
omparing the Bla
k and S
holes pri
e of European-style option in the Gaussian andnon-Gaussian 
ases. An Edgeworth expansion was used in the latter 
ase and the magnitude of the
orre
tion was obtained for a spe
i�
 data set. Finally, the values of European put option on the sumof two assets were 
omputed dire
tly using a Monte-Carlo simulations and an Index approximation.

11



12 CHAPTER 2. PROBLEMS IN PORTFOLIO ANALYSIS2.1 Portfolio optimizationThe value p of a portfolio 
onsisting of N assets having unit pri
es Si; i = 1::N and a bond with valueB 
an be written as p = �1S1 + :::+ �NSN + bB;where the proportions �i and b satisfy P �i + b = 1.Let's introdu
e some de�nitions. At �rst, we 
onsider a portfolio without risk-free assets, i.e. b = 0in this 
ase. We 
all � a mean return on the portfolio and �2 a varian
e of return if:� = NXi=1 �iEiand �2 = NXi;j=1 �iVij�j = �TV �with Ei is the mean return of share Si, E[dSi=Si℄, and the matrix V is the 
ovarian
e of the returns,var[dSi=Si℄.We 
al
ulate the mean-varian
e of an optimized portfolio as a solution of the following problem:min �TV �subje
t to the 
onstraints: NXi=1 �i = 1; NXi=1 �iEi = �In this formulation the �i 
ould be negative representing short-selling. This problem was solvedanalyti
ally using Lagrange multipliers. The above problem without short selling requires that theproportions �i � 0 and the problem 
an only be solved numeri
ally in this 
ase. For a data set 
onsistingof N = 8 risky assets both solutions are summarized in Figures 2.1 and 2.2 below.2.2 Normality 
he
kThe basi
 assumption underlying the Bla
k and S
holes approa
h to option pri
ing is that the underlyingasset values follow a Geomteri
 Brownian motion. Sin
e this may not be obtained in pra
ti
e for a singleasset, it is important to address the limitations of this GBM assumption. To this end we begin by applingstatisti
al tests to 
he
k the normality of the returns. The Kolmogorov-Smirnov Goodness-of-Fit teststatisti
 was used and various graphs (QQplot, histogram) were produ
ed. Based on the statisti
al testswherein the leverage point outliers were removed, seven shares were found to be normal and one foundto be non-normal. In parti
ular, the seventh share \FOSFX: Fidelity Overseas" did not have a normaldistribution. The goodness-of-�t result of the �fth share \FSAVX: Fidelity Sele
t Industrial Equipment"and the seventh share are shown as follows to illustrate this.> ks.gof(data$V8, dist='normal')One sample Kolmogorov-Smirnov Test of Composite Normalitydata: data$V5 ks = 0.041, p-value = 0. alternative hypothesis:True 
df is not the normal distn. with estimated parameterssample estimates:mean of x standard deviation of x0.06292663 1.611786
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Figure 2.1: Optimal portfolio with shorting I.

Figure 2.2: Optimal portfolio with shorting II.
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Figure 2.3: Optimal portfolio without shorting.> ks.gof(b, dist='normal')One sample Kolmogorov-Smirnov Test of Composite Normalitydata: b ks = 0.0786, p-value = 0.0127 alternative hypothesis:True 
df is not the normal distn. with estimated parameterssample estimates:mean of x standard deviation of x-0.0001885148 0.01173404The p-value for share `FSAVX' and `FOSFX' are 0.21 and 0.0127 respe
tively. Hen
e, with a signif-i
an
e level of � = 0:05 we a

ept the null hypotheses Ho of normality assumption of share `FSAVX'(p � �) and reje
t the assumption for share `FOSFX' (p � �).The de
ision to reje
tHo in the 
ase of FOSFX is further supported by 
al
ulation of the standardizedskewness (-0.30189) and kurtosis (3.6242489) both of whi
h ex
eed the � = 0:05 
riti
al values. Thesewere the only data of the 8 found to be non-Gaussian.The two histograms (�gure 2.4 and �gure 2.5) draw a typi
al 
ontrast between the funds thatwere found to be suÆ
iently normally distributed and the skewed (hen
e non-Gaussian) distributionof FOSFX.
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Figure 2.4: The histogram for the share FSAVX.

Figure 2.5: The histogram for the share FOSFX.



16 CHAPTER 2. PROBLEMS IN PORTFOLIO ANALYSIS2.3 Monte-Carlo simulations of the sto
k pri
eswith appli
ation to the option pri
ing2.3.1 One dimensional 
aseSuppose, the sto
k pri
es satisfy the following Sto
hasti
 Di�erential Equations:dSi = rSidt+ �iSidW (i)t ; for i = 1; ::; 8 (2.1)where r is the risk-free rate (or drift), �i is the standard deviation of sto
k pri
e return (or volatility) andfW (i)t g8i=1 is the 8-dimensional Brownian motion with partly 
orrelated 
omponents. Ea
h 
omponentis normally distributed with zero mean and the varian
e t. Here the growth rate �i for individual sto
ksSi are repla
ed by r to anti
ipate the risk-neutral evaluation of options. Using Ito`s lemma one �ndsthat sto
k pri
es follow a Geometri
 Brownian motion whi
h is expressed by:Si(t) = Si(0)ef(r��2i =2)t+�iW (i)t gOur task is to simulate sto
k pri
es using the representation above. Therefore, 
onsider:Si(t) = Si(0)ef(r��2i =2)t+�ipt�g (2.2)where � is N(0; 1). Numeri
ally, we take a large number of samples (e.g. 100,000) of � and substitutethem into (2.2). Hen
e, we obtain a 
ertain number of samples of Si(t). Taking an average of them weget a simulated pri
e of the sto
k Si at the time moment t.Now, suppose we need to evaluate an initial value of a European put option with payo�max(E�S; 0)at time moment T , where E is the strike pri
e of the option and S is the sto
k pri
e at time T .Having already simulated sto
k pri
e S(T ) as above, we 
al
ulate the option pri
e by dis
ounting thepayo� fun
tion: V = e�rTmax(E � S(T ); 0)This is a risk-neutral pri
e of the option.2.3.2 Monte-Carlo simulations of two 
orrelated sto
k pri
esMonte-Carlo simulation is a natural method for the pri
ing of European-style 
ontra
ts that depend onmany underlying assets. Suppose, we have a European put option with the payo� max(E�(S1+S2); 0).In order to simulate the pri
es of two 
orrelated sto
ks whi
h satisfy the equations (2.1) we need tosimulate two 
orrelated normally distributed random variables �1 and �2 s.t.:E[�1�2℄ = �12We generate them using a Cholesky fa
torization. Suppose, we have already generated un
orrelatednormally distributed variables "1 and "2. We 
an use these variables to obtain variables with the given
orrelation through the transformation � =M" (2.3)where � and � are the 
olumns ve
tors with �i and �i in the ith row. The matrix M is spe
ial and mustsatisfy MMT = �with � being the given 
orrelation matrix.It is easy to show that this transformation will work. From (2.3) we have��T =M""TMT :Taking expe
tations of ea
h entry in this matrix equation qivesE[��T ℄ =ME[""T ℄MT =MMT = �:The Cholesky fa
torization gives one way of 
hoosing this de
omposition. It results in a matrix Mthat is lower triangular.
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ing a European put on a portfolio on multi-assets: anindex approximationThe main problem of pri
ing multi-asset options rests mainly on the fa
t that summing geometri
Brownian motions does not ne
essarily give a GBM. In this part we assume that the portfolio and ea
hof the assets follow a geometri
 Brownian motion under the risk neutral probability whi
h will allowus to �nd The Bla
k and S
holes put European pri
e of the portfolio. More spe
i�
ally we 
an obtainthe above by assuming that the proportions of the individual sto
ks in the portfolio are required tobe 
onstant over time as is in the 
ase of some mutual funds. We will in the �rst part pri
e a puton a portfolio of two assets and in the 2nd part we will generalize the method for a portfolio that hasmulti-asset (more than two). The result obtained will be 
ompared to those obtained by a dire
t MonteCarlo simulation of the full two-asset problem to 
he
k the a

ura
y of our approximation. We havemade some �nan
ial assumptions in order to provide a real appli
ation of this method. In parti
ular,we will assume that the ve
tor of the portfolio returns will be Gaussian sto
hasti
 pro
ess.2.4.1 Put option on a 2 assets PortfolioThe portfolio P is 
omposed of the sum of the two assets S1 and S2 that are 
orrelated. We assumethat for any i Si follows a geometri
 Brownian motion under the risk neutral probability P . Assumethat �1 = S1=(S1 + S2) and �2 = S2=(S1 + S2), whi
h we assume to be 
onstant. The last assumptionis 
onsistent with 
urrent mutual fund management poli
y. Then it 
an be shown that this portfoliofollows geometri
 Brownian motion under the same risk neutral probability.dPtPt = rdt + �dWtfor � whi
h depends on �1 and �2 in the following way:� =q�21�21 + 2�12�1�2�1�2 + �22�22Therefore, the pri
e of this type of the option 
ould be obtained by applying the Bla
k and S
holesformula to a new set of parameters r; �; E; T and the initial pri
e S1(0) + S2(0). This pri
e is 
omparedto dire
t two-dimensional MC simulation (Se
tion 2.3.2) in Figures 2.6 and 2.7.2.4.2 Put Option on N assets portfolioLet's 
onsider the same assumptions as above. The ve
tor of return (dS1S1 ; :::; dSNSN ) is assumed to be aGaussian sto
hasti
 pro
ess and for any i the unit sto
k pri
e Si satis�es (2.1). This yields that:� =vuut NXi=1 �2i �2i +Xi6=j �ij�i�j�i�jSo, the option pri
e 
ould be obtained by applying the same method as in 2-dimensional 
ase.2.5 Pri
ing a non-Gaussian distributed shareThe strong assumption in Bla
k-S
holes pri
ing that data follows a geometri
 Brownian motion has beensuggested as an explanation for the di�eren
es between the model pri
es and market pri
es. In parti
ular,be
ause the assumption of geometri
 Brownian motion does not hold in many 
ases, it is desirable toadjust the model for su
h 
ases. To do this, we approximate the underlying (true) distribution withthe lognormal (approximate) distribution and add 
orre
tion terms. The 
orre
tion terms are foundfrom a series expansion, 
alled the Edgeworth series expansion, of the given distribution in terms of the
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Figure 2.6: Comparison of Monte-Carlo method and analyti
al approximation.

Figure 2.7: Error between two methods.



CHAPTER 2. PROBLEMS IN PORTFOLIO ANALYSIS 19lognormal distribution (similar to a Taylor series expansion). It has 
oeÆ
ients that are simple fun
tionsof the moments of the true and approximating distributions. As we use only the �rst three adjustmentvalues (whi
h depend on varian
e, skewness, and kurtosis), our results are still approximate but theyshould 
apture most of the in
uen
e of the underlying distribution on the option pri
ing.Denote the true probability distribution by F(s) and the approximate lognormal distribution by A(s)and assume that dA(s)/ds = a(s) and dF(s)/ds = f(s) exist, i.e. that the distributions have 
ontinuousdensity fun
tions.The �rst four 
umulants 
an be found to be [1, p.350℄K1(F ) = �1(F ); K2(F ) = �2(F );K3(F ) = �3(F ); K4(F ) = �4(F )� 3�2(F )2where �j(F ) = Z 1�1 Sjf(S)dSis the jth moment of distribution F and�j = Z 1�1(S � �1(F ))jf(S)dSis the jth 
entral moment of distribution FThe �rst 
umulant is the mean, the se
ond is the varian
e, the third is a measure of skewness, andthe fourth is a measure of kurtosis. Analogous notation is used for moments and 
umulants of A.The Edgeworth expansion for f(s) in terms of a(s) 
an be proven to be [1, p.350℄f(S) = a(S) + K2(F )�K2(A)2! d2a(S)dS2 � K3(F )�K3(A)3! d3a(S)dS3 ++ ((K4(F )�K4(A)) + 3(K2(F )�K2(A))2)4! d4a(S)dS4 + "(S)where K1(A) � K1(F ) and "(S) is the residual error.Consider a put option with maturity time t (in years), strike pri
e E, and underlying sto
k value ofS(0) at time 0. Then the value for the put option, P (F ) isP (F ) = e�rt Z E0 (E � S)f(S)dSAs we have seen, FOSFX (7th 
olumn) does not follow geometri
 Brownian motion. We apply themethod outlined above to �nd the value for the put option S(0) = 46:1, r = 0:06, and t = 1=3 (4months).We are given L = 85 is the duration (in business days) of the put option being 
onsidered andN = 170 is the number of days for whi
h daily return data is available in the form f4SiSi gi=1���169. Fromthis format the data were transformed to the form fSigi=1���N . That is to say, the data format was
onverted from the daily return rate f�SiSi gi=1���N to the daily underlying asset value fSigi=1���N wherethe initial asset pri
e S1 = 46:1 on the 
orresponding date was available at http://www.�delity.
om.A se
ond transformation was made to fa
ilitate the estimation of the 
umulants of the \true" distri-bution whi
h will be based on the approximating lognormal distribution typi
al of a pure GBM optionpri
ing s
heme: the data was 
onverted from fSigi=1���N to flog Si+LSi gi=1���L.From this \transformed data" the sample moments were estimated by�1(F ) � 1L LXi=1 logSi+LSi



20 CHAPTER 2. PROBLEMS IN PORTFOLIO ANALYSIS�J(F ) � 1L LXi=1 [log(Si+LSi )� �1(F )℄JNote: the parameters (�; �2) of the approximating lognormal distribution are estimated by (�̂; �̂2) usingthe original data f4SiSi gi=1���N in the following manner:�2 � 252�̂2dailywhere �̂2daily � 1N � 1 NXi=1(4SiSi � �̂)and �̂ = 1N NXi=1 4SiSiValues used were found as follows:�1(F ) = ln(S0) + rta(S) = 1S�p2�te�(log(S)�(log(�1(A))��2t2 ))2=(2�2t)The results are given in Table 2.1.Strike pri
e 35 40 45 50 55Bla
k-S
holes 0.004764 0.14547 1.140137 3.855774 8.002353No 
orre
tion terms 0.003874 0.132113 1.099248 3.815515 7.984549With 
orre
tion terms 0.00360 0.12612563 1.069307851 3.75421277 7.90624269Table 2.1: European Put Option Pri
e of Sto
k7 on Sep 1st.To partially justify dropping the error, we noted that the adjustment terms be
ome almost negligible.For example, for K = 55, the �rst put given by the lognormal approximation was 7.98 dollars, the �rst
orre
tion term was 7.84 
ents, the se
ond was 0.00821 
ents, and the third 
orre
tion term was only0.00198 
ents.2.6 Con
lusionsThe group studied two problems in portfolio analysis - to �nd the mean-varian
e portfolio whi
h min-imizes risk for a pres
ribed return and to approximate 
orre
tions to the Bla
k-S
holes-Merton pri
efor options due to non-Gaussian e�e
ts. A solution for the �rst problem was found with and withoutshorting as well as with and without in
lusion of a riskless asset in the portfolio. The se
ond problem isof interest be
ause in pra
ti
e most assests do not evolve a

ording to a log-normal pro
ess and, even ifthey do, the sum of su
h pro
esses (a portfolio) does not. Using an Edgeworth expansion we 
al
ulatethe 
orre
tion terms for a European put option on a single non-Gaussian asset. In addition we 
omputethe values for a European put on the sum of two log-normal asset using an `index' approximation. Thisis 
ompared to values 
omputed dire
tly using Monte-Carlo te
hniques. It would be intersting to applythe Edgeworth expansion methods to this latter 
ase.
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Chapter 3Modelling a Metal Spray FormingPro
essParti
ipants: Ian Frigaard (Mentor), Mariana Carras
o Teja, John Harlim, Theodore Kolokolnikov,Melvin Leok, Allan Majdana
, Matthias M�u
k, Jason Slemons, and Qutaibeh Katatbeh.PROBLEM STATEMENT: Spray-forming is a metal manufa
turing pro
ess whi
h is 
apable ofprodu
ing large bulk deposits of various metal alloys. With 
areful 
ontrol, rapidly solidi�ed near-net shape deposits 
an be produ
ed whi
h have signi�
antly improved mi
rostru
tural and me
hani
alproperties. In the billet spray-forming pro
ess a molten metal stream is �rst atomized by high speedgas jets and is then deposited onto a 
ir
ular 
olle
tor plate. The 
olle
tor plate is positioned somedistan
e from the atomizer, it rotates about a verti
al axis and is withdrawn slowly downwards at a
ontrolled speed. Usually, the metal spray is dire
ted in towards the rotational axis and os
illates, soas to distribute the metal in a pres
ribed way. The main obje
tive of this report is to model the billetgrowth mathemati
ally and predi
t the dynami
 features.

22



CHAPTER 3. MODELLING A METAL SPRAY FORMING PROCESS 233.1 Introdu
tionSpray forming pro
esses for metals involve the atomizing of a molten metal stream by means of highspeed gas jets. The atomized metal is then sprayed by the jets and 
olle
ted below on a disk, whi
his both rotating and moving verti
ally. This spraying is 
ontinued, so as to produ
e desirable shapes,known as billets. Ideally the billet will be 
ylindri
al, with minimal deviations from this shape beingtolerated as part of the forming pro
ess.In this report, we present a mathemati
al model based on 
onservation laws, whi
h are used to derivethe equation of evolution of the billet surfa
e. Sin
e the key 
ontrol parameter involved in the pro
essis the velo
ity of the 
olle
tion plate, we try to determine the shape of the surfa
e by 
ontrolling thisvelo
ity and also by attempting to approximate the spray distribution leaving the atomizer. Betweenthese two parameters, a reasonable model has been developed.A s
hemati
 representation of the spray-form billet produ
tion is shown in Figure 3.1. The moltenmetal spreads rapidly towards the 
at 
olle
tor disk. This disk rotates about a verti
al axis and graduallymoves downwards, at a 
ontrollable velo
ity.

Figure 3.1: S
hemati
 of a billet spray forming pro
ess.3.2 Mathemati
al ModelThe analysis of this problem is based on the 
onservation of mass on the surfa
e of the billet. Namely,the rate of mass deposition per time unit on some arbitrary element Â of the billet surfa
e is simplyequal to the mass 
ux through the surfa
e elementZÂ ~̂vs�̂dâ = � ZÂ b~G � ~ndâ;where b~G is a dire
ted mass 
ux, v̂s is the velo
ity of the surfa
e in the dire
tion of the outward normal,~n, �̂ is the density of billet, and all \hatted" variables are dimensional quantities. By representing thesurfa
e of the solidi�ed billet as a level set b~F �~̂x; t̂� = 0;where b~F : R3 � R+ ! R, we obtain the following relation for the normal to the surfa
e~n = brb~F����brb~F ���� ;



24 CHAPTER 3. MODELLING A METAL SPRAY FORMING PROCESSwhere r = r~̂x for notational simpli
ity.Furthermore, the time rate of 
hange of b~F is given by� b~F�t̂ = �brb~F � ddt̂ ~̂x = � ~̂vs ����brb~F ���� ;and substituting, we obtain the equationZÂ�� b~F=�t̂����brb~F ���� �̂dâ = � ZÂ b~G � brb~F����brb~F ����dâ:Sin
e Â is arbitrary, and by evoking the 
ontinuity of b~F , we obtain the equivalent di�erential equation� b~F�t̂ �̂ = b~G � b~rb~F :In general, the mass 
ux expression b~G will introdu
e a time delay, but as the spatial s
ales are smallrelative to the velo
ity of the atomized metal jet, we will negle
t the time lag between the atomizationand the deposition event. Furthermore, this allows us to assume that dispersion of the gas jet is small,and to good approximation, the 
ross-se
tional distribution of parti
les in the jet in the absen
e ofdeposition is independent of the distan
e from the nozzle.The high shear 
ow asso
iated with the atomization yields a ballisti
 traje
tory for the metal jet,and we will assume that deposition o

urs at the �rst interse
tion of the metal jet with the surfa
e of thebillet. If we assume that the surfa
e is 
onvex, then the point of �rst interse
tion 
an be identi�ed bythe sign of the b~G � b~rb~F term, and the non-deposition on the point of se
ond interse
tion 
an be realizedby a Heaviside fun
tion multiplying the b~G � b~rb~F term. The \shadow" e�e
ts have not been 
onsideredin the numeri
al analysis.Assume a radially symmetri
 distribution of mass 
ux, ĝ(r̂0), with respe
t to the spray dire
tion ~̂k0of the atomizer nozzle su
h that Z 2�0 Z 10 ĝ (r̂0) r̂0dr̂0d� = 1;where (r0; �0; z0) refers to the 
oordinate system atta
hed to the atomizer. Let ~̂xa(t̂) = R!̂t̂(R̂a; 0; ẑa)Tbe the position of the spray at time t̂, where R!̂t̂ is the rotation matrix about z1�axis at angle !̂t̂. Withthis notation the mass 
ux ve
tor �eld reads~̂x1 7! b~G1 �~̂x1; t̂� = 
_M �t̂� ĝ������~̂x1 �
~xa(t̂)�� b~k0(t̂)����� b~k0(t̂);where 
_M(t̂) is the mass 
ow rate from the nozzle and b~k0(t̂) = R!̂t̂(� sin(�(t̂)); 0;� 
os(�(t̂)))T is thespray dire
tion with a de
lination angle �(t̂). We s
ale the problem using the following dimensionless



CHAPTER 3. MODELLING A METAL SPRAY FORMING PROCESS 25variables ~̂x = R̂0~xb~F = R̂0 ~Fb~G = 
_M0�R̂20 ~GÛ0 = 
_M0^̂��R̂20~̂U = Û0~u(t)T̂0 = 2�̂!where R̂0 is the desired radius of the billet, Û0 is a 
hara
teristi
 withdrawal velo
ity of the plate, andT̂0 was s
aled relative to the rotation period of the billet. This 
orresponds to taking a times
ale onwhi
h all transient surfa
e movement should be observable.In the stationary billet 
oordinates with the s
aled variables, the equation is given by� ~F�t̂ = � u � ~F�z1 + _M (t) g (r0)~k0 +O�Ra!Vs;0 �! � r~F ; (3.1)where the 
oeÆ
ient � = 2�!R̂U0 
orresponds to the ratio of time s
ales in the problem.There are two time s
ales in the problem: one for the rotation of the billet, and the other for theverti
al growth of the billet. The order of the rotation time s
ale is mu
h smaller than that of the growthtime s
ale. The resulting equations have been s
aled using the rotation period, and the results we areinterested in are on the time s
ale of the billet growth. In order to 
ompare e�e
ts, the equations areaveraged over the rotation time s
ale.Let � = �t be the s
aled rotation period, where � is small positive 
onstant as previously de�ned.This new time s
ale, �, is on the order of the billet growth. Therefore, all parameters in the problemare of the same order, and hen
e, 
an be 
ompared. The resulting equation is� ~F�� = u(�) � ~F�z1 + � _M(�)�~g� � r~F ; (3.2)where �~g = 1T R T0 g(r)~kdt, is the time averaged distribution of the mass 
ux, and _M(t) and u(t) arerepla
ed by _M(�) and u(�), respe
tively. Converting to 
ylindri
al-polar 
oordinates, expanding theinner produ
t, and assuming that the problem be
omes symmetri
 with respe
t to the z1�axis after theaveraging pro
ess, i.e. ~F (r; �; z1; t) = ~F (r; z1; t), the resulting equation is� ~F�� = u(�) � ~F�z1 + _M(�) �gr � ~F�r + �gz1 � ~F�z1! ; (3.3)To help predi
t the behavior of the surfa
e evolution, the 
hara
teristi
s of the di�erential equation (3.3)are examined. The 
hara
teristi
 equations aredrd� = � _M(�) �gr(r; z1)dz1d� = � _M(�) �gz1(r; z1)� u(�) (3.4)The assumption of ballisti
 spraying, together with the 
ontinuity of the mass 
ux, yields�grdr + �gz1dz1 = 0 (3.5)



26 CHAPTER 3. MODELLING A METAL SPRAY FORMING PROCESSLinear analysis of the system (3.3) in addition to equation (3.5) determines that there are at least twosaddle points on the z1�axis. Only one of these equilibrium points is important to the behavior of thebillet growth, as any others are physi
ally lo
ated inside of the billet. From equation (3.3), the saddlepoint is determined by the following 
ondition�gz1(0; z1) = �� (3.6)where � = u(�)_M(�) : (3.7)After non-dimensionalizing our variables, we �nd that � = 1 
orresponds to the required billet radiuswhi
h, after s
alings, is 1.Phase plane analysis of the system shows that a steady state distribution is attainable, and that alltraje
tories eventually lead to this steady state. These results motivate the analysis of the steady stateequation, whi
h 
an be derived from (3.3), by making the assumption that F (r; z; �) = z + f(r; �). Thesteady state equation is found by eliminating all time dependen
e from the above assumptiondfdr = �+ �gz�gr : (3.8)The subsequent numeri
al simulations are based on the solution of equation (3.8).3.3 ResultsTo see a dependen
e of the the shape of a stable billet 
on�guration on the (s
aled) withdrawl velo
ity �we �rst restri
t ourselves to the 
ase of a single de
lination angle � = 300 (Fig. 3.2a), and with gaussiandistribution of the material within this ray. First we 
ompute the ve
tor �eld �g of the mass 
ux averagedover the rotation about the verti
al axis and use that as input to 
ompute the solutions of (3.8) for steadybillet formations for several values of �. Sin
e �gr(0; f) = 0, the initial 
onditions f(0) = f0 needed forthe numeri
al integration of (3.8) are found by solving the equation (3.6).The averaged ve
tor �eld �g and the 
urves are plotted in Fig. 3.2a. The dire
tion of the 
enter ofthe mass ray is also indi
ated in the �gure. Note that for small velo
ities (say � � 2) the radius rbof the billet is determined by the 
uto� of the ve
tor �eld �g. In this 
ase, �r2b � 1 as expe
ted. For� = 3; 4 a big amount of mass 
annot be deposited on the surfa
e whi
h results in a breakdown of mass
onservation. This is observed in Fig. 3.3.Note that for � = 1 the radius of the billet is approximately rb = 1 whi
h is 
onsistent with ours
alings. Further we observe that for billets with radius rb � 0:9 the surfa
e is 
on
ave at the 
enterwhen � = 300. This is undesirable be
ause it 
reates non-uniformities inside the billet.This motivated us to 
onsider other angles � (Fig. 3.2b) as well as s
anning over a se
tor with theray (Fig. 3.4). From now on we restri
t our attention to � = 1 whi
h guarantees the required billetradius rb = 1 (in s
aled variables).Fig. 3.2b shows di�erent shapes 
orresponding to di�erent angles � (no s
anning). We observe thatat a 
riti
al angle of about 400 the billet surfa
e is 
hanging from a 
onvex to a 
on
ave shape at the
enter. However, in industrial appli
ations an angle of 300 is usually used rather than a relatively shallowangle of 400 (this is to avoid the slippage of material past the surfa
e of the billet).To 
ompensate a 
on
ave shape for an angle of 300, we simulated the s
anning over a se
tor [�1 =300; �2℄ for several values of �2. Fig. 3.4a shows the resulting ve
tor �eld �g and the resulting billet shapewith �1 = 300; �2 = 450. Fig. 3.4b shows di�erent billet shapes for a �xed �1 = 300 and �2 as indi
ated.As expe
ted, for �2 large enough (about 400), the averaging of the mass 
ux over this se
tor insures
onvexity of the billet. For a very large spread of the se
tor (say �2 = 450) the plateau on top of thebillet is shrinking.Our analysis of the spraying pro
ess made us understand how the various parameters in
uen
e theshape of the billet. For example, within our model it is possible to produ
e billets of desired radius.
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aled) withdrawl velo
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ated abovethe 
urve). Spray angle is �xed at 300 and no s
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e of the shape of the billet onthe spray angle (no s
anning). S
aled velo
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on
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es 
an be avoided either by in
reasing the de
lination angle or by s
anningover larger se
tors. By 
hoosing parameters appropriately, one 
an even produ
e a billet of \optimal"shape su
h that the top is as 
at as possible.
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Chapter 4Web Hosting Servi
e LevelAgreementParti
ipants: Lisa Korf (Mentor), Moni
a Cojo
aru, Yashar Ganjali, Seungwon Jeon, Ramin Moham-madalikhani, Carmeliza Navas
a, Alberto Nettel, Asa Pa
ker, Sarah SumnerPROBLEM STATEMENT: In this paper we propose a model for measuring the quality of servi
e(QoS) in a Web-hosting fa
ility. We assume that there is an agreement between the provider and a 
lient(or 
ustomer), regarding the pri
e of di�erent levels of servi
e, known as servi
e level agreement (SLA).The 
lient we refer to is a 
ompany.

Web-server

1. 

2.

3.Customer
4.

User

User

User

Service Level Agreement

Figure 4.1: Servi
e Level AgreementThe Web-server provides the spa
e for the Web-pages, text do
uments, audio and video �les et
.of the 
ustomer. Ea
h 
ustomer has a number of users that request a

ess to the do
uments on theWeb-server. The Web-server has to provide a servi
e that meets the requirements of the SLA (Figure 4).The SLA states that some QoS measurement lies within some bound for a given per
entage of requestsaveraged over a given long period of time. 29



30 CHAPTER 4. WEB HOSTING SERVICE LEVEL AGREEMENT4.1 The frameworkIn a very simpli�ed model, a Web-server is 
onne
ted to a user via a link with a known bandwidth. Theuser sends a sequen
e of requests for the �les lo
ated on the server (Figure 4.1 (A)). The Web-serverde
ides whi
h requests it is going to serve and simply dis
ards all other requests. Other than 
hoosingwhi
h requests to serve, there is another important de
ision whi
h the server has to make and that ishow to allo
ate its resour
es (the bandwidth, CPU time, and so on) to the requests whi
h are going tobe served.
Web-server

Web-server

Web-serverUser

Document

R
Internet

Internet

R
R

R

1

2

k

User

User

A)

B)

C)

Request

Figure 4.2: Models of networkIn reality, usually the server and the user(s) are 
onne
ted throught a series of intermediate routersand the quality of servi
e provided by the Web-server to the user is a�e
ted by the quality of servi
eprovided by those routers. In a more realisti
 model we should also 
onsider how the quality of servi
eprovided by the Web-server is a�e
ted by the quality of servi
e provided by the intermediate routers(Figure 4.1 (B)). Some important parameters here are the average delay of messages, the loss rate,the throughput, and so on. For simpli
ity we 
ould assume that the server is 
onne
ted to a singlerouter with known parameters. Finally, we 
an 
onsider a model whi
h seems to be the 
losest to thereal networks in whi
h the Web-server is 
onne
ted to a number of routers ea
h providing a (possibly)di�erent quality of servi
e (Figure 4.1 (C)). The Web-server 
an de
ide (based on the quality of servi
ethe routers are supposed to provide) whi
h of the adja
ent routers should be used to serve a spe
i�
request. In this paper we are treating only the s
enario in Figure 4.1A).4.2 Dynami
sIn this se
tion we propose a model for the dynami
s of the a
tivities provided by a Web-hosting fa
ilityunder a 
ertain SLA. We derive from here a 
ontrolled optimization problem for maximizing the revenueof the provider subje
t to penalties. Our model will be a dis
rete time one. The state variable is thenumber of requests of di�erent 
lasses for 
onne
ting to the network.Denote by [0; T ℄ the time interval for the problem with the step �t. In the previous se
tion we de-s
ribed how the Web-hosting fa
ility fun
tions. Consider the system with a known maximum bandwidthC. User requests arrive at random times and a request will take a 
ertain response time ( RT ) to beserved. We will assume that the arriving requests belong to di�erent 
lasses, whi
h are indexed fromi 2 f0; :::; Jg. For simpli
ity, we will 
onsider only two 
lasses.



CHAPTER 4. WEB HOSTING SERVICE LEVEL AGREEMENT 314.2.1 Notation1. Let X it be the number of requests of a 
ertain 
lass i at the moment t, where i 2 f0; ::; Jg: Wedi�erentiate between the number of requests being served at the moment t and the ones that arewaiting in the queue. Therefore, let us de�neX it = � X i;1t = f the number of requests in waitinggX i;2t = f the number of requests being servedg2. To be able to model the QoS we need to keep tra
k of how many requests have been served andhow many in
oming requests have initiated at a given moment of time t, arbitrarily �xed in [0; T ℄.Denote by bit the number of arriving requests and by sit the number of served requests at themoment t.3. Denote by uit a de
ision 
ontrol to allo
ate a 
ertain amount of bandwidth at time t for a requestof 
lass i. The 
ontrol is de�ned as followsuit = � ui;1t = f the number of a
tivated requests of 
lass i served at t gui;2t = f the number of reje
ted requests of 
lass i at tg4. Denote by rit the resulting revenue per request of 
lass i at moment t.4.2.2 General assumptions1. In ea
h interval of time, the number of new requests 
onsidered for servi
e is variable (not ne
es-sarily 1).2. The assignment of bandwidths o

urs at the starting point of ea
h time unit.3. The amount of bandwidth allo
ated to ea
h request remains �xed in our model, until the requestis 
ompletely served.4. The allo
ation poli
y adopted here is that to ea
h in
oming request of 
lass i a 
ertain amount ofbandwidth is assigned, up to the maximum 
apa
ity possible for 
lass i, Ci.5. Unserved requests are lost without further impa
t on the system.4.2.3 Equations of the dynami
sWe 
an formulate now the equations des
ribing the dynami
s of the system passing from one generi
state t� 1 to the next state t as followsX it = X it�1 + � �1 �11 0 �uit + � bit�sit � (4.1)The �rst row of the equation (4.1) represents the dynami
s of the requests of 
lass i in waiting and these
ond row represents the dynami
s of the requests of the same 
lass being served.4.2.4 Optimality equationThe SLA states that some QoS measurement lie within some bound (Bi) for a given per
entage ofrequests averaged over a given long period of time. Bi represents the SLA for the i-th 
lass of requests.The QoS is de�ned as a fun
tion of the de
ision at time t ( i.e. uit) and the state of the system at thatmoment (X it). Whenever the QoS is out of bounds, a penalty applies to the provider, thus diminishingthe revenue. One may assume that there is a known threshold R for the number of requests being served.
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an write QoSit(uit; X it) = Biui;2t + BiR X i;2t + �iX i;1t ; and�i[Ef 1T TXt=1QoSit(uit; X it)�Big℄+where the last expression represents the penalties appli
able to the provider whenever the QoS is out ofbound. The 
hoi
e of the numbers �i needs to be made su
h that the penalty expression approximatesthe 
onstraint set in the SLA.Now we 
an formulate a �nite horizon sto
hasti
 optimal 
ontrol problem in dis
rete-time to maximizethe total expe
ted reward,maxut TXt=1 Efrituitg �Xi �i" 1T Ef TXt=1[QoSit �Bi℄+g#+ TXt=1 �i"Xi CiX it � C#subje
t to the dynami
s X it = X it�1 + � �1 �11 0 �uit + � bit�sit �where the state ve
tor X it 2 RJ+1�RJ+1, the 
ontrol uit 2 RJ+1�RJ+1, (QoS) is de�ned as above, �iis a proportionality 
onstant 
orresponding to the bandwidth 
onstraint of ea
h 
lass i and rit representsthe revenue for the 
lass i at time t. We note that Ci de�ned previously, is the maximum bandwidth
apa
ity possible for the 
lass i and it is independent of time.We assume that there are admissible 
ontrols u that transfer the system from X1 to XT and amongstthis subset of admissible 
ontrols there is a 
ontrol that maximizes the expe
ted reward. Su
h a 
ontrolwill be 
alled an optimal 
ontrol u�. Ultimately, we look for the values of the optimal 
ontrol and themaximum reward.4.3 Dynami
 Programming AlgorithmA possible approa
h to solve the sto
hasti
 optimal 
ontrol problem is the dynami
 programming te
h-nique ([1℄). The idea is to assign a value fun
tion Vu(x0) for ea
h poli
y u su
h that it is equal to thetotal expe
ted reward, Vu(X1) = Ef TXt=1 
t(Xt�1; ut) + �(XT )g (4.2)where �(XT ) is the terminal reward. The dynami
 programming method allows us to 
onstru
t theoptimal poli
y u� and, in 
onsequen
e, 
al
ulate the optimal expe
ted reward V (X1), whereV (X1) = maxu Ef TXt=1 
t(Xt�1; ut) + �(XT )g (4.3)We assume a �nite state spa
e S, a �nite 
ontrol spa
e A, and a poli
y ut(ht) in terms of the historyor path ht = (st�1; at�1; s), s 2 S and at�1 2 At.The Algorithm:For ea
h time t we 
an assign a \
ost-to-go" fun
tionVt(ht) = 
t(st�1; ut) +Xj2S pt(st = jjst�1; at)Vt+1(ht; at; j) (4.4)



CHAPTER 4. WEB HOSTING SERVICE LEVEL AGREEMENT 33where j is a possible state at time t� 1. The transition probability pt(s = jjst�1; at) is the probabilityof going from state st�1 at time t� 1 to state j at time t. The optimal 
ontrol at t is the minimizer of(4.4), i.e. u�t 2 argmaxa2An
t(xt�1; at) +Xj2S pt(jjst�1; at)Vt+1(ht; at; j)o:We now the des
ribe the algorithm:1. Set t = T and V (hT ) = �T (sT ) for all histories hT2. Let t! t� 1. For ea
h ht,u�t 2 argmaxa2An
t(st�1; a) +Xj2S pt(jjst�1; a)Vt+1(ht; a; j)oVt(ht) = 
t(st�1; u�t ) +Xj2S pt(jjst�1; u�t )Vt+1(st; u�t ; j)3. Go to step 2 when t = 2.4.4 The Simulation ModelIn the model of Web server traÆ
 outlined in Se
tion 4.2, knowledge of the distribution of the numberof new requests and the distribution of the number of 
ompleted requests within a given time periodis required. It has been assumed that request arrivals follow a Poisson pro
ess, but simulations wereperformed to give estimates of the distribution of 
ompleted requests. It would also be interestingto know the behaviour of the system when 
ertain key parameters, su
h as bandwidth available fortransmission, are suddenly in
reased during operation. Details of the simulated system are as follows:Requests arrive at the server following a Poisson pro
ess with a mean inter-arrival time of �A se
onds.There are J + 1 
lasses of requests, f
lass(0);. . . ,
lass(J)g: These 
lasses might represent requests forvarious types of data, su
h as video, audio, graphi
s or text. The probability that a given request is oftype 
lass(i) is pi: The data being requested is simply a �le. The sizes of the requested �les are assumedto follow an exponential distribution, where the mean �le size for requests of 
lass i is �i bytes. Allrequests of 
lass(i) are assumed to require Bi bytes/se
ond of bandwidth for transmission. The totaloutput bandwidth available for use by the server is BT :In a given time period, more requests may arrive than the system is 
apable of serving. Unservedrequests are queued in order of arrival. When a request arrives at the server, if there is enough outputbandwidth available to immediately serve it, and there are no other requests in the queue, then servi
eof the request 
ommen
es.Servi
e time for a request is given by �le size divided by the bandwidth required. If a request mustenter the queue, it must wait for all pre
eding requests in the queue to be served �rst, and then (possiblyeven longer) for there to be suÆ
ient available transmission bandwidth, before its servi
e will begin. Thesimulation model is illustrated in Figure 4.3.4.5 Simulation ResultsTwo phenomena were investigated by simulation: the e�e
t of in
reasing total bandwidth on the waitingtime in the queue, and the number of requests whose servi
e is 
ompleted in a given time period. Theresults may be found in Figures 4.4, 4.5 and 4.6.
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2. Received requests are queued if necessary.

Request

Queue
Service Station

served as soon as there is available

change, depending on the bandwidth

bandwidth.

The number of service stations may

requirements of the requests.

3. The next request in the queue is 

1. New requests are received by the server.

Figure 4.3: S
hemati
 of the simulated web server.

43 43.5 44 44.5 45 45.5 46 46.5 47 47.5 48
2

4

6

8

10

12

14

16

18

Total available bandwidth (bytes/second)

A
ve

ra
ge

 w
ai

t t
im

e 
(s

ec
on

ds
)

Figure 4.4: Average request waiting times versus available bandwidth. There were three di�erent request
lasses, so N = 3: The parameter values were �A = 1; �0 = 10, �1 = 30; �2 = 60; B0 = 1; B1 = 2;B2 = 3; p0 = 0:25; p1 = 0:25; p2 = 0:5; and BT is what is plotted along the x-axis. For ea
h value ofBT the simulation was run until 10,000 requests were served.
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Figure 4.5: Waiting time of requests versus arrival time. In this simulation, BT for the �rst 5000 requestswas 24, then BT was in
reased to 25. There were three 
lasses, so N = 3: The parameter values were�A = 1; �0 = 10, �1 = 20; �2 = 30; B0 = 1; B1 = 2; B2 = 3; p0 = 0:25; p1 = 0:25; and p2 = 0:5:

0 2 4 6 8 10 12 14
0

50

100

150

200

250

300

350

400

Number of requests completed in time periods of 5 seconds 

C
ou

nt

Figure 4.6: Histogram of the number of requests 
ompleted in time intervals of 5 se
onds. This simulationwas run until 10,000 requests were served. There were three di�erent request 
lasses, so N = 3: Theparameter values were �A = 1; �0 = 10, �1 = 20; �2 = 30; B0 = 1; B1 = 2; B2 = 3; p0 = 0:25; p1 = 0:25;p2 = 0:5; and BT = 25:



36 CHAPTER 4. WEB HOSTING SERVICE LEVEL AGREEMENT4.6 Future workEstablishing a measure for the quality of servi
e (QoS), for a Web hosting fa
ility, is an extremely up-to-date problem and the authors have only approa
hed it here by means of a very simple model. As statedin the beginning, there are a lot of possible ways to enlarge the spe
trum of the model. We outline nextsome of these.� To use dynami
 programming te
hniques to solve the sto
hasti
 optimal 
ontrol problem.� To further investigate the distribution of �le sizes from real data.� To improve the model by reformulating the penalty fun
tion and the mathemati
al expression ofthe (QoS).� To in
lude more 
omplex networks by extending the 
on
epts and dimensionality of the problem.Figure 4.7 shows the number of requests for �les of di�erent sizes on an a
ademi
 Web-server1. Thishistogram shows that assuming that the size of requests has an exponential distribution is a realisti
assumption.
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Chapter 5Defe
t Analysis Using Depth fromDefo
us and Shape from Fo
usMethodsParti
ipants: Hedley Morris (Mentor), Alex Hodge, Mahtab Kamali, Mufeed Mustafa Mahmoud,Cristina Popes
u, James Rossmanith, Daniel Ryan, Ali Sanaie-Fard, Barkha Saxena.PROBLEM STATEMENT: Newport Corporation manufa
tures opti
al equipment and in parti
ularlaser diodes. These diodes are made from semi
ondu
tor material and their operation takes pla
e on a
at surfa
e, approximately 200 mi
rons square, onto whi
h two tren
hes have been et
hed. If a numberof images, at �xed fo
us, are taken at varying heights above the surfa
e, the images will all be out offo
us. However, the blur of ea
h image will depend on the height above the surfa
e. The aim of thisproje
t is to determine the diode topography from this sequen
e of out-of-fo
us images. This will enablethe identi�
ation of depth anomalies that might interfere with the operation of the devi
e. Su
h defe
tsare not easily dete
table by 
urrent inspe
tion pro
edures.

37
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(a) (b)Figure 5.1: (a) A snapshot of an a
tual opti
al 
hip. (b) Light travels down the grooves of the opti
al
hip. Defe
ts in the 
hip may 
ause the light to be de
e
ted or blo
ked.5.1 Introdu
tionIn most imaging systems, a 3D view of the real world is mapped into a 2D image. In this transforma-tion the depth information of the image is lost and the imaging system 
annot determine the full 3Dstru
ture of the image. Therefore, it is ne
essary to develop algorithms whi
h 
an extra
t the 3D spatialinformation from a series of 2D images.To extra
t the spatial information one 
an retrieve image 
hara
teristi
s by 
omparing two or moreimages of the obje
t. If these images are obtained from pla
ing the 
amera lens at di�erent distan
esfrom the obje
t, we refer to the depth re
onstru
tion pro
edure as shape from fo
us. If the images are
aptured by 
hanging the geometry of the imaging system su
h as 
hange of the fo
al length of 
amera,we refer to the depth re
onstru
tion pro
edure as shape from defo
us. The shape from fo
us/defo
usis referred to as blind de-
onvolution in signal pro
essing or as image restoration in image pro
essing.In this spe
i�
 appli
ation treated in this paper, a �ber-opti
 
hip (shown in Figure 5.1(a)) is exam-ined for defe
ts by 
apturing 30 images at di�erent distan
es from the 
hip with a 
amera. From thepoint of view of industry, this pro
edure is a relatively inexpensive way to examine the 
hip. The 
hiphas to pass light through the two mi
ro grooves (shown in 5.1(b)) 
ut into 
hip. Unfortunately, a smalldefe
t in the shape of the grooves 
an make the 
hip useless. Therefore, the obje
tive of this paper is toestimate the spatial position of the groove by an image pro
essing te
hnique.The 30 images from the 
hip are 
aptured at di�erent distan
es from the �ber opti
 
hip by 
hangingthe position of the 
amera. The di�eren
e between two 
onse
utive 
amera positions is approximately2 nanometers. In this resear
h proje
t, two di�erent methods for pro
essing the images are examined.The �rst method is based on pro
essing the array of images in the frequen
y domain using the Fouriertransform. The se
ond method uses a spatial transform (S-transform) whi
h is based on a polynomialapproximation of the images.5.2 Point Spread Fun
tionsWe begin by 
onsidering a 2D pi
ture or s
ene of uniform depth. The light intensity of this s
ene isgiven by f(x; y). The fun
tion g(x; y) des
ribes the light intensity of an out-of-fo
us image of this s
ene.In order to understand the 
orrelation between f and g, it is 
onvenient to introdu
e the 
on
ept of apoint spread fun
tion (or PSF) denoted h(x; y).Con
eptually, the PSF des
ribes how the light emitting from a point on f is distributed by the 
ameraonto the image g. Mathemati
ally, the PSF, h(x; y), is de�ned as follows:g = h ? f ; (5.1)
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onvolution operator.In the 
ase of an ideal pinhole 
amera, the PSF would be a delta fun
tion. However, in the realworld, we are dealing with opti
al lens systems and the PSF is not this trivial. Furthermore, the PSFnot only depends on the 
amera, but on the distan
e from the obje
t to the lens; and therefore, it willbe an unknown in our problem. To simplify the problem, however, some assumptions about the formof h 
an be made. First, h should be radially symmetri
 about the origin. This represents the fa
t thatthe 
amera should not stret
h the image in some dire
tion, or introdu
e some similar bias. Furthermore,we assume that our 
amera is a lossless system (i.e. it does not absorb any light energy in the pro
essof 
olle
tion). So, if one unit of light energy is in
ident on the lens, then one unit of light energy willappear in the image g, Z Z h(x; y)dx dy = 1 : (5.2)A standard approximation for h is the 2D Gaussian:hg = 12��2 e�x2+y22�2 : (5.3)Asso
iated with the PSF is a blur radius whi
h represents the radial distan
e that light is distributedby h. For the 2D Gaussian, the blur radius is proportional to the standard deviation �; and therefore,throughout this paper � will be synonymous with blur radius. Furthermore, we 
an then use geometri
opti
s to relate � to the depth D as follows:� = � r v� 1F � 1v � 1D� ; (5.4)where �, r, v, and F parameters des
ribe the 
onstant of proportionality between the blur radius and�, the radius of the lens aperture, the distan
e from the point of perfe
t fo
us to the lens, and thefo
al length, respe
tively. Therefore, obtaining information about our PSF dire
tly translates into depthinformation through 
amera parameters. We present below two methods for 
omputing approximationsto �.5.3 Method 1: A Fourier domain approa
hWe �rst 
onsider a method based on de
onvolution in Fourier spa
e [1℄. We will assume in this se
tionthat the fo
used image f(x; y) in whi
h we are interested and two unfo
used images g1(x; y) and gi(x; y)is given by g1(x; y) = h1(x; y) ? f(x; y) + n1(x; y) (5.5)gi(x; y) = hi(x; y) ? f(x; y) + ni(x; y) ; (5.6)where n1(x; y) and ni(x; y) are random noise. In this proje
t we will further assume that the noise iszero. Now rewriting the above equations in the frequen
y domain by taking a Fourier transform overthe region of interest leads to the following set of equations,G1(!; �) = H1(!; �)F (!; �) (5.7)Gi(!; �) = Hi(!; �)F (!; �) : (5.8)If we assume that the PSF is Gaussian (see Se
tion 5.2), then the PSF and its Fourier transform areh(x; y) = 12��2 e� (x2+y2)2�2 and H(!; �) = 12��2 e� (!2+�2)2�2 : (5.9)By 
ombining equations (5.7) and (5.8) yieldsG1(!; �)Gi(!; �) = e� 12 (!2+�2) (�21��2i ) : (5.10)
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Figure 5.2: Plot of �21��2i versus the index i. We take the point where the fo
us 
hanges (i.e., the indexat whi
h the maximum of the 
urve o

urs) as a proxy for depth.Taking the logarithm and rearranging (5.10) yields�21 � �2i = �2!2 + �2 log�G1(!; �)Gi(!; �)� : (5.11)A more robust formula 
an be obtained by integrating (5.11) over a small region in the Fourier domain:C = 1A Z Z �2!2 + �2 log�G1(!; �)Gi(!; �)� d! d� : (5.12)This yields to the following equation:��21 � �2i � = 1A Z Z �2!2 + �2 log�G1(!; �)Gi(!; �)� d! d� : (5.13)5.4 Method 2: A spatial domain approa
hThe se
ond approa
h we 
onsider is based not on the Fourier transform, but on the S-transform whi
hallows us to de
onvolve in physi
al spa
e [2, 3℄. We again use the notation of Se
tion 5.2 to denote theunblurred image by f(x; y), the PSF by h(x; y), and the images by gi(x; y) where i = 1 : : : 30. We beginby assuming that the image in a small region 
an be approximated by a bi-
ubi
 polynomial su
h thatf(x; y) = 3Xm=0 3�mXn=0 amn xmyn : (5.14)Furthermore, we assume that h(x; y) is a rotationally symmetri
 point spread fun
tion. Image gi(x; y)is obtained from the 
onvolution of the unblurred image with the PSF,gi(x; y) = Z 1�1 Z 1�1 f(x� �; y � �)h(�; �) d� d� : (5.15)Be
ause f(x; y) is bi-
ubi
 we 
an write the 
onvolution kernel asf(x� �; y � �) = X0�m+n�3(�1)m+n �m �nm!n! �mx �ny f(x; y) : (5.16)
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Figure 5.3: Light intensity plot for the se
tion of opti
al 
hip used to 
ompute a depth map.Plugging this expression into equation (5.15) gives us thatgi(x; y) = X0�m+n�3 (�1)m+nm!n! �mx �ny f(x; y)hmni ; (5.17)where hmni = Z 1�1 Z 1�1 xmyn hi(x; y) dx dy = Z 2�0 
osm(�) sinn(�) d� Z r0 rm+n+1 hi(r) dr : (5.18)However, due to the periodi
ity of the sine and 
osine, the above expression simpli�es (5.17) tof(x; y) = gi(x; y)� h20i2 r2f(x; y) : (5.19)Taking r2 of both sides of this equation and again using the fa
t that f(x,y) is bi-
ubi
 yieldsr2f(x; y) = r2gi(x; y) : (5.20)Using this information we 
an 
ompletely de
onvolve the original integral operator and obtain theexpression f(x; y) = gi(x; y)� �2i4 r2gi(x; y) : (5.21)In the above expression, �2i = 2h20i measures the spread of the PSF. Comparing image i to image 1 andusing the fa
t that r2f(x; y) = r2g1(x; y) = r2gi(x; y) (5.22)yields that g1(x; y)� gi(x; y) = 18 ��21 � �2i � �r2g1(x; y) +r2gi(x; y)� : (5.23)The di�eren
e between �21 and �2i 
an then be 
omputed over a small region by integrating the aboveexpression as follows: ��21 � �2i � = 8vuut R R �g1 � gi�2 dx dyR R �r2g1 +r2gi�2 dx dy : (5.24)
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(a) (b)Figure 5.4: Depth map proxy 
omputed using the (a) Fourier domain approa
h and (b) the spatialdomain approa
h.5.5 Computing a proxy for the depth mapFrom the data set that we have been provided for this proje
t we know that the following are true:1. Image 1 is the furthest in distan
e from the obje
t,2. Image 1 is most out of fo
us,3. �21 > �2i 8i 6= 1.Therefore, the image number i for whi
h �21 � �2i (5.25)is a maximum at some spatial lo
ation is the image whi
h is in fo
us. From this fa
t, we now attemptto 
onstru
t a proxy depth map using a shape from fo
us approa
h. We 
ompute �21 � �2i as a fun
tionof the index i and look for a maximum. A higher index will 
orrespond to a deeper part of the obje
t.An example of �21 � �2i as a fun
tion of the index i is shown for a parti
ular pixel in Figure 5.2. In this
ase i = 23 
orresponds to the fo
used image. Plotting the maximum i as a fun
tion of spa
e produ
esa proxy for the depth map.To test this pro
edure on the full problem, we now 
arry out the above pro
ess pixel by pixel forthe light intensity map shown in Figure 5.3. The resulting depth map proxy obtained by the Fourierdomain approa
h is shown in Figure 5.4(a) and the spatial domain approa
h in Figure 5.4(b). Thespatial domain approa
h seems to produ
e a better result. To demonstrate that we are able to dete
tthe 
hannels, we average the depth map 
omputed by the spatial domain approa
h along the dire
tion ofthe 
hannels, 
ollapsing our information into the plot shown in Figure 5.5. In this plot 
lear dips o

urin the lo
ations where we expe
t the 
hannels to be.5.6 Obtaining depth from blurUp to this point we were not able to 
ompute a true depth map, but instead only a proxy for the depthsusing �2 di�eren
es. In this se
tion we fo
us on obtaining true depths from our previously 
al
ulated�21 � �2i . Re-arranging equation (5.4) gives an expression for the depth in terms of 
amera parametersand �21 � �2i , D = a1 � k2p�21 � 
2i
2i + a2 ; i = 1; : : : ; 30 : (5.26)
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Figure 5.5: Approximate depth map averaged along 
hannel dire
tion.For this equation we need the following de�nitions:
i � �21 � �2i for i = 1; : : : ; 30 (5.27)a1 � k1k22 (5.28)a2 � k21k22 � �2i (5.29)�21 � spread for the �rst image (5.30)k1 � 1F � 1v (5.31)k2 � �rv : (5.32)The true depths 
an now be 
omputed from the �2 di�eren
es by solving the above equations for D andall the unknown 
amera parameters (�, r, v, and F ) in the least squares sense. In other words, we areable to solve equation (5.26) for D and all the unknown 
amera parameters be
ause we are given severalimages of the obje
t at di�erent heights (i.e., i = 1; : : : ; 30).In terms of the proje
t outlined in this paper, we were not able to apply the above method for
omputing true depths to the data 
omputed in Se
tions 5.3 and 5.4 due to time 
onstraints. Futurework should fo
us on applying the above least squares analysis on the previously 
al
ulated proxy depthmaps.5.7 Con
lusionsIn this paper we developed two distin
t methods for estimating the depth pro�le of a series of 2D imagesof a semi
ondu
tor 
hip. We have found that the method based on the spatial transform de
onvolutionmethod produ
es more a

urate results than the more traditional Fourier transform approa
h. Althoughwe did not have enough to time to �nish the task, we also worked on developing a least squares approa
hfor translating the depth maps produ
ed by the de
onvolution methods into physi
al depth maps.Although we were able to obtain some results with the spatial transform de
onvolution method,our numeri
al simulations fail to produ
e results that are a

urate enough for dete
ting defe
ts in thegrooves of the 
hip. We believe that most of this is due to the fa
t that there exists signi�
ant noisein our data. Our data set had only a three pixel width a
ross the 
hannel. This makes the task ofmaking a detailed map within the 
hannel very diÆ
ult and allows for less �ltering/smoothing of theimage without destroying the 
hannel information.
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Chapter 6I
e A

retionParti
ipants: Tim Myers (Mentor), Thomas Brakel, Brian Corbett, Aude Espesset, Jihyoun Jeon,Mehdi Hadj-Karim-Kharrazi, Ali Rasekh, J. F. Williams.PROBLEM STATEMENT: I
e a

retion on surfa
es is a serious problem in for any surfa
es in 
old
ondtions, su
h as air
raft at high altitude and stru
tures in harsh winter environments. The problemis to model the formation of i
e on surfa
es from super-
ooled water droplets.
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46 CHAPTER 6. ICE ACCRETION6.1 Introdu
tionI
e a

retion 
an 
ause the downing of both power lines and airplanes, un
he
ked it 
an 
ause a huge
ost, both �nan
ial and human. Understanding the me
hanism by whi
h i
e forms and how the variousphysi
al parameters a�e
t this growth is of key importan
e to design of de-i
ing systems for air
raft andadequate stru
tures to withstand harsh environments.In this problem we have many 
ompeting physi
al phenomena and we must 
onsider them all in orderto 
onstru
t a valid model. To make the problem tra
table we �rst make many simplifying assumptions:1. The surfa
e is 
at and uniform,2. The in
oming droplets are uniform in spa
e and time,3. There is little water; water motion is unimportant,4. The surfa
e is 
lean,5. The droplets are pure liquid water,6. Trapped air a�e
ts only the i
e density, it is of no thermodynami
 importan
e,7. Mass losses due to evaporation are negligible,8. The substrate and the air stream have very large thermal masses,9. Mass is 
onserved,10. Energy is 
onserved.Mathemati
ally assumptions (1) � (3) imply that a one dimensional redu
tion is reasonable. As-sumptions (4)� (5) mean that there will be a sharp interfa
e between the i
e and water at exa
tly thefreezing temperature of water, this also means that all heat release from the freezing of the droplets willo

ur at the upper i
e surfa
e. The mass balan
e is easier to do assuming (6). Making assumption (7)means that we do not need to 
onsider the temperature problem in the substrate or the air as they willremain 
onstant for all time. The last two assumptions give us equations to solve on
e we have de
idedon all the important energy balan
e terms.Be
ause we are interested in i
e a

retion on both land-based stru
tures su
h as power 
ables andtowers and also on airplane wings we must 
onsider many seemingly trivial a�e
ts. Upon 
onsultationof the aerodynami
s literature [1℄ one �nds that the relevant gain terms are the latent heat of freezingat the i
e surfa
e, the kineti
 energy of the in
oming drops and the aerodynami
 heating due to lo
al
ompression of the air. Energy is lost in proportion to the di�eren
e of the temperature of the uppersurfa
e and the air due to sublimation or evaporation, 
ooling due to the thermal mass of the in
omingdrops and surfa
e 
onve
tion. Energy is also transported by 
ondu
tion. Expressions for all theseme
hanisms are presented in the Table 1.Table 1: Energy balan
e termsEnergy inputs 1. Kineti
 energy of in
oming drops Qk = _MW 222. Aerodynami
 heating Qa = rHwW 22
3. Latent heat of freezing Qf = �iL _hiEnergy outputs 1. Evaporation/Sublimation Qe = �e0(T � Ta)2. Cooling by in
oming droplets Qd = _M
w(T � Ta)3. Surfa
e Conve
tion Qs = H(T � Ta)Energy transport Condu
tion adds or removes heat Q
 = ��T�x



CHAPTER 6. ICE ACCRETION 47Table 2: Parameter valuesParameter Physi
al meaning Value Units
a Spe
i�
 heat of air 1014 J/kg K
i Spe
i�
 heat of i
e 2050 J/kg K
w Spe
i�
 heat of water 4218 J/kg KLF Latent heat of fusion 3:344� 105 J/kge0 Vapour pressure 
onstant 27.03 Pa/KW Wind speed 90 m/sr Lo
al re
overy fa
tor .55Haw Heat transfer between air and water 500 W/m2 KHai Heat transfer between air and i
e 500 W/m2 KHis Heat transfer between i
e and substrate 1000 W/m2 K�i Condu
tivity of i
e 2.18 W/m K�w Condu
tivity of water 0.571 W/m K�w Density of water 1000 kg/m3�i Density of i
e 900 kg/m3� Evaporation 
oeÆ
ient 11.0 m/ski Thermal di�usivity in i
e 2.18 m2/skw Thermal di�usivity in water 0.571 m2/sTa Ambient air temperature 230 to 265 KTs Substrate temperature 230 to 265 KTa Freezing temperature of water 273 K_M Mass transfer rate .045 kg/s m2To properly model this situation we now need only de�ne a heat equation for ea
h phase and thenapply the appropriate energy balan
e at ea
h interfa
e. The mass balan
e requires that the total amountof material whi
h has fallen remains on the surfa
e in either liquid or solid form.The meaning and values of all parameter values are des
ribed in Table 2. Subs
ripts are usedto denote the phase or substan
e. For example, the heat lost through surfa
e 
onve
tion is given byQs = Hai(T�Ta), whereHai is the heat transfer 
oeÆ
ient from air to i
e, Ta is the �xed air temperatureand T is the temperature variable.Be
ause we have a sharp interfa
e the droplets freeze immediately upon impa
t at the upper surfa
e.Instantly the i
e will be at the substrate temperature whi
h we assume will be well below freezing. Asmore droplets 
ome in more latent heat is released and we expe
t the temperature at the surfa
e toslowly in
rease until eventually water forms. One of the key obje
tives (and su

esses!) of this work isto determine the thi
kness at whi
h this water �rst appears. This also suggest that we need to breakthe problem down into two 
ases, �rstly when there is no water and then when both phases are present.6.2 Model equationsFrom the energy and mass balan
es des
ribed in Se
tion 6.1 we may write down the following equationsgoverning our system using the geometry and notation as des
ribed in Figure 6.1. Here we are takingz to be the spa
e dire
tion and t for time as the independent 
o-ordinates. The dependent 
o-ordinatesare explained in table Table 3: Dependent variablesVariable Physi
al meaningB(t) Thi
kness of the base of i
eh(t) Height of the water layerT (z; t) Temperature in the i
e layer�(z; t) Temperature in the water layer
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Figure 6.1: Diagram of i
e a

retion modelWe begin the modelling with the no water 
ase, h = 0.6.2.1 No water presentBe
ause there is no water present the 
onservation of mass statesB(t) = t _M�i : (6.1)In the i
e region we have a di�usion equation for the temperature,�i �T�t = �i
i �2T�z2 : (6.2)To be able to solve this problem we also impose the boundary 
onditions�T�z ����z=0 = His(T � Ts); (6.3)��i �T�z ����z=B = (Hai + _M
w + �e0)(T � Ta)� rHaiW 22
a + _MW 22 + _MLf! : (6.4)Physi
ally the initial 
ondition h = 0 states that there is initially no water and the boundary 
on-ditions (6.3){(6.4) balan
e the energy loss and gain terms at the i
e, substrate and i
e, air interfa
esrepse
tively.6.2.2 Water presentWe again begin by writing down the governing equations, 
onservation of mass and di�usion equationsfor the temperature in the two phases. _Mt = �iB + �wh (6.5)�w
w �2��z2 = �w ���t (6.6)�i
i �2Ti�z2 = �i �Ti�t : (6.7)This system provides only three equations in the four unknowns, �(z; t), T (z; t), B(t) and h(t). Consid-ering the energy balan
e at the interfa
e between the i
e and water layer gives a Stefan 
ondition [2℄ forthe motion of the interfa
e, �iLf dBdt = �i �T�z � �w ���z : (6.8)



CHAPTER 6. ICE ACCRETION 49The system is now 
losed with the addition of initial 
onditions in time,B(tw) = Bw; (6.9)h(tw) = 0 (6.10)where tw is the time at whi
h water �rst appears and Bw the thi
kness, and boundary 
onditions inspa
e, �T�z ����z=0 = His(T � Ts) (6.11)T (B; t) = Tf (6.12)�(B; t) = Tf (6.13)��w ���z ����z=B+h = � rHawW 22
a + _MW 22 !+ (Haw + _M
w + �e0)(� � Ta): (6.14)6.2.3 Complete problemThe solution strategy is to solve the i
e-only problem until the temperature at the i
e air interfa
e isthe freezing temperature whi
h indi
ates that water has formed. At this time, tw, we then solve the
ombined problem until some large �nal time, tf . Of primary interest is the thi
kness of the i
e at timetw.6.3 Non-dimensionalizationBe
ause of all the physi
al parameters in the problem it is diÆ
ult to dis
ern the relevant importan
e ofthe terms. To 
ompare the relative values we introdu
e non-dimensional variables and re
ast equations6.1{6.14. Dimensionless variables are indi
ated with a supers
ript .̂We begin by res
aling the 
oordinates t and z. An arbitrary times
ale is used su
h that the 
onser-vation of mass in the water only 
ase redu
es to ẑ = t̂. This implies that the temporal s
ale � is de�nedsu
h that � = tw where tw is the time at whi
h water �rst appears.� t̂ = t �ẑ = z where � = _M��i :This 
hoi
e of spatial s
aling sets �B̂ = B �ĥ = h:To simplify the temperature in the i
e region we res
ale the temperatures asT̂ = T � TsTf � Ts �̂ = � � TfTf � Ts :With these de�nitions we 
onsider the problem in the two di�erent 
ases.6.3.1 No waterThe system 6.1{6.4 may be rewritten as B̂ = t̂�1 �T̂�t̂ = �2T̂�ẑ2�2 �T̂�ẑ �����ẑ=0 = T̂�T̂�ẑ �����ẑ=B̂ = ��1T̂ + �2:



50 CHAPTER 6. ICE ACCRETIONThe above parameters take the values,�1 = �2�i��i
i�2 = �His�1 = �Hai + _M
w + �e0�i�2 = ��i  rHaiW 22
a + _MW 22 + _MLf � Ts � TaTf � Ts (Hai + _M
w + �e0)! :6.3.2 Water presentThe system 6.5{6.14 may be rewritten aŝB = t̂� �3ĥ�1 �T̂�t̂ = �2T̂�ẑ2�3 ��̂�t̂ = �2�̂�ẑ2�2 �T̂�ẑ �����ẑ=0 = T̂dB̂dt̂ = 
1 �T̂�ẑ �����ẑ=B̂ � 
2 ��̂�ẑ �����ẑ=B̂T̂ (ẑ = B̂) = 1�̂(ẑ = B̂) = 0��̂�ẑ �����ẑ=B̂+ĥ = ��1�̂ + �2:The new parameters take the values,�3 = �2�w��w
w
1 = �i�i� _M2Lf (Tf � Ts)
2 = �2w�w� _M2Lf (Tf � Ts)�i�1 = �Haw + _M
w + �e0�w�2 = ��w  rHaiW 22
a + _MW 22 � Ta � TfTf � Ts (Haw + _M
w + �e0)!�3 = �w�i :Taking the values from Table 2 for �1, �2 we �nd that for � � 400s both these terms may be negle
ted.�3 also remains small when the water layer is thin. In the next se
tion we will 
onsider the solutions forthe problem as stated above but for �1 = �2 = �3 = 0.Please note the hats, ,̂ over the dimensionless variables will be dropped from this point for theremainder of this and the next se
ion for notational 
onvenien
e.



CHAPTER 6. ICE ACCRETION 516.4 Asymptoti
 Solution6.4.1 Initial Stage (no water)In the asymptoti
 
ase the temperature pro�les are linear in the thi
kness z, but not in time. The pro�leis given by �2T�z2 = 0T (0) = 0�T�z ����z=B = �1 � �2T:whi
h is easily solved to give T (z; t) = �1z1 + �2B(t) :To �nd the thi
kness, Bw at whi
h water �rst appears we set T (Bw; tw) = 1 whi
h de�nesBw = 1�1 � �2 : (6.15)6.4.2 Model with i
e and waterIn the asympoti
 regime both temperature pro�les are linear.�2T�z2 = 0 �2��z2 = 0:With the boundary 
onditions T (0) = 0 T (B) = 1and �(B) = 1 ���z ����z=B+h = ��1� + �2the pro�les are given by, T = zB ; � = 1 + �21 + �1h (z �B):Noti
e that we have solved the temperature pro�les without invoking the Stefan 
ondition! Substituingthe pro�les into the Stefan 
ondition gives an ODE for the thi
kness of the i
e layer.��B�t = 1B � �21 + �1h:On
e this has been 
omputed the pro�les may be re
overed. Re
all that the height of the i
e layer andthat of the water layer are related by the 
onservation of mass equation 6.5.6.4.3 Asymptoti
 results in dimensional variablesIn order to 
ompare to experiment and the full numeri
al simulations we must 
onvert our dimensionlessresults ba
k into their dimensional form.The height at whi
h water �rst appears is given by,Bw = �i(Tf � Ts)rHaiW 22 + _MW 22 + Lf _M � (Tf � Ta)(Hai+ _M
w + �e0) :



52 CHAPTER 6. ICE ACCRETIONIn terms of the given parameter values this works out toBw � 2:5mmwhi
h agrees very well with experiment [3℄! For these values one also �nds tw = � � 50s whi
h is wellbelow the upper limit of 400S.Setting Bw = 1, or �1 = �2 in (6.15) we 
an determine the temperature di�eren
e su
h that nowater ever forms, The temperature di�eren
e beyond whi
h no water forms is given byTa � Ts = �T = rHaiW 22 + _MW 22 + Lf _MHai+ _M
w + �e0) :This gives an approximate value of, �T � �16C:6.5 Numeri
al solution of the 
omplete problemThe numeri
al solution of this problem pro
eeds in the same stages as the analyti
 solution. Firstthe i
e-only problem is 
onsidered and then on
e water has appeared, the 
ombined problem is solved.Be
ause the interfa
e is unknown and no modelling of the exterior air region is done, we propose to use a
oordinate transformation to map the physi
al layers, [0; B(t)℄ and [B(t); B(t) +h(t)℄ whose thi
knessesvary with time to �xed 
omputational intervals on [0; 1℄. This is done by de�ning the 
oordinatesx = zB(t)y = z � B(t)h(t) :This transformation 
auses two diÆ
ulties, it makes the equations to be solved more 
ompli
atedand it is singular as the layer thi
knesses tend to zero. The �rst is not a signi�
ant issue numeri
allyand the se
ond may be handled either by using an impli
it method or adding an arbitrarily thin baselayer. For 
onvenien
e we shall employ the latter strategy. Be
ause the times
ale � = tw is not knowna priori we must solve the full dimensional system 6.1{6.4. Again we begin with the 
ase where waterhas yet to form.6.5.1 No water presentBe
ause the i
e layer grows at a 
onstant rateB(t) = t _M�i +B0upon de�ning f(x; t) = T (z; t)we have a simple PDE for f , ft = �ix_Mtfx + �3i 
i�i _M2t2 fxx:This is solved with the boundary 
onditionst�T�x ����z=0 = �iHis_M (T � Ts);� _M�i�i t �T�z ����z=B = (Hai + _M
w + �e0)(T � Ta)� rHaiW 22
a + _MW 22 + _MLf! :
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ial layer B(0) = B0 � 1 (� 10�6)until f(1; tw) = Ti at whi
h point water will form at the upper surfa
e. This relationship de�nes tw.Then we move on to the 
oupled problem.6.5.2 Water presentNow that the i
e growth rate is no longer 
onstant we need to solve the ODE for the free boundary aswell. De�ning g(y; t) = �(z; t)we need to solve the 
oupled system ft = B0xB fx + �i
i�iB2 fxx;gt = y +Bh gy + �w
w�wh2 gyy;_Mt = �iB + �whand �iLfB0 = �iB fx � �wh gy:The last equation is evaluated a
ross the interfa
e x = 1, y = 0. Be
ause of the non-lo
al nonlinearityin the system an impli
it-expli
it formulation should be used where the PDEs for f and g are integratedwith a Crank-Ni
holson s
heme keeping B and h �xed, after ea
h step B and h are updated.6.6 Con
lusionsIn this report we have 
onstru
ted a one-dimensional model for the growth of i
e and water layers dueto in
oming super
ooled drops. This model a

ounts for all signi�
ant physi
al e�e
ts and is hen
esomewhat unwieldy. Instead of analysis of the full set of equations an asymptoti
 redu
tion was madeto produ
e a mathemati
ally tra
table model. This redu
es a 
oupled system of PDEs to a single orderODE for the thi
kness of the i
e layer. On
e this has been numeri
ally 
al
ulated the temperaturepro�les and water layer thi
kness may be easily obtained.The model predi
ts that initially a layer of i
e forms on the surfa
e until enough latent heat has beenreleased to melt the surfa
e layer. A simple expression for this thi
kness at the onset of water formationwas derived and found to agree not only with the numeri
al simulations but experimental data aswell. From this expression one 
an easily see the relevant importan
e of the 
onsidered physi
al e�e
ts.Additionally we derived a 
riti
al temperature di�eren
e between the surfa
e and air temperatures forwhi
h no water forms. This also agrees well with experimental eviden
e!A general s
heme for integration of the full system was attempted in MatLab but due to the largenumber of physi
al parameters, the diÆ
ulty of the problem and time 
onstraints no satisfa
tory resultswere obtained. The general s
heme is sound and, given suÆ
ient time we believe that reliable results
ould be 
he
ked against the asymptoti
s.Referen
es[1℄ Messinger, B.L., Equilibrium temperature of an unheated i
ing surfa
e as a fun
tion of air speed.Jnl. Aero. S
i. Jan. 1953.[2℄ Crank, J. D., Free and moving boundary value problems. Oxford S
ien
e Publi
ations, 1984.[3℄ Myers, T.G., private 
ommuni
ation.



Chapter 7Estimating Risk-Neutral ProbabilityMeasuresParti
ipants: Miro Powojowski (Mentor), Joel Hanson, Kristen Jaskie, Judy Lai, Shuqing Liang, Has-san Masum, and Rafael Meza.PROBLEM STATEMENT: The Bla
k-S
holes formula is 
ommonly used to pri
e options, due to itsease of use and 
omprehensibility. However, the formula assumes that the volatility of the underlyingse
urity is 
onstant a
ross strike pri
es, whi
h is empiri
ally not the 
ase. For instan
e, the "volatil-ity smile" refers to the fa
t that options whi
h are far-from-the-money often trade at higher impliedvolatilities 
ompared to options whi
h are 
lose-to-the-money.It's therefore of interest to �nd a probability measure on option strike pri
es, su
h that using thisprobability measure smooths the implied volatility of the option to a 
onstant value. This probabilitymeasure is 
alled the Risk-Neutral Probability Measure (RNPM) .We looked at several possible methods for �nding the RNPM, and explored two in some detail:histograms and Hermite polynomials. A regression algorithm was then implemented for �tting param-eterizable histograms to the observed option pri
e data. Ba
kground, methodology, results, ideas forfuture work, and referen
es follow.
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CHAPTER 7. ESTIMATING RISK-NEUTRAL PROBABILITY MEASURES 557.1 Problem Ba
kground7.1.1 Assumptions and Binomial Tree ModelsReal se
urities are extremely 
omplex and hen
e require some level of simpli�
ation. We thereforeassume:� A single-period model with two time steps: now (time 0), and some future time T.� A risk-free rate of interest r exists (e.g. government bonds).� No arbitrage opportunities exist (i.e. an astute investor 
annot make money with zero risk throughexploiting pri
ing imperfe
tions).� The se
urities in question are highly liquid and tradeable at will.Suppose the sto
k has pri
e S now, and 
an rise or fall in pri
e into one of 2 states at time T,with pri
es Sup and Sdown respe
tively: this gives the 1-step Binomial Tree model. (The model 
an begeneralized to multiple time steps and higher-fanout trees in intuitive ways, although the 
omputationale�ort involved grows rapidly due to the exponentially-in
reasing size of the tree.)We 
an use this simple model to pri
e the 
urrent value of an option to buy the sto
k at time T. Todo this, we 
reate a parti
ular portfolio of the sto
k and the option whi
h has no un
ertainty as to itsfuture value. Sin
e this \repli
ating portfolio" has no risk, it must earn a rate of return equal to therisk-free rate.Denote the 
urrent (unknown) pri
e of the option by O; denote the payo� on the option if S goes upor down by Oup and Odown respe
tively. Consider a portfolio 
onsisting of a long position in N sharesof the sto
k and a short position in one option. We 
an then express the value of this portfolio underthe two possible out
omes:1. Sto
k goes up: Sup N - Oup.2. Sto
k goes down: Sdown N - Odown.The value will be equal (and the portfolio will therefore be riskless) when these two quantities areequal, i.e. when N = Oup �OdownSup � Sdown (7.1)This 
ould be 
onsidered as the ratio of option pri
e 
hange to sto
k pri
e 
hange between the twoout
omes.If the interest-free rate is r, the present value of this portfolio is found by dis
ounting ba
kward:PV = e�rT (SupN �Oup) (7.2)(The �rst term 
omes from the formula for 
ontinuous 
ompounding: (1+r/m)mT approa
hes erT inthe limit.) Sin
e the portfolio 
ost was S N - O, we 
an equate the present value of the portfolio withits 
urrent 
ost and solve for O: O = e�rT (pOup � (1� p)Odown) (7.3)where p is a derived quantity equal to erT � (Sdown=S)(Sup=S)� (Sdown=S) (7.4)So, the point of this is that we 
an pri
e an option using a 1-step binomial model, if we 
an observethe pri
es of the option and sto
k under both 
onditions at time T, and the pri
e of the sto
k now. This



56 CHAPTER 7. ESTIMATING RISK-NEUTRAL PROBABILITY MEASURESis not too useful for a single time step, but if we are investing over a long period of time (and if market
onditions stay similar), then we 
an use a series of 1-step observations to derive \expe
ted" optionpri
es. (Note that the option pri
e does not depend on the probability of the sto
k pri
e in
reasing orde
reasing; this is basi
ally be
ause the option is being valued relative to the underlying sto
k and notin absolute terms.)7.1.2 Risk-Neutral ProbabilityThe variable p above 
an be interpreted as the probability of an up movement in the sto
k pri
e; thusthe quantity (p Oup -(1-p) Odown)is the expe
ted payo� of the option. With this interpretation, the expe
ted sto
k pri
e at time T isp Sup +(1-p)SdownSubstituting the previous de�nition of p, we get S erT . In other words, the sto
k pri
e grows at therisk-free rate.This illustrates the prin
iple of risk-neutrality. In a risk-neutral world, investors require no 
om-pensation for risk but are 
on
erned only with the expe
ted return of se
urities. For a 
ompletelyrisk-neutral investor, a government bond with guaranteed payo� is equivalent to a highly leveragedspe
ulative portfolio, as long as both have the same expe
ted payo�.(NB: Risk-neutrality is obviously not true in general in the real world, where e.g. investors have�nite bankrolls and are usually risk-averse toward going bankrupt. However, it may be a reasonableapproximation in a sizeable range of expe
ted payo� values for a large investor, where the investor'sutility fun
tion of wealth is relatively 
at.)7.1.3 Valuing OptionsWhat we are looking for, then, is a measure under whi
h risk-neutral valuation holds. We applied these
on
epts to the valuation of European options, whi
h 
an only be exer
ised at expiry. (In 
ontrast, mosttraded options are Ameri
an options whi
h 
an be exer
ised at any time prior to expiry.) There are twomain reasons for the use of European options in math �nan
e:1. Analyti
al tra
tability: sin
e there is a single expiry time, the investor has only two possiblea
tions, i.e. to exer
ise or not at time T.2. The 
ounterintuitive theoreti
al result that it is suboptimal to exer
ise Ameri
an 
all optionsprematurely, due to both foregone interest on the 
ash used to pur
hase the 
all option anddownside risk from holding the sto
k instead of the option. (Note that, due to our assumption ofsto
k pri
es following geometri
 Brownian motion, this result assumes the investor has no advantageover other investors in pi
king undervalued sto
ks and predi
ting the future path of sto
k pri
es.)For our 
ase of valuing European options, the risk-neutral measure 
ould intuitively be 
onsidered asa probability density fun
tion (PDF) of the possible option pri
es at expiry; integrating this PDF withthe value of the option payo� gives the value of the option. Formally,CallP ri
e = exp(�rT ) Z 1K (S �K)dF (S) (7.5)where CallPri
e denotes the market pri
e of the 
all option, K the 
orresponding strike pri
e, and S thepri
e of the underlying sto
k. (We integrate over all sto
k values that give us a non-negative return onexer
ising the option.)



CHAPTER 7. ESTIMATING RISK-NEUTRAL PROBABILITY MEASURES 577.1.4 Our DataWe had several data �les to work with:� Option Pri
es (both 
alls and puts) for the S&P 100, S&P 500, GM, and Mi
rosoft. As withmu
h �nan
ial data, there are limitations in the data, e.g. la
k of information on thinly tradedoptions. (Note that some pra
titioners argue that more weight should be given during analysis tothe implied volatility of 
lose-to-the money options; far-from-the-money options tend to have lessvolatility anyway.)� Interest rate data from 1997 to 2001. The data in
luded, for ea
h date, a sele
tion of rates fordi�erent periods; it is thus possible to view the term stru
ture of (future) interest rates at ea
hday in the past. We 
an interpolate to estimate interest rates that are not expli
itly given.� Some graphs of implied volatility, and mis
ellaneous supporting data.7.2 Models7.2.1 Geometri
 Brownian Motion and the \Volatility Smile"Our basi
 
ontinuous 
ase is geometri
 Brownian motion, where sto
k pri
es follow a random walk withpositive bias (i.e. sto
k pri
e 
hanges are normally distributed with positive mean).This implies that the distribution of asset pri
es in the future, 
onditional on 
urrent asset pri
es,should be lognormal (i.e. the instantaneous rate of return on the asset should be normal). As a 
onse-quen
e of this fa
t and the risk-neutrality prin
iple, a graph of the strike pri
e of an option against theimplied volatility of the option (or the graph of observed log return against implied volatility) should be
at.The implied volatility is a derived parameter 
al
ulated using the Bla
k-S
holes equation for optionpri
ing; one assumes Bla
k-S
holes holds, observes pri
es, and then solves for the volatility variable in theequation. It's important to note therefore that implied volatility is not a dire
tly observable parameter,but rather a derived parameter whi
h is only provably valid if the model assumptions on the option'sbehavior hold. (Implied volatility may still be useful if the option's behavior is \
lose enough" to whatour models say it should be : : : note that de�ning \
lose enough" is also an open resear
h problem).Both these impli
ations are violated in a
tual markets. In parti
ular, the \volatility smile" is aphenomenon in whi
h the implied volatility of options 
lose to the money is less than options far fromthe money; these fat tails may 
ome from larger numbers of extreme market events than predi
ted, ornon-neutral investor risk preferen
es, or systemati
ally biased expe
tations of future market events.7.2.2 Martingales and Asset Pri
ingA Martingale is a pro
ess for whi
h E[Xt+1 j X1,..., Xt℄ = Xt; you expe
t the pro
ess to generate anout
ome with expe
ted value equal to the most re
ent out
ome, but 
hange your expe
tations to mat
hwhatever a
tually happens. As an important example, a sum of su

essive IID variables, ea
h of whi
hhas mean 0, will give a martingale. (Note that martingales are not ne
essarily Markov, but if they arethen we have a very ni
e situation indeed.)The relevan
e to risk-neutral valuation 
omes from a series of key results:� The no-arbitrage theorem tells us that the absen
e of arbitrage opportunities in the market impliesthe existen
e of an equivalent measure under whi
h dis
ounted sto
k pri
es are martingales.� The 
ompleteness theorem tells us that these martingale measures are unique if repli
ating port-folios exist for all 
ontingent 
laims.� Finally, the Fundamental Theorem of Asset Pri
ing tells us that a unique equivalent martingalemeasure exists. This measure is exa
tly the risk-neutral probability measure that we are sear
hingfor.



58 CHAPTER 7. ESTIMATING RISK-NEUTRAL PROBABILITY MEASURESMore detail 
an be found in e.g. (Bingham & Kiesel 1998).7.3 Inferring the Risk-Neutral Measure7.3.1 Our Basi
 IdeaUsing the data des
ribed above, we have explored several methods for inferring the risk-neutral probabil-ity measure (RNPM). Two methods were looked at in some detail with regard to our sample set, Hermitepolynomials and histograms (these methods de�ne the model 
lass used to estimate the RNPM).The basi
 idea 
ontains several steps. First, we de�ne a model 
lass for our risk-neutral probabilitymeasure. This model 
lass de�nes the parameterized sear
h spa
e of fun
tions in whi
h we will belooking for the 
losest approximation to the RNPM (where \
losest approximation" is de�ned by someloss fun
tion like least-squares).Next, we need to a
tually �nd the parti
ular fun
tion that best approximates the RNPM. We didthis using standard regression te
hniques to estimate the parameters for our model, given that the modelhas to �t the observed option pri
es.Finally, we need to 
he
k our estimated RNPM for validity. This is a statisti
al hypothesis testingproblem for whi
h many te
hniques are available; our basi
 approa
h was to 
ompare the error terms tothe expe
ted lognormal distribution. (Note that this last step, while essential to have any faith in theinferred RNPM, is diÆ
ult to do well due to noise in the data, pe
uliarities in �nan
ial markets, and soon.)7.3.2 Expansion MethodsOne way to estimate the RNPM is to assume it 
an be approximated by:f(x) =Xi �ifi(x) (7.6)for a suitable base of fun
tions. This is just a general te
hnique of de
omposing a fun
tion into alinear 
ombination of simpler basis fun
tions; the �i are s
alar parameters, and the fi are some set ofbasis fun
tions.A simple example, whi
h we implemented, uses a histogram approa
h. Ea
h fi is simply a histogrambin, i.e. a fun
tion whi
h takes a 
onstant value on some interval of predetermined width and zero valueeverywhere else. The �i then represent the height of ea
h bin.A more sophisti
ated example is given by:f(x) =Xn �n'(n)(x) (7.7)where '(n)(x) denotes the nth derivative of '(x) = exp(�(x2 )2)Thus this parti
ular expansion takes the form:f(x) = '(x)(1 + b1H1(x) + b2H2(x) + :::) (7.8)where Hn denotes the Hermite polynomial of order n and the �rst 
oeÆ
ient is equal to one to ensurea fun
tion whose integral is 1.It is important to note that in order to get a density, f(x) has to be positive everywhere, a 
onditionthat is not always satis�ed.Estimation of the CoeÆ
ients.Given a set of options with the same maturity and di�erent strike pri
e, we are looking for a probabilitymeasure whi
h satis�es: Cj = exp(�rT ) Z 1kj (s� kj)dF (s) + "j ; j = 1::n (7.9)



CHAPTER 7. ESTIMATING RISK-NEUTRAL PROBABILITY MEASURES 59where Cj denotes the observed market pri
e of the jth option and kj its 
orresponding strike pri
e.Assuming that F (x) has a probability density f(x) whi
h 
an be expressed as an expansion of theform (7.6), we get the result that the pri
e of the options is given by:Cj = exp(�rT )Xi (�i Z 1kj (s� kj)fi(s)ds) + "j ; j = 1::n; i = 1::m (7.10)Thus, we have to �nd 
oeÆ
ients �i, su
h that:C =W� + " (7.11)where W is a matrix de�ned by Wji = exp(�rT ) Z 1kj (s� kj)fi(s)ds (7.12)Now we have a regression problem, whi
h 
an be ta
kled in the standard way (ex
ept that we havethe restri
tion that the resulting fun
tion has to be positive).Two 
ases: Histograms and Hermite polynomialsAs an initial example we adjusted a histogram to the data, i.e. we used indi
ator fun
tions as our basisfun
tions. In this 
ase, to ensure that we get a density, we have to for
e the 
oeÆ
ients to be positive.This 
an be done using 
onstrained optimization te
hniques, when solving the least squares problemasso
iated with the regression.As a se
ond example, we explored the use of the expansion (7.8) whi
h uses Hermite polynomials.In this 
ase, the positivity 
ondition is broken in some 
ases regardless of the sign of the 
oeÆ
ients, sowe have to �nd the proper number of terms in order to get a logi
al result.7.3.3 Other MethodsA number of other methods have been proposed for estimating RNPM's:� Generalized distributions. More general distributions than the ones mentioned above.� Mixture distributions. A 
ombination of two or more distributions. The parameters de�ning the
ombination weights 
ould potentially 
hange over time, to better model dynami
 option behavioras the expiry date approa
hes.� Kernel smoothers and implied volatility smoothing.� Entropy methods.� Heuristi
 optimization methods.� Implied binomial trees.� Monte Carlo and Markov Chain approa
hes.Many of these methods are surveyed in (Ja
kwerth 1999). Clearly, a great deal of fertile ground forexploration remains in this area.



60 CHAPTER 7. ESTIMATING RISK-NEUTRAL PROBABILITY MEASURES7.4 Results and Appli
ations7.4.1 Statisti
al Inferen
eOur goal was to 
he
k if our models of risk-neutral measures mat
h reality, within some 
on�den
einterval. As explained in the previous se
tion, we had several observed parameters for our model:observed option pri
es, strike pri
es and maturity dates for ea
h option, and the riskless (i.e. interest)rate.The next step was to spe
ify a statisti
al hypothesis that 
ould be used for testing. Our hypothesiswas that two sets of observed pri
es were generated by the same risk-neutral measure. Under this nullhypothesis, the ratio of residuals squared should follow an F-distribution; we 
an thus 
onstru
t an f-testthat should reje
t the null hypothesis if large values of the f statisti
 are observed.Unfortunately, a number of diÆ
ulties were en
ountered while 
arrying out this pro
edure. The mostserious involved 
omputational ina

ura
ies in the statisti
al pa
kages being used (in
luding S-Plus).However, we were still able to implement the test for the histogram approximation method. Day-to-day 
hanges in the RNPM were dete
ted using our test, at a qualitatively high level of signi�
an
e.More work is needed to interpret the results of our test. Given that the RNPM has 
hanged betweentwo time periods, what 
an we infer? This requires further analysis, and 
orrelation of 
hanges in theRNPM with 
hanges in market sentiment and fundamental valuation. Developing automated pro
eduresfor estimating these latter subje
tive quantities would be very useful, from the point of view of bothhypothesis testing and interpretation of results.7.4.2 Inferring Market SentimentWhat 
an we infer if the \term stru
ture of 
all option pri
es" 
hanges? E.g. if the observed value of anout-of-the-money 
all option at a spe
i�
 strike pri
e drops, two somewhat 
ontradi
tory explanations arepossible: i) investors have be
ome more bearish (they expe
t sto
k pri
es to de
rease) and hen
e expe
tthat the sto
k pri
e will not rise enough to exer
ise the options; ii) volatility in the market has beenredu
ed, and so the 
han
es of the sto
k pri
e 
hanging enough for the option to be
ome in-the-moneyhave dropped. Sin
e in
reased volatility is often asso
iated with bearish market 
onditions (e.g. sello�s),it takes some 
are to interpret 
hanges in option pri
es. Developing robust quantitative estimators forsu
h 
hanges in sentiment seems to be an open question.Changes in the risk-neutral distribution or in implied volatility may also imply important 
hanges inmarket sentiment.7.4.3 Future WorkAlong with testing whether risk-neutrality holds and deriving a probability measure under whi
h in-vestors are risk-neutral, it would be useful to investigate the sensitivity of risk-neutral valuation to
hanges in assumptions or market 
onditions. This is 
learly a large task, requiring a good deal of sub-je
tive evaluation and judgement in assessing market 
onditions and rea
tions; relaxing the assumptionswould also make analysis more diÆ
ult.Although general linear tests are useful in dete
ting 
hanges in an RNPM, more powerful tests wouldbe helpful in dete
ting only those 
hanges whi
h are important from a risk-management point of view.An RNPM, on
e estimated for a given �nan
ial instrument, 
an be used to pri
e other types of �nan
ialinstruments. It is therefore important to keep working to improve estimation te
hniques.
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Chapter 8City LightsParti
ipants: Moshe Rosenfeld (Mentor), Tom Alberts, Angus Argyle, Andrew King, Nathan Krislo
k,Jill Zarestky.PROBLEM STATEMENT:We 
onsider a theoreti
al 
ity, arranged in a grid pattern with a spe
i�ednumber of North-South streets (
olumns) and East-West avenues (rows). At ea
h interse
tion of a streetand avenue, there may be a light that requires power. The power swit
hes are organized so that thereis exa
tly one swit
h for every 
olumn and exa
tly one swit
h for every row. In order to save energy, wewould like to minimize the number of swit
hes turned on (and hen
e the unne
essary lights with power)but at the same time guarantee that all the ne
essary interse
tions have been lighted.

62



CHAPTER 8. CITY LIGHTS 638.1 The ProblemConsider the ten by ten grid in �gure 8.1. The squares marked by an \x" represent interse
tions thatdo not need power and the blank squares represent interse
tions that must be powered. In order tominimize the number of swit
hes turned on while still 
overing all the ne
essary interse
tions, we beginby examining a similar problem, pla
ement of rooks on a 
hessboard.

Figure 8.1: Sample grid.Re
all the allowable movements of the rook (or 
astle) in 
hess. The rook may move any number ofsquares in either the verti
al or horizontal dire
tion at ea
h turn. The obje
t is to pla
e as many rooks aspossible on a given 
hessboard1 under the restri
tion that no two rooks should be able to take ea
h other.In other words, there may only be one rook per row and 
olumn. It is well established that the question
on
erning the maximum number of rooks 
an be answered by the rook polynomial where the 
oeÆ
ientof xk gives the maximum number of ways that k rooks may be pla
ed. Clearly, the highest power of xwith a non-zero 
oeÆ
ient gives the largest possible number of rooks. Unfortunately, this method doesnot address the issue of the swit
hes but we may still use the basi
 idea of rooks to implement a solutionto the 
ity lights problem (see Grimaldi [1℄).Relevant to the lighting issue is the notion of independent rows and 
olumns. Spe
i�
ally, for ea
h rook,we know that either the row or 
olumn o

upied by the rook must be lit to ensure that the interse
-tion represented by the rook is illuminated. From this, we may 
on
lude that the minimum number ofswit
hes is at least as large as the maximum number of rooks pla
ed on the grid. Furthermore, we willshow that the minimum number of swit
hes is exa
tly the maximum number of rooks. This is a simple
onsequen
e of Honig's Theorem and is dis
ussed in Se
tion 8.3.This do
ument is organized as follows: In Se
tion 8.2 we will dis
uss our methods for solving the problem.In Se
tion 8.3 we will present our solution of the problem and in Se
tion 8.4 our 
on
lusions. Finally, inSe
tion 8.5 we will make re
ommendations for future study.8.2 MethodsWe used a progression of algorithms to build up to an optimal solution of the swit
h problem usind ideasfrom the rook pla
ement problem.1. A Greedy algorithm for the initial pla
ement of rooks.2. The Method we 
all Augmented Paths to maximize the number of rooks.3. A systemized marking of 
olumns and rows generated by Alternating Paths in order to minimizethe number of swit
hes.1In order that the problem stated be nontrivial, we assume that a 
hessboard is a proper subset of the usual 8 by 8grid, 
orresponding to the open squares in the streetlight grid.



64 CHAPTER 8. CITY LIGHTSThe 
ombination of these three algorithms leads to a solution in whi
h the number of rooks is the sameas the number of swit
hes. Let us now des
ribe the algorithms.8.2.1 Greedy AlgorithmIn the greedy algorithm, the grid is traversed row by row, starting with the topmost row. In ea
h row, arook is pla
ed in the leftmost available square whi
h does not already have a rook in the 
orresponding
olumn. If the entire row is marked with x's or if all the empty squares have rooks in the asso
iated
olumn, then the row is skipped and we pro
eed to the next one. In this manner we pla
e a suÆ
ientnumber of non-interfering rooks on the grid to be sure that every lit square has a rook in either its
orresponding row or 
olumn, however we 
annot know if the number of rooks is or is not maximal atthis stage.8.2.2 Augmented PathsThe augmented paths algorithm �nds an ordering of the rooks whi
h allows for the maximum numberto be pla
ed on the grid. We pro
eed by traversing through all the blank spa
es in the rows whi
h donot 
ontain a rook. For ea
h appropriate spa
e in su
h a row, move from the spa
e to the rook of thesame 
olumn. That ea
h su
h spa
e has a 
orresponding rook in it's 
olumn is a 
onsequen
e of thegreedy algorithm.From this rook, we next traverse to an empty spa
e on the same row. We will, for 
onvenien
e, 
hoosethe leftmost empty spa
e and move to the right if ne
essary as we pro
eed. There are three possible
ases whi
h we must 
onsider.1. The 
olumn of the leftmost spa
e has not yet been visited by the path. We are then allowed to
hoose this spa
e. If there is a rook in the 
olumn, then move to it and 
ontinue as before. If thereis no rook, we may pla
e an additional rook at the 
urrent lo
ation. Then rooks previously visitedalong the path 
onstru
ted must be shifted 'ba
k' along the path to a

omodate the new rook. Wehave su

essfully added a new rook to the 
hessboard at the expense of moving a pre-existing rookto an uno

upied row.2. The 
olumn of the leftmost spa
e has already been in
luded in the path at some point. We maynot 
hoose this spa
e and instead must 
onsider the next (
ounting from the left) blank spa
e inthe row.3. There are no available spa
es in the row. Either all blank spa
es have been visited by the alternatingpaths algorithm or all the spa
es have x's. We will not be able to augment the set of rooks fromthe blank spa
e 
hosen from the original row without a rook.Using the algorithm as stated, we �nd a set of non-interfering rooks for the grid whi
h 
over all theblank spa
es in the sense that the greedy algorithm 
overed, after 
onsidering the paths from all theblank spa
es in rows without a rook. Note that there may be several possible arrangements for this setfor ea
h grid. We will show later that this arrangement of rooks is in fa
t maximal.8.2.3 Alternating PathsNote that by the method of Augmenting Paths, after ea
h traversal of the grid we have either added anadditional rook or we are stu
k on a rook and unable to move any further. If the latter is appli
ablethere 
an exist no su

essful augmenting paths from ANY blank spa
es on the 
orresponding 
olumnand the algorithm will turn on the swit
h for that 
olumn, then ba
k tra
k to the previous rook on



CHAPTER 8. CITY LIGHTS 65our path in an attempt to �nd another augmenting path. Continue in this manner until all possibilitieshave been exhausted and thus it is 
ertain that an augmenting path 
annot be found from our startingsquare. So, for the same reason we light the 
olumn of our starting square. In this way, for ea
h startingsquare in the rookless row we produ
e a number of lit 
olumns 
hara
terized by the property that forea
h su
h 
olumn, its 
orresponding rook 
annot be part of a su

essful alternating path.The algorithm �nishes by turning on the swit
hes for ea
h row whi
h 
ontains an unlit rook.To summarize the method, even 
onsidering the large amount of repetition in the algorithm, it will
learly terminate eventually. At the �nish, we will have a number of 
olumns sele
ted whi
h must be\swit
hed on". Then, if we sele
t the rows whi
h are o

upied by rooks that have not been sele
ted in
olumn form, we will have 
overed all the ne
essary spa
es. Only spa
es with x's will be left, and allblank spa
es will have been sele
ted as part of the row or 
olumn sele
tions of the rooks. Moreover, thenumber of swit
hes will exa
tly mat
h the number of rooks found by the augmenting path algorithm.By Honig's theorem referen
ed in Se
tion 8.1 we know that this solution must be optimal. The greedyalgorithm has 
reated the initial 
onditions and the augmenting and alternating path algorithms have,in 
onjun
tion, found the maximal number of rooks and the minimum number of swit
hes for our 
itygrid.8.2.4 The King Rook AlgorithmAnother possible algorithm for �nding the maximal set of rooks and minimal set of swit
hes is as follows:1. Create an initial rook set using the Greedy Algorithm.2. For ea
h row without a rook, iterate over ea
h blank spa
e in that row: sele
t the 
orresponding
olumn of the blank spa
e. We are left with a 
olle
tion of sele
ted 
olumns, ea
h 
ontaining arook.3. Iterate over the 
olumns without rooks(a) Iterate over the blank spa
es in the 
olumn(b) If the blank has an unsele
ted rook in its row, sele
t that row.(
) Otherwise, 
reate an augmenting path using the 
urrent spa
e, the rook in its row, and thespa
e that originally 
aused the rook to be lit. Remove all sele
tions and return to step 2.4. Light the 
olumn of every unsele
ted rook.The previous algorithm a

omplishes the same goal as the �rst method des
ribed, and indeed it usesthe same prin
iples of augmenting paths. It has the advantage however, of eliminating a signi�
antamount of the repetition involved previously. As before, the �nal rook set is maximal sin
e the numberof swit
hes \on" is equal to the number of rooks. This algorithm runs in O(n3) time as the lightingof the 
olumns or rows is O(n2) and must be repeated a maximum of n times (as many as n possiblerooks).8.3 ResultsConsider the 
orre
tness of the method. From the methods 
onstru
tion of a solution, we know thenumber of 
olumns and rows swit
hed on equals the number of non-interfering rooks on the grid. Buthow do we know that all the blank squares are lit after the algorithms terminate?Two s
enarios need to be examined. In the �rst s
enario, a blank square, S, lies in a row with no rookin the row. This blank square must lie in a 
olumn 
ontaining a rook; otherwise, the greedy algorithm
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ed a rook in the blank square. Now, sin
e the blank squares row has no rook, the methoddid not �nd any possible augmenting path originating from our starting square S. The alternating pathsalgorithm would have therefore \swit
hed on" the 
olumn 
ontaining the blank square S. And so theblank square is lit.In the se
ond s
enario, a blank square, S, lies in a row with a rook R1. The method has swit
hed oneither the row or the 
olumn (but not both) 
ontaining this rook. If the row is swit
hed on, then theblank square S is lit. However, if the 
olumn 
ontaining the rook is swit
hed on, then we must 
onsidertwo separate 
ases:� In the �rst 
ase, no rook lies in the 
olumn 
ontaining the blank square S. But this 
annot happenfor the following reason: The 
olumn 
ontaining rook R1 was swit
hed on be
ause R1 was on analternating path and the path was unable to move from R1 in order to �nd a su

essful augmentingpath. However, we are able to move from rook R1 along its row to the blank square S. The blanksquare S is in a 
olumn with no rook. So S is the end of a su

essful augmenting path, and so themethod would have pla
ed a rook in the blank square S as a 
onsequen
e (and shifted the otherrooks on the augmenting path a

ordingly). Now, sin
e the method did NOT pla
e a rook in theblank square S, we 
on
lude there must be a rook somewhere else in the 
olumn 
ontaining S.This leads us to the se
ond 
ase.� In the se
ond 
ase, a rook R2 lies in the 
olumn 
ontaining the blank square S. The 
olumn
ontaining rook R1 was swit
hed on be
ause R1 was part of an alternating path. his implies thatthe blank square S was unavailable (it would not lead to a su

essful augmenting path). So, the
olumn 
ontaining S must have been swit
hed on. And so the blank square S is lit.Thus our algorithm, whi
h gives the same number of swit
hes as rooks, must light all blank spa
es andtherfore be optimal.In addition, we may think about this problem in terms of graphs. An alternate representation of our
ity grid is as a bipartite graph with rows represented as verti
es on one half and 
olumns as verti
eson the other. The edges represent the interse
tion of a row and 
olumn where a possible rook may bepla
ed or, referring to the original problem statement, where the light must have power. Consider �gure8.2 whi
h demonstrates a sample grid and the 
orresponding bipartite graph.

Figure 8.2: A grid and the asso
iated bipartite graph.If we approa
h the bipartite graph from the perspe
tive of a maximum mat
hing 
oupled with a mini-mum 
over, then there are results whi
h 
orrespond to our algorithm. Spe
i�
ally, the number of edges
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hing is equal to the number of verti
es in the minimum 
over. (Honig's Theorem,J. Gross and J. Yeller [2℄) The edges in a maximal mat
hing 
orrespond to the number of rooks pla
edon the grid and the minimum 
over 
orresponds to the swit
h whi
h must be turned on.8.4 Con
lusionThus we have 
onstru
ted an algorithm whi
h �nds an optimal solution and proven its 
orre
tness.In addition, our results are ba
ked by the literature, spe
i�
ally the work related to bipartite graphs,whi
h are 
learly related to our grid problem. We feel that the solution of the two dimensional 
itylights problem has been suÆ
iently addressed and that future work should be dire
ted towards the threedimensional problem rather than this one.8.5 Future WorkWe re
ommend that future e�orts be dire
ted towards the three-dimensional 
ase of this problem. Inthe three-dimensional problem, the lights are arranged on the verti
es of a re
tangular or 
ubi
 mesh.Figure 8.3 shows a small example where the large shaded verti
es are the 
ity lights we want to turnon, and the small verti
es are the lights that do not need to be lit. Like the two-dimensional 
ase, ea
hrow, 
olumn or pillar of lights is 
ontrolled by a swit
h. Again, the goal is to minimize the number ofswit
hes to be turned on yet make 
ertain the desired lights are lit.

Figure 8.3: A sample 3D problem requiring more swit
hes than rooks.In the two-dimensional grid, the minimum number of swit
hes equaled the maximum number of inde-pendent rooks. Is this true for the three-dimensional mesh? When pla
ing rooks on shaded verti
es inthe 3D mesh, at most one rook 
an appear in any row, 
olumn or pillar. Figure 8.3 demonstrates a meshwhere seven lights need to be lit, but the minimum number of swit
hes ex
eeds the maximum numberof independent rooks. At most three independent rooks may be pla
ed in the mesh, but four swit
hesare required to light all seven shaded verti
es. So, in 3D meshes, the minimum number of swit
hes is



68 CHAPTER 8. CITY LIGHTSgreater than or equal to the maximum number of rooks.In a larger mesh, permutations of Figure 8.3 may appear several times. Then, 3k independent rookswould require 4k swit
hes. This would 
ause a ratio of 4 : 3 swit
hes-to-rooks. Other arrangements ofshaded verti
es in a mesh may produ
e a higher swit
hes-to-rooks ratio.An algorithm to 
ompute the minimum number of swit
hes for the 3D mesh has not been found. How-ever, this problem 
an be translated into the Set Cover problem. In the set 
over problem, a 
olle
tion ofsubsets exists from a set S. The obje
t is to �nd the smallest number of subsets whose union 
overs the setS. In our 
ase, the set S is the 
olle
tion of shaded verti
es. Ea
h row or 
olumn is a subset and we wouldneed to �nd the minimum number of subsets whi
h together 
ontain all the shaded verti
es. Althoughthe general set 
over problem is NP-
omplete, a polynomial time algorithm may exist for our spe
ial 
ase.Referen
es[1℄ R.P. Grimaldi, Dis
rete and Combinatorial Mathemati
s: An Applied Introdu
tion. 4th edition,1999. Addison Wesley[2℄ J. Gross and J. Yeller. Graph Theory and It's Appli
ations. 1999. CRC Press
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