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FOREWORD BY THE PIMS DIRECTOR

The annual PIMS Graduate Industrial Math Modelling Camp (GIMMUC) is held in one of the
PIMS universities as part of the PIMS Industrial Forum. It is part of PIMS commitment to providing
training for young mathematical scientists who are either pursing careers in academia or in industry.

The goal of the GIMMC is to provide experience in the use of mathematical modelling as a problem
solving tool for graduate students in mathematics, applied mathematics, statistics and computer science.
In addition to this it helps prepare them for the Industrial Problem Solving Workshop which is
the other component of the PIMS Industrial Forum.

At the workshop students work together in teams, under the supervision of invited mentors. Each men-
tor poses a problem arising from an industrial or engineering application and guides his or her team of
graduate students through a modelling phase to a resolution.

The Fourth GIMMC was held at the University of Victoria, June 11-15, 2001. There were eight prob-
lems posed, a record, with a total of 56 students in attendance, another record. The students mainly
came from all across North America with 16 from the United States. They were selected from over 130
applicants.

My sincere appreciation and gratitude goes to everyone involved in this workshop, in particular I wish
to thank Chris Bose, the editor of these proceedings, the other organisers (Randy LeVeque, Huax-
iong Huang, Mark Paulhus, Keith Promislow, Ian Frigaard) and mentors (Sergei Bespamyatnikh, John
Chadam, Ian Frigaard, Lisa Korf, Hedley Morris, Tim Myers, Miro Powojowski, Moshe Rosenfeld). I
am greatly looking foreward to the 2002 camp at Simon Fraser University.

Dr. Nassif Ghoussoub, Director
Pacific Institute for the Mathematical Sciences



EDITOR’S PREFACE

From June 11 through June 15, 2001 a record number of 56 graduate students gathered at the
University of Victoria for the Fourth Annual PIMS Graduate Industrial Mathematical Modelling Camp
the GIMMC-4. This year marked a significant expansion of the Camp which in previous years had been
limited to approximately 40 students chosen mostly from the five PIMS Universities. The expansion was
suggested in recognition of the new role that PIMS is now playing on the broader Canadian mathematics
scene, and also in view of the recent expansion of PIMS south of the border to include the University
of Washington as a sixth founding institution. By February of last year, the organizers of the camp
were struggling with the overwhelming response: more than 130 excellent applications from all over the
continent, and even some from Europe! After the dust had settled on June 15, looking over our list
of participating students we found that we had hosted students from 25 North American Universities.
Approximately one-third of our participants were from US institutions and the participation from within
Canada had expanded to include many students from central Canada and the maritimes. The Camp,
and it’s senior sibling, the Industrial Problem Solving Workshop have indeed arrived as premier events
on the applied and industrial mathematics calendars throughout North America.

For those not yet familiar with the format of the camps or the industrial workshops let me say a few
words about the organization, which was typical. Once the students got settled in, the week began by
having each of the academic mentors give a short presentation describing their sample problem to the
assembled group. It takes a considerable amount of judgement, skill and effort to come up with good
problems for the camp, and this year we had eight excellent problems presented by our outstanding
mentors. From Monday afternoon through Thursday evening, the individual workshop groups met
under the guidance of the academic mentor. Typical activities during this period included short lectures
on background material from the mentors, literature searches, pencil and paper calculations, work at
the computers and so on. By Friday morning the groups were ready to present their findings (having
elected one student to stay up all Thursday night preparing the group’s presentation!) and shortly
after I was given the formal writeups, which appear more or less as I received them in the rest of this
document. While this may all sound fairly straightforward, in practice it is an extremely intense week
for all concerned students, mentors and organizers. The best way to appreciate this is to look at a few
of the chapters which follow, keeping in mind that they represent the work of perhaps seven or eight
graduate students having varied mathematical backgrounds, working in groups with a minimal amount
of interference from the academic mentor over a period of three and one-half days.

An workshop of this size can only be successful through the effort and skill of numerous personalites
both on stage and behind the scenes. First, as the backbone of the Camp, and the principal actors so
to speak, let me thank the mentors. They were:

e Sergei Bespamyatnikh (UBC, Watchtower Placement)

e John Chadam (University of Pittsburgh, Portfolio Analysis)

e Tan Frigaard (UBC, Metal Spray Casting)

e Lisa Korf (University of Washington, Web Hosting Agreements)

e Hedley Morris (San Jose State University, Imaging Problem)

e Tim Myers (University of Capetown, S.A., Modelling Ice Accretion)
e Miro Powojowski (Algorithmics Corp., Risk Neutral Measures)

e Moshe Rosenfeld (University of Washington, Control of Streetlight Networks)
Some of these names will be familiar to those who have been following the evolution of the PIMS

industrial program. Some were first-timers. All the mentors did outstanding work both leading up to
and during the week, and I will never be able to thank them enough for their efforts. This is mitigated
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only slightly by my suspicion that, in truth, they enjoyed themselves throroughly during the week and
they found the students to be a well-prepared, mathematically stimulating and energetic bunch.

As for the stage-hands behind the scenes, let me begin by thanking those in Victoria who anwered my
call for help with this event. Pauline van den Driessche and Bill Reed came forward to read over all the
student files during the selection process. Administrative and technical matters were, as usual, expertly
and cheerfully handled by Kelly Choo, our systems administrator and the PIMS Web Manager, along
with Timea Halmai, administrative assistant at the PIMS UVic site office. Ariana Clapton, one of our
departmental secretaries, stepped in when the workload became too great for the rest of us combined.

At some point it became clear that we were not going to have enough borrowed computers to do
the job. Eugeen Deen and his staff at the Human and Social Development Computer Laboratory bailed
us out, providing expertly managed and timely access to all of the machinery and software that is so
essential for this sort of event.

Finally, I must thank Marc Paulhus. Marc has been, in one way or another, instrumental in every
GIMMC and IPSW T have been involved with and by extrapolation, I suspect with all of them. When
things go wrong, and they always do, Marc’s wit and unflappable nature make short work of the kind
of problem us lesser mortals tend to get bogged down in. Although I was the local organizer for the
GIMMC-4, in truth, it was Marc who once again pulled all the strings.

Christopher J. Bose, Editor
Department of Mathematics and Statistics
University of Victoria
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Chapter 1

Locating Watchtowers in Terrains

Participants: Sergei Bespamyatnikh (Mentor), Peter Anderson, Adrian Driga, Leslie Fairbairn, Jacky
Li, Tatiana Marquez-Lago, Ling Zhao.

PROBLEM STATEMENT: A problem of current interest to investigators in Computational Geom-
etry is to position a number of vertical watchtowers above a polyhedral surface such that every point
on the surface can be seen from the top of some tower. With towers of zero height, the related prob-
lem of determining the minimum number of towers which collectively cover the surface by visibility
has been shown to be NP-hard. The basic measurement of problem complexity is the number of faces
(equivalently, the number of segments) needed to specify the surface.

Among all sets of k towers of finite height which permit every point of the surface to be covered, we
seek ones whose tallest tower is as short as possible. It is of some importance in the sequel that the
number of towers is fixed in advance. Algorithms are presented to solve several different versions of this
problem.
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1.1 Introduction

We consider how to minimize the common height of k towers, while still providing unobstructed lines of
sight from the tops of the towers to each point on a given polyhedral 'terrain.’

Differently restricted cases of this problem are solved using new polynomial-time algorithms. The
situations contemplated involve general numbers k of towers, but only two-dimensional terrains consisting
of sequences of non-vertical line segments in the plane joined at the ends. We denote by n the number
of segments in the terrain.

The first algorithm produces an approximate optimum tower height accurate to within an arbitrarily
small additive constant. The running time estimate is polynomial in n and the reciprocal of this constant.

The restriction for the second algorithm is that the “local visibility” regions of the towers must
collectively cover the terrain. Such a region consists of an interval containing the base of its tower, and
extends in either direction as far as the first obstruction. Subject to this restriction, we find an exact
solution with worst-case running time O((nlog(n))*).

The third algorithm seeks solutions in which any segment of the terrain is completely visible from
some single tower. The algorithm produces an exact optimum relative to this second restriction, and
operates in time O(n***! 4 nf).

A full version of this paper is available at

http://www.cs.ubc.ca/ besp/towers.ps.gz

1.2 Approximation Algorithm for 2D k-watchtower problem

Problem (k-watchtower problem). Given a terrain P (polygonal line) and a positive integer &, find
the position of k towers T; that can visually cover the terrain P, and the height of the tallest tower, H*,
has the property

H* = min{ maz{height(T;)|1 <i <k} | T;,1 <i < k,cover P}. (1.1)

H* = H*(P, k) is the height of the optimal solution for the polygonal line P and the integer k (optimal
height for P).

Theorem 2.1 Let P be a 2D terrain without vertical lines and k be a positive integer. Let H* be
the optimal height for the corresponding k-watchtower problem. Then there is an algorithm such that:

1. Ve > 0, the algorithm solves the k-watchtower problem and finds the approximately optimal height
H with H < H* + ¢;

2. the algorithm has polynomial time complexity in the number of segments of P, %, and X, the
upper bound for the x axis.

Proof. Consider the algorithm in Figure 1.1. Let S be a division of the interval [0, X], with d, a, and €
computed by the algorithm. Initially, the problem is solved for the terrain P and only one watchtower.
Let H1 be the optimal height for the single-watchtower problem for P. Clearly, H1 is an upper bound
for the optimal height of the k-watchtower problem for P.

Let D = {0 = hy < hy < ... < hy, = H1} be a division of stride § for the interval [0, H1]. The
algorithm Approz finds the smallest point, H, of the division D such that there is a solution for P where
the k towers have the height H, and their z-coordinates belong to the division S. The algorithm uses
binary search to locate H.

For each point h of the division D considered by the binary search a verification algorithm called
Verify (Figure 1.2) is used to check if a solution of height h can be found for the terrain P. The towers
of this solution must be located at z-coordinates that form a subset of S. This verification algorithm
considers all the possible combinations of &k distinct z-coordinates from S and checks if the terrain P
can be covered visually from the top of the k& towers of height h built at the currently considered z-
coordinates. The algorithm Cover decides if the k towers specified as input cover visually the terrain P.
This is done by verifying that each segment of P is visible from the k towers.
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Algorithm Approx
Input P: terrain, k: number of towers, c: positive error
Qutput x = (x1, x2, ..., xk): the position of the k solution towers,
H: the optimal height found.

c/2
the measure of the smallest angle among the acute angles formed by

delta
alpha

the segments of the polygon line with the y axis
epsilon = (c / 4) * tan( alpha )
X = largest x co-ordinate of a polyline point (projX(P) = [0, X])
S =4{1i* epsilon | i integer, i * epsilon <= X}

H1 = OneTowerHeight( P ) //upper bound for the solution H
left = 0
right = int(H1 / delta)
while (left <= right)
mid = int( (left+right)/2 )
h = mid * delta // current height
if Verify(P, k, S, h, x) then
right = mid-1
else
left = mid+1
H = left * delta

Figure 1.1: Pseudo-code for the approximation algorithm

The following Lemma is essential for the proof of claim 1.

Lemma 2.1 Let P be a 2D terrain without vertical lines and k a positive integer. Let H* be the
optimal height for the corresponding k-watchtower problem and ¢ a positive error. Then, the verification
algorithm Verify returns “true” for all the heights h with h > H* + 5.

Proof of Lemma 2.1 Inside the algorithm Approz the following quantities are set:

_ ¢
06_57

e a = the measure of the smallest angle among the acute angles formed by the segments of the
polygonal line with the y axis,

o ¢ = 7 xtan(a),

e X = largest z-coordinate of a polygonal line point (proj,(P) = [0, X]),
e S={ixeliinteger,i x ¢ < X}.

Let h,h > H* + 5, be the height that the algorithm Verify is verifying. Consider the situation
depicted in Figure 1.3. This situation (or a symmetric one) is guaranteed to occur during the execution
of Verify. The segment uu' is a sub-segment of the polygonal line, uv is an optimal tower for P, and
u'v' is a tower of height h built at zg, the point of the division S closest to z,p:. Because the division
S has the stride €, then

s = abs(zopt — xg) < €. (1.2)

s

The angle between uu’ and u'v’ is bigger than a (by definition of a); therefore, ¥ = tan(y) > tan(a),

and from this
t< 2 < <

= tan(a) tan(a) =

(1.3)

o
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Algorithm Verify
Input P: terrain, k: number of towers,
S: vector of divisions, h: height og towers
Qutput x = (x1, x2, ..., xk): the position of the k solution towers

for x = (x1, x2, ..., xk) in SxSx ... xS, with xi <> xj for i<>j
if Cover( P, k, h, x) then
return true
return false

Figure 1.2: Pseudo-code for the verification algorithm

V4

1%
B
T
y
V
H* H*
S
u
Y t
ul
S
O xOpt xS X X

Figure 1.3: Optimal tower and approximation tower

Because h =t + H* +r > H* + g, it follows that r > § —t > § — 7 = 7. Furthermore,

4

tan(B) = £ < e x £ = tan(«) (1.4)

and, because both angles are in (0, §), it follows that f < a. Lemma 2.2 is used to complete the proof
of Lemma 2.1.

Lemma 2.2 If 5 < a in the setting described above, then the field of view of tower u'v" includes the
field of view of the optimal tower uwv.

Proof of Lemma 2.2 In the proof of this result, the term segment above terrain denotes a segment
that does not contain any point lying below the polygonal line.

Let ¢ be a point in the field of view of the optimal tower uv, and z, the z-coordinate of g. Consider
the situation from the proof of the Lemma. There are three cases: x; <= Topt, Topt < T4 < g, and
rs < xy.

Because q is in the field of view of uwv, then vq is a segment above the terrain in all cases. The segment
vo' is also above terrain. If a tip of the terrain between the towers uv and u'v’ intersect vv’, then that
region of terrain will contain a segment that forms with the y axis an angle smaller than 8 < «. This
contradicts the choice of a. Using the same argument it can be shown that, in the first case (Figure
1.4), the segment v'q is above vg and vv', and thus above terrain. From this, it follows that ¢ is in the
field of view of u'v’.

When ¢ is between the two towers, it must be visible from v’'. Otherwise, a segment of the terrain
forms an angle sharper than 3, which is impossible.
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0 Xopt Xs X x

Figure 1.4: Field of view of the optimal tower included in that of the approximation tower

When zs < 24, because u'v' extend beyond the level of v, ¢ must also be in the field of view of u'v'.
This concludes the proof of the Lemma 2.2.

Lemma 2.2 ensures that, for an h > H* + §, the algorithm Verify finds k towers of height h that are
located at locations from the division S and cover visually the entire terrain (each tower has a field of
view which includes the field of view of an optimal tower). This proves Lemma 2.1.

Lemma 2.1 is used to prove claim 1 of the Theorem. When Approx finishes, left identifies the
smallest height for which Verify returns “true”, while right identifies the largest height for which Verify
fails. Clearly, hpight + 0 = hepe. It is also true that hpione < H* + 5 because Verify fails for hpigpe.
Putting the two results together,

hiefe = hpigne +0 < (H* + 5)+ 5= H" +c, (1.5)

which proves claim 1 of the Theorem.

In order to prove the claim 2 of the Theorem, let Ceoper, Cyerify, and Cyppros denote the computa-
tional complexity of the three algorithms involved in the solution algorithm Approz.

Ccover = n, the number of segments of the polygonal line P because the algorithm checks the visibility
of each segment in constant time. It is easy to see that,

k k k
Cverify < ‘S| X Ceover = (%) Xn = (#ﬁ(a)) X n, (16)

where |S|* is an upper bound for the number of iterations performed by Verify.

Approz applies the algorithm Verify for log(right) times; therefore,

Camlroz = lOg(Tight) X Cverify < log( 2H1) X (L())k X n. (17)

c cxtan(a

Note that Cupprox is upper bounded by a function linear in n and polynomial in %, X, and tan(a).

1.3 Connected Visibility Problem

Let us reconsider the initial problem of optimizing the height of £ watchtowers in two dimensions. We
introduce an extra constraint: each watchtower will be responsible for seeing only a connected region
surrounding its base point. This constraint could arise if a guard did not wish to stay in constant
communication with other watchtowers in order to know what was occurring close to his tower, or if we
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wanted to optimize visibility (as a guard will be able to see regions closer to his tower more easily than
sections further away). It will be shown in this paper that this method has time complexity O((nlogn)*),
where n is the number of segments in the terrain.

To treat the problem for k watchtowers, we divide our problem into k parts (considering individually
the placement of each watchtower in its own domain - since the one-watchtower case can easily be solved
by linear programming). We need a policy for choosing the watchtowers’ separate domains. To find these
domains, we adjust their boundaries dynamically, moving the endpoints over the z-axis and constructing
locally optimal configurations.

In order to solve this, we will first develop a discretization of the z-axis based on inspection of the
vertices of the terrain and the intersection points of the upper envelope (which is the lower limit of
visibility of the whole terrain).

Theorem 3.1 The optimal position of one watchtower in one domain can only be at a vertex of the
terrain or an intersection point in the upper envelope for that domain.

Proof. By linear programming, we know that the only critical points of the upper envelope will be at
its intersection points, and by inspection, we know that the vertices of the terrain are the points closest
to the upper envelope (they are local maxima within the terrain - and therefore the height needed to
build a tower from the terrain to the upper envelope would be a local minimum at each of these vertices).

So, when placing one watchtower in one domain, we need only consider placing it at a vertex of the
terrain or of the upper envelope. This gives us a way to discretize the z-axis: let us call these points z;
through to znx and divide the z-axis into intervals with z;,...,zx as endpoints.

Claim 3.1 N < 2n.

Proof: Since the upper envelope is constructed only by extensions of the n segments of the terrain,
it could only have n possible different sections (n different slopes, or intersection points). Therefore,
N <n+n=2n.

Claim 3.2 The portions of the terrain and of the derived upper envelope between consecutive division
points are straight lines.

Proof: This is a property of our choice of intervals.

Definition: Let us denote by h, the minimum height of a single watchtower to which all of the
terrain from 0 through z is visible.

Dynamics:

Overall, in order to optimize the partitions of the terrain, we must examine how the height of a tower
will change as we increase the boundaries of the region it must guard. So, let us look at the simplest
case: how will the height change as the region increases in one interval from z;_; to ;.

Lemma 3.1 As z (the boundary of our partition) increases along a subinterval [z;_1 , z;], h, either
decreases linearly or remains constant.

Case 1. If the slope of upper envelope segment is greater than that of the terrain segment, h, must
remain constant.

Proof. Since we have no intersection points or vertices within the interval, and since the height of
the terrain is getting further away from the upper envelope, the endpoint = cannot be a location of a
tower.

Case 2: If the slope of upper envelope segment is less than that of the terrain segment, and the
terrain segment, increased by a height of h,e (the optimal height up until x;_;) intersects with the
upper envelope segment then, from this intersection point until the endpoint z;, h, will decrease with a
slope of St - Syg (slope of terrain minus slope of upper envelope) (Figure 1.5).

To construct h, as x varies continuously over the entire terrain, we need only consider at most 4n
points: all z1,...,zy and all intersection points defined in Case 2 of the above lemma. Hence our
problem is discrete.

The time complexity of constructing h, in this manner is O(nlogn) - O(n) possible points to consider
for h, and within each of the 4n possible intervals, the construction of the upper envelope is of order logn
(since to increase x from z; 1 to x;, we need only consider one extra segment in the upper envelope).
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Intersection Point

Xi-1 Xi X-axis

Figure 1.5: Case 2: example of decreasing height along one segment.

Partition 1 Partition 2 .
X-axis

Figure 1.6: Dynamic partitioning for 2 watchtowers

1.3.1 2 watchtower problem

To place 2 watchtowers in the terrain, we will need to consider two dynamic regions instead of one. The
proposed approach is to let hy(z) be the dynamic minimum height of tower 1 and hs(x) be that of tower
2. Now, let the region of h;(z) increase as x increases (i.e., it grows from z = 0 to the right) and let the
region of hy(z) grow from z = zy to the left (Figure 1.6).

Take the maxmin of h; and hy. The z value of max/min(hy,hs) will be the best location of the
partition of the terrain into two regions. When we know the location of the partition, we can locate the
position of the watchtowers from our previous computations and we know that the minimum height of
these towers = max/min (hq, hs).

Since we are simply computing two h(x), the order to time complexity of the two watchtower problem
is still O(nlogn).

1.3.2 k-watchtower problem

As in the 2-watchtower problem, we can simply considering dynamic partitions again, but this time
consider k£ dynamic partitions and the heights hq, ..., hy associated with each. We consider these par-
titions by first dividing the terrain into 2 partitions, then subdividing domainl into 2 partitions, then
subdividing again in this manner until we have k partitions. Take the min/max of each h within a
subdivision, as we did for two watchtowers. This gives a method of time complexity O((nlogn)¥).

1.4 Colouring algorithm in 2D k-watchtower problem

Problem(k-watchtower problem with whole segment visibility) Given a terrain P with n seg-
ments and a positive integer k, find the location of k& towers such that every segment is visible from at
least one of the tower and the maximum height of towers is minimize.

We propose colouring algorithm for solving the problem above.

The steps of this algorithm are as follows.
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Figure 1.7: Extending edges

Bl

Figure 1.8: Colouring

1. Extend each segment of the terrain to a complete line (Figure 1.7).

2. Introduce additionally all segments whose endpoints are vertices of P and which lie completely
above P. Together with the lines drawn in step 1, these segments induce a partition of the region
of the plane above P. The sets of points on P visible to a point within such a region depend only
on the region - not upon the particular point selected. Therefore, the finest partition of P induced
by visibility can be completely characterized by membership relative to a set of at most m = O(n?)
intervals. Moreover, the smallest planar regions of the arrangement so induced are r = O(n*) in
number (Figure 1.8).

3. Indexing the set of regions by a variable i varying over index set 1, ..., r, identify the set of terrain
segments visible to each region. This can be accomplished by the visibility algorithm of Guibas et
al. , which runs in O(n) time.
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Y
=i
X
Figure 1.9: Optimization
Index i Cover Segment (colouring)
1 a,b1,b2,b3,c,d,g2,i2,i3

2 a,b1,b2,b3,c,d,e,f1,{2,g1,2,i2,i3

i | b1,b2,b3.c,de,fl,£2,61,¢2,h,i1,i2,i3

Now for each region, determine the minimum height of any tower with one endpoint on the bound-
ary of that region and the other on the terrain. Each of these minima can be determined by linear
programming in O(n?) time.(Figure 1.9)

Among all tops of towers which achieve the linear programming optimum within a given region,
choose the leftmost, rightmost, and highest. Let I be the set of all such points, C' the convex hull
of I, and L the set of extreme points of the lower boundary of C.

This leads to an overall time complexity of O(n®) for determining L. This determination involves
only the terrain, and does not involve k.

Next, consider all k-subsets of L; there are C(|L|,k) = O(n**) of these. Test each k-subset to
decide whether the union of the corresponding k collections of visibility segments covers P. For
each subset producing a cover of P, determine the largest of the corresponding tower heights
inherited from Step 3 above. (This maximum tower height is associated with its originating k-
subset.) After running through all feasible k-subsets, choose the k-subset which produces the least
maximum height.

Theorem 4.1 The method described above produces the desired optimal height for the k-watchtower
problem with whole segment visibility in O(n***! + n%) time and O(n*) space.

We can extend the colouring algorithm in order to solve a similar problem in three dimensions and
also achieve polynomial running time.

1.5 Conclusions

We have introduced three algorithms for solving restricted versions of the k-watchtower problem. The
first algorithm finds an approximate solution for k-watchtower problem provided that the polygonal line
does not contain vertical segments. The solution found by the algorithm is guaranteed to be accurate
within a specified additive error. This algorithm runs in polynomial time, and the time upper bound
is proportional to the reciprocal of the error. The second algorithm solves the k-watchtower problem
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problem by finding the shortest k towers whose local visibility regions cover the entire terrain. Finally,
the last algorithm solves the k-watchtower with whole segment visibility in two dimensions. This can be
extended in three dimensions with polynomial running time.
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Chapter 2

Problems in Portfolio Analysis

Participants: John Chadam (Mentor), Mehmet Atilla Begen, Ali Ghodsi Boushehri, Yuriy Kazmer-

chuk, Selly Kane, Viktoria Krupp, Eric Machorro, Eva-Marie Nosal, Limei Sun.

PROBLEM STATEMENT: The group considered several problems in portfolio analysis. In partic-
ular, the group generated computer codes for determining the optimal portfolio which minimizes risk
for a given return. A data set was used to provide specific examples with and without shorting. In
addition, the group studied how to price options on portfolios. Some specific problems which were ad-
dressed including comparing the Black and Scholes price of European-style option in the Gaussian and
non-Gaussian cases. An Edgeworth expansion was used in the latter case and the magnitude of the
correction was obtained for a specific data set. Finally, the values of European put option on the sum
of two assets were computed directly using a Monte-Carlo simulations and an Index approximation.

11
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2.1 Portfolio optimization

The value p of a portfolio consisting of IV assets having unit prices S;, i = 1..N and a bond with value
B can be written as
p= 0.5, +..+05SN + bB,

where the proportions 6; and b satisfy > 6; + b= 1.
Let’s introduce some definitions. At first, we consider a portfolio without risk-free assets, i.e. b =0
in this case. We call u a mean return on the portfolio and o2 a variance of return if:

N
u= Z 0 E;
i—1

and
N
o’ = 6:Vi;0; =0"V6
i,j=1

with E; is the mean return of share S;, E[dS;/S;], and the matrix V is the covariance of the returns,
var[dS;/S;].
We calculate the mean-variance of an optimized portfolio as a solution of the following problem:

mind’ Ve
subject to the constraints:
N N
> 0=t Y 0=
i=1 i=1

In this formulation the 6; could be negative representing short-selling. This problem was solved
analytically using Lagrange multipliers. The above problem without short selling requires that the
proportions ; > 0 and the problem can only be solved numerically in this case. For a data set consisting
of N = 8 risky assets both solutions are summarized in Figures 2.1 and 2.2 below.

2.2 Normality check

The basic assumption underlying the Black and Scholes approach to option pricing is that the underlying
asset values follow a Geomteric Brownian motion. Since this may not be obtained in practice for a single
asset, it is important to address the limitations of this GBM assumption. To this end we begin by appling
statistical tests to check the normality of the returns. The Kolmogorov-Smirnov Goodness-of-Fit test
statistic was used and various graphs (QQplot, histogram) were produced. Based on the statistical tests
wherein the leverage point outliers were removed, seven shares were found to be normal and one found
to be non-normal. In particular, the seventh share “FOSFX: Fidelity Overseas” did not have a normal
distribution. The goodness-of-fit result of the fifth share “FSAVX: Fidelity Select Industrial Equipment”
and the seventh share are shown as follows to illustrate this.

> ks.gof (data$V8, dist=’normal’)
One sample Kolmogorov-Smirnov Test of Composite Normality

data: data$V5 ks = 0.041, p-value = 0. alternative hypothesis:
True cdf is not the normal distn. with estimated parameters
sample estimates:
mean of x standard deviation of x
0.06292663 1.611786
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expected return ~ REWARD

expected return ~ REWARD
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Figure 2.1: Optimal portfolio with shorting I.

EFFECTIVE FRONTIER, red:analytical, blue:numerical
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Figure 2.2: Optimal portfolio with shorting II.
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EFFECTIVE FRONTIER, no shorting
05F T T =

0.4+ .

03+

0.1+

expected return ~ REWARD

02+ =|

L L L L
0 0.05 0.1 0.15 02 0.25
variance ~ RISK

Figure 2.3: Optimal portfolio without shorting.

> ks.gof (b, dist="normal’)

One sample Kolmogorov-Smirnov Test of Composite Normality
data: b ks = 0.0786, p-value = 0.0127 alternative hypothesis:
True cdf is not the normal distn. with estimated parameters
sample estimates:
mean of x standard deviation of x
-0.0001885148 0.01173404

The p-value for share ‘FSAVX’ and ‘FOSFX’ are 0.21 and 0.0127 respectively. Hence, with a signif-
icance level of a = 0.05 we accept the null hypotheses H, of normality assumption of share ‘FSAVX’
(p < @) and reject the assumption for share ‘FOSFX’ (p > a).

The decision to reject H, in the case of FOSFX is further supported by calculation of the standardized
skewness (-0.30189) and kurtosis (3.6242489) both of which exceed the o = 0.05 critical values. These
were the only data of the 8 found to be non-Gaussian.

The two histograms (figure 2.4 and figure 2.5) draw a typical contrast between the funds that
were found to be sufficiently normally distributed and the skewed (hence non-Gaussian) distribution
of FOSFX.
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Descriptive Statistics

Variable: FSAVX

Anderson-Datling Marmality Test

A-Sguared: 0.374
P-alue: 0412
hdaan 2 46E-04
StDev 1.01E-02
“ariance 1.03E-04
Skewness £.2E-03
Kurtasis 0.134354
I 166
dinirrium -2 BEO2
Tst Cluartile £ 4E-03
Median 5 0BE-04
3rd Quartile 5.8EE-03
56% Confidence Interval far fu Maxirmum 3.02802
e — s esuEal
-1.3E-03 1.80E-03

| | | |
-0.00m 0.000 0.0m 0.002 95% Confidence Interval for Sigma
|

! . 9.16E.03 1.14E-02
_ 35% Confidence Interval for Median

95% Confidence Interval for Median AEE.04 1 87EOD3

Figure 2.4: The histogram for the share FSAVX.

Descriptive Statistics
Variable: Data

Anderson-Datling Marmality Test

A-Sguared: 0.995
P-alue: 0.mz2
hdaan -4 2E-04
StDev 1.14E-02
“ariance 1.29E-04
Skewness -30E-01
i ; | | | Kurtasis 0.67&E30
-0.030 -0.0145 -0.000 0.0145 0.0z0 N 168
' ' ' ' ' Minimum -35E02
- Tst Cluartile £ .9E-03
Median 8.BBE-04
3rd Quartile 5.99E-03
56% Confidence Interval far fu Maxirmurn 3.26E-02
[ —— - s
-2 2E-03 1.31E-03

| | | | |
-0.002 -0.001 0.000 0.001 0.o0z2

' ! : ' . 1.03E-02 1.27E-02
_ 35% Confidence Interval for Median

95% Confidence Interval for Median 27E04 2 19E-03

95% Confidence Interval for Sigma

Figure 2.5: The histogram for the share FOSFX.
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2.3 Monte-Carlo simulations of the stock prices
with application to the option pricing

2.3.1 One dimensional case
Suppose, the stock prices satisfy the following Stochastic Differential Equations:
dS; = rS;dt + 0;8:dW,", fori=1,..,8 (2.1)

where r is the risk-free rate (or drift), o; is the standard deviation of stock price return (or volatility) and
{Wt(z) 8 | is the 8-dimensional Brownian motion with partly correlated components. Each component
is normally distributed with zero mean and the variance ¢. Here the growth rate u; for individual stocks
S; are replaced by r to anticipate the risk-neutral evaluation of options. Using Ito‘s lemma one finds
that stock prices follow a Geometric Brownian motion which is expressed by:

Si(t) = Si(0)elr ot Aerow)
Our task is to simulate stock prices using the representation above. Therefore, consider:
Si(t) = S;(0)elr—ei/2itoiVio} (2.2)

where ¢ is N(0,1). Numerically, we take a large number of samples (e.g. 100,000) of ¢ and substitute
them into (2.2). Hence, we obtain a certain number of samples of S;(¢). Taking an average of them we
get a simulated price of the stock S; at the time moment ¢.

Now, suppose we need to evaluate an initial value of a European put option with payoff maz(E—S,0)
at time moment 7', where E is the strike price of the option and S is the stock price at time T'.

Having already simulated stock price S(T') as above, we calculate the option price by discounting the
payoff function:

V =e ""maz(E - S(T),0)

This is a risk-neutral price of the option.

2.3.2 Monte-Carlo simulations of two correlated stock prices

Monte-Carlo simulation is a natural method for the pricing of European-style contracts that depend on
many underlying assets. Suppose, we have a European put option with the payoff maxz(E — (S1 4+ S2), 0).
In order to simulate the prices of two correlated stocks which satisfy the equations (2.1) we need to
simulate two correlated normally distributed random variables ¢; and ¢, s.t.:

E[¢1¢2] = pr12

We generate them using a Cholesky factorization. Suppose, we have already generated uncorrelated
normally distributed variables 1 and €5,. We can use these variables to obtain variables with the given
correlation through the transformation

¢ = Me (2.3)
where ¢ and € are the columns vectors with ¢; and ¢; in the ith row. The matrix M is special and must
satisfy
MMT =%

with 3 being the given correlation matrix.

It is easy to show that this transformation will work. From (2.3) we have

o' = Mee" M.
Taking expectations of each entry in this matrix equation qgives
E[¢p¢"] = ME[ze"|M" = MM” = ¥.

The Cholesky factorization gives one way of choosing this decomposition. It results in a matrix M
that is lower triangular.
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2.4 Pricing a European put on a portfolio on multi-assets: an
index approximation

The main problem of pricing multi-asset options rests mainly on the fact that summing geometric
Brownian motions does not necessarily give a GBM. In this part we assume that the portfolio and each
of the assets follow a geometric Brownian motion under the risk neutral probability which will allow
us to find The Black and Scholes put European price of the portfolio. More specifically we can obtain
the above by assuming that the proportions of the individual stocks in the portfolio are required to
be constant over time as is in the case of some mutual funds. We will in the first part price a put
on a portfolio of two assets and in the 2nd part we will generalize the method for a portfolio that has
multi-asset (more than two). The result obtained will be compared to those obtained by a direct Monte
Carlo simulation of the full two-asset problem to check the accuracy of our approximation. We have
made some financial assumptions in order to provide a real application of this method. In particular,
we will assume that the vector of the portfolio returns will be Gaussian stochastic process.

2.4.1 Put option on a 2 assets Portfolio

The portfolio P is composed of the sum of the two assets S; and S, that are correlated. We assume
that for any i S; follows a geometric Brownian motion under the risk neutral probability P. Assume
that 8, = S1/(S1 + S2) and 6 = S5 /(S1 + S2), which we assume to be constant. The last assumption
is consistent with current mutual fund management policy. Then it can be shown that this portfolio
follows geometric Brownian motion under the same risk neutral probability.

dP,
?: = rdt + odW,

for o which depends on o7 and oy in the following way:

g = \/9%0’12 + 2p1201020']0'2 + 930’3

Therefore, the price of this type of the option could be obtained by applying the Black and Scholes
formula to a new set of parameters r, o, E, T and the initial price S;(0) + S2(0). This price is compared
to direct two-dimensional MC simulation (Section 2.3.2) in Figures 2.6 and 2.7.

2.4.2 Put Option on N assets portfolio

Let’s consider the same assumptions as above. The vector of return (dS—Sll7 - dSS—NN) is assumed to be a

Gaussian stochastic process and for any 7 the unit stock price S; satisfies (2.1). This yields that:

N

o= 2050'12 +Zpi]’9i9j0'i0'j

i=1 i#]

So, the option price could be obtained by applying the same method as in 2-dimensional case.

2.5 Pricing a non-Gaussian distributed share

The strong assumption in Black-Scholes pricing that data follows a geometric Brownian motion has been
suggested as an explanation for the differences between the model prices and market prices. In particular,
because the assumption of geometric Brownian motion does not hold in many cases, it is desirable to
adjust the model for such cases. To do this, we approximate the underlying (true) distribution with
the lognormal (approximate) distribution and add correction terms. The correction terms are found
from a series expansion, called the Edgeworth series expansion, of the given distribution in terms of the
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Monte Carlo Solution for Payoff Function

Analytic Approximation of Payoff Function

Figure 2.6: Comparison of Monte-Carlo method and analytical approximation.

Difference of Payoff Functions

-1
50

Figure 2.7: Error between two methods.
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lognormal distribution (similar to a Taylor series expansion). It has coefficients that are simple functions
of the moments of the true and approximating distributions. As we use only the first three adjustment
values (which depend on variance, skewness, and kurtosis), our results are still approximate but they
should capture most of the influence of the underlying distribution on the option pricing.

Denote the true probability distribution by F(s) and the approximate lognormal distribution by A(s)
and assume that dA(s)/ds = a(s) and dF(s)/ds = f(s) exist, i.e. that the distributions have continuous
density functions.

The first four cumulants can be found to be [1, p.350]

where

a;(F) = /fo Sif(S)dS

is the j* moment of distribution F and
p= [ (s By ss)s

is the j* central moment of distribution F'

The first cumulant is the mean, the second is the variance, the third is a measure of skewness, and
the fourth is a measure of kurtosis. Analogous notation is used for moments and cumulants of A.

The Edgeworth expansion for f(s) in terms of a(s) can be proven to be [1, p.350]

Ka(F) — Ka(4) a(S)  Ka(F) — Ky(A) d*a(S)

f(S) = alS) + 2 LR 3 157
() I 30 ISP i)

where K, (A) = K, (F') and £(S) is the residual error.
Consider a put option with maturity time ¢ (in years), strike price F, and underlying stock value of
S(0) at time 0. Then the value for the put option, P(F) is

P(F) = e*rf/o (E — S)f(S)dS

As we have seen, FOSFX (7th column) does not follow geometric Brownian motion. We apply the
method outlined above to find the value for the put option S(0) = 46.1, r = 0.06, and ¢t = 1/3 (4
months).

We are given L = 85 is the duration (in business days) of the put option being considered and
N =170 is the number of days for which daily return data is available in the form {%}izl...wg. From
this format the data were transformed to the form {S;};—1..n. That is to say, the 'data format was
converted from the daily return rate {ASS }i=1...n to the daily underlying asset value {S;};=1...n where
the initial asset price S; = 46.1 on the corresponding date was available at hitp://www.fidelity.com.

A second transformation was made to facilitate the estimation of the cumulants of the “true” distri-
bution which will be based on the approximating lognormal distribution typical of a pure GBM option
pricing scheme: the data was converted from {S;};=1..n to {log Sf;_L Vi1

From this “transformed data” the sample moments were estimated by

1<~ S
F)~ = log2L
pa (F) L; 09 S;
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1 (F) m 3 [log(PEL) — (P

i=1

Note: the parameters (u, 0?) of the approximating lognormal distribution are estimated by (j1,5%) using
the original data {%}izl..w in the following manner:

0 & 25265,

where

N
‘ 1 AS;
~2 - _ - L

and

1 o2t \\2 /05 2
S)= — ¢ (log(S)—(log(ai(A))—*5%))"/(207)
a(S) Sa\/27rte

The results are given in Table 2.1.

Strike price 35 40 45 50 55
Black-Scholes 0.004764 0.14547 1.140137 3.855774 8.002353
No correction terms 0.003874 0.132113 1.099248 3.815515 7.984549
With correction terms | 0.00360 | 0.12612563 | 1.069307851 | 3.75421277 | 7.90624269

Table 2.1: European Put Option Price of Stock7 on Sep 1st.

To partially justify dropping the error, we noted that the adjustment terms become almost negligible.
For example, for K = 55, the first put given by the lognormal approximation was 7.98 dollars, the first
correction term was 7.84 cents, the second was 0.00821 cents, and the third correction term was only
0.00198 cents.

2.6 Conclusions

The group studied two problems in portfolio analysis - to find the mean-variance portfolio which min-
imizes risk for a prescribed return and to approximate corrections to the Black-Scholes-Merton price
for options due to non-Gaussian effects. A solution for the first problem was found with and without
shorting as well as with and without inclusion of a riskless asset in the portfolio. The second problem is
of interest because in practice most assests do not evolve according to a log-normal process and, even if
they do, the sum of such processes (a portfolio) does not. Using an Edgeworth expansion we calculate
the correction terms for a European put option on a single non-Gaussian asset. In addition we compute
the values for a European put on the sum of two log-normal asset using an ‘index’ approximation. This
is compared to values computed directly using Monte-Carlo techniques. It would be intersting to apply
the Edgeworth expansion methods to this latter case.
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Chapter 3

Modelling a Metal Spray Forming
Process

Participants: Ian Frigaard (Mentor), Mariana Carrasco Teja, John Harlim, Theodore Kolokolnikov,
Melvin Leok, Allan Majdanac, Matthias Miick, Jason Slemons, and Qutaibeh Katatbeh.

PROBLEM STATEMENT: Spray-forming is a metal manufacturing process which is capable of
producing large bulk deposits of various metal alloys. With careful control, rapidly solidified near-
net shape deposits can be produced which have significantly improved microstructural and mechanical
properties. In the billet spray-forming process a molten metal stream is first atomized by high speed
gas jets and is then deposited onto a circular collector plate. The collector plate is positioned some
distance from the atomizer, it rotates about a vertical axis and is withdrawn slowly downwards at a
controlled speed. Usually, the metal spray is directed in towards the rotational axis and oscillates, so
as to distribute the metal in a prescribed way. The main objective of this report is to model the billet
growth mathematically and predict the dynamic features.

22
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3.1 Introduction

Spray forming processes for metals involve the atomizing of a molten metal stream by means of high
speed gas jets. The atomized metal is then sprayed by the jets and collected below on a disk, which
is both rotating and moving vertically. This spraying is continued, so as to produce desirable shapes,
known as billets. Ideally the billet will be cylindrical, with minimal deviations from this shape being
tolerated as part of the forming process.

In this report, we present a mathematical model based on conservation laws, which are used to derive
the equation of evolution of the billet surface. Since the key control parameter involved in the process
is the velocity of the collection plate, we try to determine the shape of the surface by controlling this
velocity and also by attempting to approximate the spray distribution leaving the atomizer. Between
these two parameters, a reasonable model has been developed.

A schematic representation of the spray-form billet production is shown in Figure 3.1. The molten
metal spreads rapidly towards the flat collector disk. This disk rotates about a vertical axis and gradually

moves downwards, at a controllable velocity.
Cruciblf:—g/lEIt
Atomising Gas
\l‘

Billet

“

Hydraulic
Ram

| Spray
Chamber

Exhaust
m—  Gas

Figure 3.1: Schematic of a billet spray forming process.

3.2 Mathematical Model

The analysis of this problem is based on the conservation of mass on the surface of the billet. Namely,
the rate of mass deposition per time unit on some arbitrary element A of the billet surface is simply
equal to the mass flux through the surface element

/v:;/}d&:f/é-ﬁda,
A Ji

where G is a directed mass flux, vy is the velocity of the surface in the direction of the outward normal,
77, p is the density of billet, and all “hatted” variables are dimensional quantities. By representing the
surface of the solidified billet as a level set

F (f f) —0,

where F : R? x Rt — R, we obtain the following relation for the normal to the surface
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where V = V-, for notational simplicity.
x

Furthermore, the time rate of change of Fis given by

and substituting, we obtain the equation

~

/ 8F/6t sdi — /é VE .
Ji |oF Ja

Since A is arbitrary, and by evoking the continuity of 13", we obtain the equivalent differential equation

OF = 253
5=G-VF
ot

In general, the mass flux expression G will introduce a time delay, but as the spatial scales are small
relative to the velocity of the atomized metal jet, we will neglect the time lag between the atomization
and the deposition event. Furthermore, this allows us to assume that dispersion of the gas jet is small,
and to good approximation, the cross-sectional distribution of particles in the jet in the absence of
deposition is independent of the distance from the nozzle.

The high shear flow associated with the atomization yields a ballistic trajectory for the metal jet,
and we will assume that deposition occurs at the first intersection of the metal jet with the surface of the
billet. If we assume that the surface is convex, then the point of first intersection can be identified by

the sign of the G VF term, and the non- deposmon on the point of second intersection can be realized
by a Heaviside function multiplying the G - VF term. The “shadow” effects have not been considered

in the numerical analysis.

Assume a radially symmetric distribution of mass flux, §(#'), with respect to the spray direction &’

of the atomizer nozzle such that
27 oo
/ / g(F)P'dr'de =1,
0 0

where (', 2') refers to the coordinate system attached to the atomizer. Let 2, (f) = R, (RQ,O Z)T
be the position of the spray at time ¢, where R, »i 18 the rotation matrix about z; —axis at angle ot. With
this notation the mass flux vector field reads

'~21>

- (fl,f):ﬁ(f)g(

where M(f) is the mass flow rate from the nozzle and ' (f) = R.;(—sin(a(f)),0, — cos(a(t)))” is the
spray direction with a declination angle a(f). We scale the problem using the followmg dimensionless
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variables

.’1:?' = Rg.’l?

F = RyF

i~ My =

G = =2
WRS

. M

Uy = —=
pr R

U = Uilt)

. 2

7 = =
w

where Ry is the desired radius of the billet, Uy is a characteristic withdrawal velocity of the plate, and
Ty was scaled relative to the rotation period of the billet. This corresponds to taking a timescale on
which all transient surface movement should be observable.

In the stationary billet coordinates with the scaled variables, the equation is given by
OF OF . . R, -
rril e(u—+M(t)g(r')k’+O<—w>>-VF, (3.1)

821 s,0

o

where the coefficient € = %ﬂ corresponds to the ratio of time scales in the problem.
U

There are two time sca(ies in the problem: one for the rotation of the billet, and the other for the
vertical growth of the billet. The order of the rotation time scale is much smaller than that of the growth
time scale. The resulting equations have been scaled using the rotation period, and the results we are
interested in are on the time scale of the billet growth. In order to compare effects, the equations are
averaged over the rotation time scale.

Let n = et be the scaled rotation period, where € is small positive constant as previously defined.
This new time scale, 1, is on the order of the billet growth. Therefore, all parameters in the problem
are of the same order, and hence, can be compared. The resulting equation is

O —ut o+ (N)3) - VF, (32)
n 0z

where § = % fOTg(r)Edt, is the time averaged distribution of the mass flux, and M(t) and u(t) are
replaced by M(n) and wu(n), respectively. Converting to cylindrical-polar coordinates, expanding the
inner product, and assuming that the problem becomes symmetric with respect to the z; —axis after the
averaging process, i.e. F(r,0,z1,t) = F(r, z1,t), the resulting equation is

oF oF . OF oF

— =u(n)=—+M gro—t G205 | 3.3

67} (77) 621 (77) (gr aT 921 821> ( )
To help predict the behavior of the surface evolution, the characteristics of the differential equation (3.3)
are examined. The characteristic equations are

Z—; = —M(n)sfr(7“=21)
% = M )ga (r,21) — u(y) (3:4)
T

The assumption of ballistic spraying, together with the continuity of the mass flux, yields

gr Gz
= =0 3.5
dr + dz1 (3.5)
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Linear analysis of the system (3.3) in addition to equation (3.5) determines that there are at least two
saddle points on the z; —axis. Only one of these equilibrium points is important to the behavior of the
billet growth, as any others are physically located inside of the billet. From equation (3.3), the saddle
point is determined by the following condition

gzl (07 21) =M (36)
where )
_un

= () (3.7)

After non-dimensionalizing our variables, we find that u = 1 corresponds to the required billet radius
which, after scalings, is 1.

Phase plane analysis of the system shows that a steady state distribution is attainable, and that all
trajectories eventually lead to this steady state. These results motivate the analysis of the steady state
equation, which can be derived from (3.3), by making the assumption that F(r,z,n) = z + f(r,n). The
steady state equation is found by eliminating all time dependence from the above assumption

a _p+g-
dr ar

(3.8)

The subsequent numerical simulations are based on the solution of equation (3.8).

3.3 Results

To see a dependence of the the shape of a stable billet configuration on the (scaled) withdrawl velocity u
we first restrict ourselves to the case of a single declination angle o = 30° (Fig. 3.2a), and with gaussian
distribution of the material within this ray. First we compute the vector field g of the mass flux averaged
over the rotation about the vertical axis and use that as input to compute the solutions of (3.8) for steady
billet formations for several values of u. Since g,.(0, f) = 0, the initial conditions f(0) = f, needed for
the numerical integration of (3.8) are found by solving the equation (3.6).

The averaged vector field g and the curves are plotted in Fig. 3.2a. The direction of the center of
the mass ray is also indicated in the figure. Note that for small velocities (say u < 2) the radius ry
of the billet is determined by the cutoff of the vector field g. In this case, urj ~ 1 as expected. For
© = 3,4 a big amount of mass cannot be deposited on the surface which results in a breakdown of mass
conservation. This is observed in Fig. 3.3.

Note that for g = 1 the radius of the billet is approximately r, = 1 which is consistent with our
scalings. Further we observe that for billets with radius r, > 0.9 the surface is concave at the center
when a = 30°. This is undesirable because it creates non-uniformities inside the billet.

This motivated us to consider other angles o (Fig. 3.2b) as well as scanning over a sector with the
ray (Fig. 3.4). From now on we restrict our attention to 4 = 1 which guarantees the required billet
radius 7, = 1 (in scaled variables).

Fig. 3.2b shows different shapes corresponding to different angles a (no scanning). We observe that
at a critical angle of about 40° the billet surface is changing from a convex to a concave shape at the
center. However, in industrial applications an angle of 30° is usually used rather than a relatively shallow
angle of 40° (this is to avoid the slippage of material past the surface of the billet).

To compensate a concave shape for an angle of 30°, we simulated the scanning over a sector [a; =
30°, ay] for several values of as. Fig. 3.4a shows the resulting vector field g and the resulting billet shape
with a; = 30°, as = 45°. Fig. 3.4b shows different billet shapes for a fixed a; = 30° and a» as indicated.
As expected, for ay large enough (about 40°), the averaging of the mass flux over this sector insures
convexity of the billet. For a very large spread of the sector (say as = 45%) the plateau on top of the
billet is shrinking.

Our analysis of the spraying process made us understand how the various parameters influence the
shape of the billet. For example, within our model it is possible to produce billets of desired radius.
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Figure 3.2: (a) Dependence of the shape of the billet on (scaled) withdrawl velocity p (indicated above
the curve). Spray angle is fixed at 30° and no scanning. (b) Dependence of the shape of the billet on
the spray angle (no scanning). Scaled velocity is fixed at u = 1.

Billets with concave surfaces can be avoided either by increasing the declination angle or by scanning
over larger sectors. By choosing parameters appropriately, one can even produce a billet of “optimal”
shape such that the top is as flat as possible.
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Figure 3.3: Relationship between p and the billet radius r;.
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Figure 3.4: (a) Vector field g and the shape of the billet for a; = 30° and as = 45°. (b) Shapes of the
billet for ey as shown and oy fixed at 30°.
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PROBLEM STATEMENT: In this paper we propose a model for measuring the quality of service
(QoS) in a Web-hosting facility. We assume that there is an agreement between the provider and a client
(or customer), regarding the price of different levels of service, known as service level agreement (SLA).
The client we refer to is a company.

Service Level Agreement
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Figure 4.1: Service Level Agreement

The Web-server provides the space for the Web-pages, text documents, audio and video files etc.
of the customer. Each customer has a number of users that request access to the documents on the
Web-server. The Web-server has to provide a service that meets the requirements of the SLA (Figure 4).
The SLA states that some QoS measurement lies within some bound for a given percentage of requests
averaged over a given long period of time.



30 CHAPTER 4. WEB HOSTING SERVICE LEVEL AGREEMENT

4.1 The framework

In a very simplified model, a Web-server is connected to a user via a link with a known bandwidth. The
user sends a sequence of requests for the files located on the server (Figure 4.1 (A)). The Web-server
decides which requests it is going to serve and simply discards all other requests. Other than choosing
which requests to serve, there is another important decision which the server has to make and that is
how to allocate its resources (the bandwidth, CPU time, and so on) to the requests which are going to

be served.

Request

o o

Document

Internet
B)

)

Figure 4.2: Models of network

In reality, usually the server and the user(s) are connected throught a series of intermediate routers
and the quality of service provided by the Web-server to the user is affected by the quality of service
provided by those routers. In a more realistic model we should also consider how the quality of service
provided by the Web-server is affected by the quality of service provided by the intermediate routers
(Figure 4.1 (B)). Some important parameters here are the average delay of messages, the loss rate,
the throughput, and so on. For simplicity we could assume that the server is connected to a single
router with known parameters. Finally, we can consider a model which seems to be the closest to the
real networks in which the Web-server is connected to a number of routers each providing a (possibly)
different quality of service (Figure 4.1 (C)). The Web-server can decide (based on the quality of service
the routers are supposed to provide) which of the adjacent routers should be used to serve a specific
request. In this paper we are treating only the scenario in Figure 4.1A).

4.2 Dynamics

In this section we propose a model for the dynamics of the activities provided by a Web-hosting facility
under a certain SLA. We derive from here a controlled optimization problem for maximizing the revenue
of the provider subject to penalties. Our model will be a discrete time one. The state variable is the
number of requests of different classes for connecting to the network.

Denote by [0, 7] the time interval for the problem with the step A¢. In the previous section we de-
scribed how the Web-hosting facility functions. Consider the system with a known maximum bandwidth
C'. User requests arrive at random times and a request will take a certain response time ( RT ) to be
served. We will assume that the arriving requests belong to different classes, which are indexed from
i € {0,..., J}. For simplicity, we will consider only two classes.
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4.2.1 Notation

1. Let X] be the number of requests of a certain class i at the moment ¢, where i € {0,..,.J}. We
differentiate between the number of requests being served at the moment ¢ and the ones that are
waiting in the queue. Therefore, let us define

i = XZ: = { the number of requests in waiting}
t X, * = { the number of requests being served}

2. To be able to model the QoS we need to keep track of how many requests have been served and
how many incoming requests have initiated at a given moment of time ¢, arbitrarily fixed in [0, T7].
Denote by b the number of arriving requests and by s! the number of served requests at the
moment ¢.

3. Denote by ui a decision control to allocate a certain amount of bandwidth at time ¢ for a request
of class i. The control is defined as follows

wi up' = { the number of activated requests of class i served at ¢ }
! u?Q = { the number of rejected requests of class i at t}

4. Denote by ri the resulting revenue per request of class i at moment ¢.

4.2.2 General assumptions

1. In each interval of time, the number of new requests considered for service is variable (not neces-
sarily 1).

2. The assignment, of bandwidths occurs at the starting point of each time unit.

3. The amount of bandwidth allocated to each request remains fixed in our model, until the request
is completely served.

4. The allocation policy adopted here is that to each incoming request of class i a certain amount of
bandwidth is assigned, up to the maximum capacity possible for class i, C".

5. Unserved requests are lost without further impact on the system.

4.2.3 Equations of the dynamics

We can formulate now the equations describing the dynamics of the system passing from one generic
state t — 1 to the next state t as follows
; ; -1 -17] b
X;:X,:1+[ 1 O}UH[S” (4.1)
The first row of the equation (4.1) represents the dynamics of the requests of class i in waiting and the
second row represents the dynamics of the requests of the same class being served.

4.2.4 Optimality equation

The SLA states that some QoS measurement lie within some bound (B?) for a given percentage of
requests averaged over a given long period of time. B’ represents the SLA for the i-th class of requests.
The QoS is defined as a function of the decision at time ¢ ( i.e. ul) and the state of the system at that
moment (X;). Whenever the QoS is out of bounds, a penalty applies to the provider, thus diminishing
the revenue. One may assume that there is a known threshold R for the number of requests being served.
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Therefore we can write

QoSi(ul, X}) = B'ub® + —

i X2+ a; X", and

1 & S .
B’[E{f Z QoS (uj, X{) — B'}]*
t=1

where the last expression represents the penalties applicable to the provider whenever the QoS is out of
bound. The choice of the numbers 8? needs to be made such that the penalty expression approximates
the constraint set in the SLA.

Now we can formulate a finite horizon stochastic optimal control problem in discrete-time to maximize
the total expected reward,

T
max Z E{riul} — Z i
1 i

t=

T
+ Zpi
t=1

ZBU10,8) - BT

Y cixj-c
i
subject to the dynamics

i i -1 -1 i b;
&:&1+{1 Ohﬁ{ﬂ”

where the state vector X/ € R’™! x R7*1, the control ui € Rt x R7*1 (QoS) is defined as above, p;
is a proportionality constant corresponding to the bandwidth constraint of each class i and r! represents
the revenue for the class i at time t. We note that C; defined previously, is the maximum bandwidth
capacity possible for the class i and it is independent of time.

We assume that there are admissible controls u that transfer the system from X; to X7 and amongst
this subset of admissible controls there is a control that maximizes the expected reward. Such a control
will be called an optimal control u*. Ultimately, we look for the values of the optimal control and the

maximum reward.

4.3 Dynamic Programming Algorithm

A possible approach to solve the stochastic optimal control problem is the dynamic programming tech-
nique ([1]). The idea is to assign a value function V,,(z¢) for each policy w such that it is equal to the
total expected reward,

Vu(X1) = B{Y_ et(Xi1,u0) + ¢(X7)} (4.2)

where ¢(Xr) is the terminal reward. The dynamic programming method allows us to construct the
optimal policy u* and, in consequence, calculate the optimal expected reward V (X;), where

V(X,) = mng{Z (X1, u) + o(X7)} (4.3)

t=1

We assume a finite state space S, a finite control space A, and a policy us(h;) in terms of the history
or path hy = (s;—1,a:-1,8), s € S and a;_1 € A;.

The Algorithm:
For each time ¢ we can assign a “cost-to-go” function

Vi(ht) = er(se—1,u) + ZPt(St = jlst—1,at) Vi1 (e, ar, ) (4.4)
jes
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where j is a possible state at time ¢ — 1. The transition probability p;(s = j|s¢—1,a:) is the probability

of going from state s;_; at time ¢ — 1 to state j at time ¢. The optimal control at ¢ is the minimizer of
(4.4), ie.

uy € argmaXaeA{Ct(ﬂ?phat) + Zpt(j‘stflaat)v;iJrl(ht:at:j)}-
jes

We now the describe the algorithm:
1. Set t =T and V(hr) = ¢r(sr) for all histories hy

2. Let t —» t — 1. For each hy,

uy € argmaxaeA{Ct(Stfha)+Zpt(j\stfl:G)Vt+1(ht,a,j)}
Jjes
Vithe) = ci(sen,u) + Y pelilse—1, up) Vs (56, uf, )
Jjes

3. Go to step 2 when t = 2.

4.4 The Simulation Model

In the model of Web server traffic outlined in Section 4.2, knowledge of the distribution of the number
of new requests and the distribution of the number of completed requests within a given time period
is required. It has been assumed that request arrivals follow a Poisson process, but simulations were
performed to give estimates of the distribution of completed requests. It would also be interesting
to know the behaviour of the system when certain key parameters, such as bandwidth available for
transmission, are suddenly increased during operation. Details of the simulated system are as follows:

Requests arrive at the server following a Poisson process with a mean inter-arrival time of A4 seconds.
There are J + 1 classes of requests, {class(0),...,class(J)}. These classes might represent requests for
various types of data, such as video, audio, graphics or text. The probability that a given request is of
type class(i) is p;. The data being requested is simply a file. The sizes of the requested files are assumed
to follow an exponential distribution, where the mean file size for requests of class i is y; bytes. All
requests of class(i) are assumed to require B; bytes/second of bandwidth for transmission. The total
output bandwidth available for use by the server is By.

In a given time period, more requests may arrive than the system is capable of serving. Unserved
requests are queued in order of arrival. When a request arrives at the server, if there is enough output
bandwidth available to immediately serve it, and there are no other requests in the queue, then service
of the request commences.

Service time for a request is given by file size divided by the bandwidth required. If a request must
enter the queue, it must wait for all preceding requests in the queue to be served first, and then (possibly
even longer) for there to be sufficient available transmission bandwidth, before its service will begin. The
simulation model is illustrated in Figure 4.3.

4.5 Simulation Results

Two phenomena were investigated by simulation: the effect of increasing total bandwidth on the waiting
time in the queue, and the number of requests whose service is completed in a given time period. The
results may be found in Figures 4.4, 4.5 and 4.6.
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Request

1. New requests are received by the server.
\

2. Received requests are queued if necessary. P o @
7 /

Service Station

Queue

3. The next request in the queue is
served as soon as there is available
bandwidth.

The number of service stations may
change, depending on the bandwidth
requirements of the requests.

Figure 4.3: Schematic of the simulated web server.
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Figure 4.4: Average request waiting times versus available bandwidth. There were three different request
classes, so N = 3. The parameter values were Ay = 1, uo = 10, u1 = 30, us = 60, By = 1, By = 2,
By =3, pg = 0.25, p; = 0.25, p» = 0.5, and By is what is plotted along the z-axis. For each value of
Br the simulation was run until 10,000 requests were served.
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Figure 4.5: Waiting time of requests versus arrival time. In this simulation, By for the first 5000 requests
was 24, then By was increased to 25. There were three classes, so N = 3. The parameter values were
AA = ].7 Mo = ].O, M1 = 20, M2 = 30, BO = 1, B1 = 2, BQ = 3, Po = 025, P1 = 025, and P2 = 0.5.
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Figure 4.6: Histogram of the number of requests completed in time intervals of 5 seconds. This simulation
was run until 10,000 requests were served. There were three different request classes, so NV = 3. The
parameter values were Ag = 1, o = 10, uy = 20, us =30, Bo =1, By = 2, Bs = 3, pg = 0.25, p; = 0.25,
p2 = 0.5, and By = 25.
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4.6 Future work

Establishing a measure for the quality of service (QoS), for a Web hosting facility, is an extremely up-to-
date problem and the authors have only approached it here by means of a very simple model. As stated
in the beginning, there are a lot of possible ways to enlarge the spectrum of the model. We outline next
some of these.

e To use dynamic programming techniques to solve the stochastic optimal control problem.
e To further investigate the distribution of file sizes from real data.

e To improve the model by reformulating the penalty function and the mathematical expression of

the (QoS).
e To include more complex networks by extending the concepts and dimensionality of the problem.

Figure 4.7 shows the number of requests for files of different sizes on an academic Web-server!. This
histogram shows that assuming that the size of requests has an exponential distribution is a realistic
assumption.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
File size

Figure 4.7: Real data file sizes distribution
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PROBLEM STATEMENT: Newport Corporation manufactures optical equipment and in particular
laser diodes. These diodes are made from semiconductor material and their operation takes place on a
flat surface, approximately 200 microns square, onto which two trenches have been etched. If a number
of images, at fixed focus, are taken at varying heights above the surface, the images will all be out of
focus. However, the blur of each image will depend on the height above the surface. The aim of this
project is to determine the diode topography from this sequence of out-of-focus images. This will enable
the identification of depth anomalies that might interfere with the operation of the device. Such defects
are not easily detectable by current inspection procedures.

37
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Figure 5.1: (a) A snapshot of an actual optical chip. (b) Light travels down the grooves of the optical
chip. Defects in the chip may cause the light to be deflected or blocked.

5.1 Introduction

In most imaging systems, a 3D view of the real world is mapped into a 2D image. In this transforma-
tion the depth information of the image is lost and the imaging system cannot determine the full 3D
structure of the image. Therefore, it is necessary to develop algorithms which can extract the 3D spatial
information from a series of 2D images.

To extract the spatial information one can retrieve image characteristics by comparing two or more
images of the object. If these images are obtained from placing the camera lens at different distances
from the object, we refer to the depth reconstruction procedure as shape from focus. If the images are
captured by changing the geometry of the imaging system such as change of the focal length of camera,
we refer to the depth reconstruction procedure as shape from defocus. The shape from focus/defocus
is referred to as blind de-convolution in signal processing or as image restoration in image processing.

In this specific application treated in this paper, a fiber-optic chip (shown in Figure 5.1(a)) is exam-
ined for defects by capturing 30 images at different distances from the chip with a camera. From the
point of view of industry, this procedure is a relatively inexpensive way to examine the chip. The chip
has to pass light through the two micro grooves (shown in 5.1(b)) cut into chip. Unfortunately, a small
defect in the shape of the grooves can make the chip useless. Therefore, the objective of this paper is to
estimate the spatial position of the groove by an image processing technique.

The 30 images from the chip are captured at different distances from the fiber optic chip by changing
the position of the camera. The difference between two consecutive camera positions is approximately
2 nanometers. In this research project, two different methods for processing the images are examined.
The first method is based on processing the array of images in the frequency domain using the Fourier
transform. The second method uses a spatial transform (S-transform) which is based on a polynomial
approximation of the images.

5.2 Point Spread Functions

We begin by considering a 2D picture or scene of uniform depth. The light intensity of this scene is
given by f(z,y). The function g(z,y) describes the light intensity of an out-of-focus image of this scene.
In order to understand the correlation between f and g, it is convenient to introduce the concept of a
point spread function (or PSF) denoted h(z,y).

Conceptually, the PSF describes how the light emitting from a point on f is distributed by the camera
onto the image g. Mathematically, the PSF, h(z,y), is defined as follows:

g=hxf, (5.1)
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where * denotes the convolution operator.

In the case of an ideal pinhole camera, the PSF would be a delta function. However, in the real
world, we are dealing with optical lens systems and the PSF is not this trivial. Furthermore, the PSF
not only depends on the camera, but on the distance from the object to the lens; and therefore, it will
be an unknown in our problem. To simplify the problem, however, some assumptions about the form
of h can be made. First, h should be radially symmetric about the origin. This represents the fact that
the camera should not stretch the image in some direction, or introduce some similar bias. Furthermore,
we assume that our camera is a lossless system (i.e. it does not absorb any light energy in the process
of collection). So, if one unit of light energy is incident on the lens, then one unit of light energy will
appear in the image g,

//h(m,y)dm dy =1. (5.2)
A standard approximation for h is the 2D Gaussian:
]. 224y

hy = e et (5.3)

2702

Associated with the PSF is a blur radius which represents the radial distance that light is distributed
by h. For the 2D Gaussian, the blur radius is proportional to the standard deviation ¢; and therefore,
throughout this paper ¢ will be synonymous with blur radius. Furthermore, we can then use geometric
optics to relate o to the depth D as follows:

1 1 1
_ L1 5.4
o prv(F - D)7 (5.4)

where p, 7, v, and F parameters describe the constant of proportionality between the blur radius and
o, the radius of the lens aperture, the distance from the point of perfect focus to the lens, and the
focal length, respectively. Therefore, obtaining information about our PSF directly translates into depth
information through camera parameters. We present below two methods for computing approximations
to o.

5.3 Method 1: A Fourier domain approach

We first consider a method based on deconvolution in Fourier space [1]. We will assume in this section
that the focused image f(x,y) in which we are interested and two unfocused images g1 (z,y) and g;(z,y)
is given by

91(z,y) = ha(z,y) * f(z,y) + i (z,y) (5.5)
where n4 (z,y) and n;(z,y) are random noise. In this project we will further assume that the noise is

zero. Now rewriting the above equations in the frequency domain by taking a Fourier transform over
the region of interest leads to the following set of equations,

Gi(w,v) = Hy(w,v) F(w,v) (5.7)
Gi(w: U) = Hi(w: U) F(w7l’) .
If we assume that the PSF is Gaussian (see Section 5.2), then the PSF and its Fourier transform are

1 (2 4y2) 1 2407
e~ 2j2 and H(w7y): e 2:2 . (59)

2mo?

h(z,y) =

2mo?

By combining equations (5.7) and (5.8) yields

Gilw.v) _ dw v (03 -0d) (5.10)
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Sigma square difference vs. image index

Figure 5.2: Plot of 0? — 02 versus the index i. We take the point where the focus changes (i.e., the index

i

at which the maximum of the curve occurs) as a proxy for depth.

Taking the logarithm and rearranging (5.10) yields

o2 — g2 = 2 log(Gl(w’V)>. (5.11)

w? 4+ v? Gi(w,v)

A more robust formula can be obtained by integrating (5.11) over a small region in the Fourier domain:

C= %//w?_i-fﬂ log<%> dwdv . (5.12)

This yields to the following equation:

2 2 _l// -2 G (
(01 Uz-)—A R log il

5.4 Method 2: A spatial domain approach

w,v)
w

71/)) dw dv . (5.13)

The second approach we consider is based not on the Fourier transform, but on the S-transform which
allows us to deconvolve in physical space [2, 3]. We again use the notation of Section 5.2 to denote the
unblurred image by f(z,y), the PSF by h(x,y), and the images by g;(x,y) where i = 1...30. We begin
by assuming that the image in a small region can be approximated by a bi-cubic polynomial such that

3 3—m
F@y) =Y > amna™y". (5.14)
n=0

m=0

Furthermore, we assume that h(z,y) is a rotationally symmetric point spread function. Image g;(z,y)
is obtained from the convolution of the unblurred image with the PSF,

s = [ [t ey muemdd. (515)
Because f(z,y) is bi-cubic we can write the convolution kernel as
fle—=&y—m= DY (~nm* max 9y f(z,y). (5.16)

0<m+n<3
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Intensity for Section of Optical Chip
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Figure 5.3: Light intensity plot for the section of optical chip used to compute a depth map.

Plugging this expression into equation (5.15) gives us that

(_1)m+n m an mn
g(zy)= D = OOy B (5.17)
0<m+n<3
where
e8] e8] 27 T
h;"":/ / "y hi(z,y) d.rdy:/ cos™ () sin"(9) dG/ P () dr (5.18)
—o0 J —00 0 0

However, due to the periodicity of the sine and cosine, the above expression simplifies (5.17) to
o,
fla,y) = gilz,y) = -V f(z,y). (5.19)
Taking V2 of both sides of this equation and again using the fact that f(x,y) is bi-cubic yields

V2f(z,y) = Vgi(z,y). (5.20)

Using this information we can completely deconvolve the original integral operator and obtain the
expression

Flaw) = alry) - ZVPlan). (5.21

In the above expression, 07 = 2h2° measures the spread of the PSF. Comparing image i to image 1 and
using the fact that

V2 f(z,y) = Vigi(z,y) = Vgi(z,y) (5.22)
yields that

g1(z,y) — gi(z,y) = é (0 = 07) (Vg1 (2,y) + Vigi(z,y)) . (5.23)

2

The difference between o} and o7 can then be computed over a small region by integrating the above

expression as follows:

(2ot =g, S0 —a) dzdy (5.24)
[ [(V2g1 + V2g,)” da dy
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Spatial Domain Approach

Figure 5.4: Depth map proxy computed using the (a) Fourier domain approach and (b) the spatial
domain approach.

5.5 Computing a proxy for the depth map

From the data set that we have been provided for this project we know that the following are true:
1. Tmage 1 is the furthest in distance from the object,
2. Image 1 is most out of focus,
3.0t >0} Vi#£l

Therefore, the image number i for which
ol —o? (5.25)

is a mazimum at some spatial location is the image which is in focus. From this fact, we now attempt
to construct a proxy depth map using a shape from focus approach. We compute o7 — o2 as a function
of the index i and look for a maximum. A higher index will correspond to a deeper part of the object.
An example of 0 — 07 as a function of the index i is shown for a particular pixel in Figure 5.2. In this
case i = 23 corresponds to the focused image. Plotting the maximum 7 as a function of space produces
a proxy for the depth map.

To test this procedure on the full problem, we now carry out the above process pixel by pixel for
the light intensity map shown in Figure 5.3. The resulting depth map proxy obtained by the Fourier
domain approach is shown in Figure 5.4(a) and the spatial domain approach in Figure 5.4(b). The
spatial domain approach seems to produce a better result. To demonstrate that we are able to detect
the channels, we average the depth map computed by the spatial domain approach along the direction of
the channels, collapsing our information into the plot shown in Figure 5.5. In this plot clear dips occur
in the locations where we expect the channels to be.

5.6 Obtaining depth from blur

Up to this point we were not able to compute a true depth map, but instead only a proxy for the depths

using o2 differences. In this section we focus on obtaining true depths from our previously calculated
0? — o2. Re-arranging equation (5.4) gives an expression for the depth in terms of camera parameters

2 2
and o] — o7,

2 2
ay — kar/o7 — c3
D= L

i=1,...,30. 5.26
2+ 0y (5.26)
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‘Spatial Domain Approach - Channel Averaged Profile
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Figure 5.5: Approximate depth map averaged along channel direction.

For this equation we need the following definitions:

ci=ol —of fori=1,...,30 (5.27)

a) = k k3 (5.28)

as = kiks —o? (5.29)

o? = spread for the first image (5.30)
1 1

=g (5.31)

ky = prv. (5.32)

The true depths can now be computed from the o2 differences by solving the above equations for D and
all the unknown camera parameters (p, r, v, and F') in the least squares sense. In other words, we are
able to solve equation (5.26) for D and all the unknown camera parameters because we are given several
images of the object at different heights (i.e., i =1,...,30).

In terms of the project outlined in this paper, we were not able to apply the above method for
computing true depths to the data computed in Sections 5.3 and 5.4 due to time constraints. Future
work should focus on applying the above least squares analysis on the previously calculated proxy depth
maps.

5.7 Conclusions

In this paper we developed two distinct methods for estimating the depth profile of a series of 2D images
of a semiconductor chip. We have found that the method based on the spatial transform deconvolution
method produces more accurate results than the more traditional Fourier transform approach. Although
we did not have enough to time to finish the task, we also worked on developing a least squares approach
for translating the depth maps produced by the deconvolution methods into physical depth maps.

Although we were able to obtain some results with the spatial transform deconvolution method,
our numerical simulations fail to produce results that are accurate enough for detecting defects in the
grooves of the chip. We believe that most of this is due to the fact that there exists significant noise
in our data. Our data set had only a three pixel width across the channel. This makes the task of
making a detailed map within the channel very difficult and allows for less filtering/smoothing of the
image without destroying the channel information.
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Chapter 6

Ice Accretion

Participants: Tim Myers (Mentor), Thomas Brakel, Brian Corbett, Aude Espesset, Jihyoun Jeon,
Mehdi Hadj-Karim-Kharrazi, Ali Rasekh, J. F. Williams.

PROBLEM STATEMENT: Ice accretion on surfaces is a serious problem in for any surfaces in cold

condtions, such as aircraft at high altitude and structures in harsh winter environments. The problem
is to model the formation of ice on surfaces from super-cooled water droplets.
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6.1 Introduction

Ice accretion can cause the downing of both power lines and airplanes, unchecked it can cause a huge
cost, both financial and human. Understanding the mechanism by which ice forms and how the various
physical parameters affect this growth is of key importance to design of de-icing systems for aircraft and
adequate structures to withstand harsh environments.

In this problem we have many competing physical phenomena and we must consider them all in order
to construct a valid model. To make the problem tractable we first make many simplifying assumptions:

1. The surface is flat and uniform,

2. The incoming droplets are uniform in space and time,

3. There is little water; water motion is unimportant,

4. The surface is clean,

5. The droplets are pure liquid water,

Trapped air affects only the ice density, it is of no thermodynamic importance,
Mass losses due to evaporation are negligible,

The substrate and the air stream have very large thermal masses,

© ® N

Mass is conserved,

10. Energy is conserved.

Mathematically assumptions (1) — (3) imply that a one dimensional reduction is reasonable. As-
sumptions (4) — (5) mean that there will be a sharp interface between the ice and water at exactly the
freezing temperature of water, this also means that all heat release from the freezing of the droplets will
occur at the upper ice surface. The mass balance is easier to do assuming (6). Making assumption (7)
means that we do not need to consider the temperature problem in the substrate or the air as they will
remain constant for all time. The last two assumptions give us equations to solve once we have decided
on all the important energy balance terms.

Because we are interested in ice accretion on both land-based structures such as power cables and
towers and also on airplane wings we must consider many seemingly trivial affects. Upon consultation
of the aerodynamics literature [1] one finds that the relevant gain terms are the latent heat of freezing
at the ice surface, the kinetic energy of the incoming drops and the aerodynamic heating due to local
compression of the air. Energy is lost in proportion to the difference of the temperature of the upper
surface and the air due to sublimation or evaporation, cooling due to the thermal mass of the incoming
drops and surface convection. Energy is also transported by conduction. Expressions for all these
mechanisms are presented in the Table 1.

Table 1: Energy balance terms

Energy inputs 1. Kinetic energy of incoming drops Qj = M;’VQ
2. Aerodynamic heating Q. = %
3. Latent heat of freezing Q= piLh;
Energy outputs 1. Evaporation/Sublimation Q. = xeo(T —T,)
2. Cooling by incoming droplets Qq = Mcw(T —Ty,)
3. Surface Convection Qs =H(T -1T,)

Energy transport | Conduction adds or removes heat Q.= I{%
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Table 2: Parameter values
Parameter | Physical meaning Value Units
Cq Specific heat of air 1014 J/kg K
ci Specific heat of ice 2050 J/kg K
Cw Specific heat of water 4218 J/kg K
Lp Latent heat of fusion 3.344 x 105 | J/kg
€o Vapour pressure constant 27.03 Pa/K
w Wind speed 90 m/s
r Local recovery factor .05
H,, Heat transfer between air and water 500 VV/m2 K
H,; Heat transfer between air and ice 500 VV/m2 K
H;, Heat transfer between ice and substrate | 1000 VV/m2 K
K Conductivity of ice 2.18 W/m K
Ko Conductivity of water 0.571 W/m K
Pw Density of water 1000 kg/m?
pi Density of ice 900 kg/m?
X Evaporation coefficient 11.0 m/s
k; Thermal diffusivity in ice 2.18 m?/s
ko Thermal diffusivity in water 0.571 m?/s
T, Ambient air temperature 230 to 265 | K
T, Substrate temperature 230 to 265 | K
T, Freezing temperature of water 273 K
M Mass transfer rate .045 kg/s m?

To properly model this situation we now need only define a heat equation for each phase and then
apply the appropriate energy balance at each interface. The mass balance requires that the total amount
of material which has fallen remains on the surface in either liquid or solid form.

The meaning and values of all parameter values are described in Table 2. Subscripts are used
to denote the phase or substance. For example, the heat lost through surface convection is given by
Qs = H,;(T—T,), where H,; is the heat transfer coefficient from air to ice, Ty, is the fixed air temperature
and T is the temperature variable.

Because we have a sharp interface the droplets freeze immediately upon impact at the upper surface.
Instantly the ice will be at the substrate temperature which we assume will be well below freezing. As
more droplets come in more latent heat is released and we expect the temperature at the surface to
slowly increase until eventually water forms. One of the key objectives (and successes!) of this work is
to determine the thickness at which this water first appears. This also suggest that we need to break
the problem down into two cases, firstly when there is no water and then when both phases are present.

6.2 Model equations

From the energy and mass balances described in Section 6.1 we may write down the following equations
governing our system using the geometry and notation as described in Figure 6.1. Here we are taking
z to be the space direction and ¢ for time as the independent co-ordinates. The dependent co-ordinates
are explained in table

Table 3: Dependent variables

Variable | Physical meaning

B(t) Thickness of the base of ice
h(t) Height of the water layer
T(z,t) Temperature in the ice layer
0(z,t) Temperature in the water layer
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Figure 6.1: Diagram of ice accretion model

We begin the modelling with the no water case, h = 0.

6.2.1 No water present

Because there is no water present the conservation of mass states

tM
B(t) = . (6.1)
Pi
In the ice region we have a diffusion equation for the temperature,
oT 0T
"oy T g (6.2)
To be able to solve this problem we also impose the boundary conditions
oT
— = H; (T —1Ty), 6.3
5o = He@ T (63)
oT . rH W2 MW?2 .
— ki — = (Hai + Mecy + xeo)(T —T,) — — + + MLy | . (6.4)
0z z=B 2Ca 2

Physically the initial condition h = 0 states that there is initially no water and the boundary con-
ditions (6.3)—(6.4) balance the energy loss and gain terms at the ice, substrate and ice, air interfaces
repsectively.

6.2.2 Water present

We again begin by writing down the governing equations, conservation of mass and diffusion equations
for the temperature in the two phases.

Mt = p;B + puh (6.5)
0?0 06

pwcww = Hwa (66)
0?T; oT;

This system provides only three equations in the four unknowns, 6(z,t), T'(z,t), B(t) and h(t). Consid-
ering the energy balance at the interface between the ice and water layer gives a Stefan condition [2] for
the motion of the interface,

dB oT 00
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The system is now closed with the addition of initial conditions in time,
B(tw) = Bu, (69)
h(ty) = 0 (6.10)

where t,, is the time at which water first appears and B, the thickness, and boundary conditions in
space,

oT — Hy(T-T,) (6.11)
0z |,_,
T(B.5) = Iy (6.12)
6(B,t) = Ty 613
6 rHyW?  MW? .
0z - How + M —T,). 14
Kaw 9z Bin ( 2, + 2 ) + (Hgw + Mey + xeo) (0 ) (6.14)

6.2.3 Complete problem

The solution strategy is to solve the ice-only problem until the temperature at the ice air interface is
the freezing temperature which indicates that water has formed. At this time, t,,, we then solve the
combined problem until some large final time, ;. Of primary interest is the thickness of the ice at time
tw-

6.3 Non-dimensionalization

Because of all the physical parameters in the problem it is difficult to discern the relevant importance of
the terms. To compare the relative values we introduce non-dimensional variables and recast equations
6.1 6.14. Dimensionless variables are indicated with a superscript .

We begin by rescaling the coordinates ¢t and z. An arbitrary timescale is used such that the conser-
vation of mass in the water only case reduces to 2 = ¢. This implies that the temporal scale 7 is defined
such that 7 = t,, where t,, is the time at which water first appears.

. M
Tt =1 AZ =z where A\ = T
Pi
This choice of spatial scaling sets . .
AB =B Ah = h.
To simplify the temperature in the ice region we rescale the temperatures as
. T —T - 6-T
T = 6= L
Ty — T, Ty —Ts

With these definitions we consider the problem in the two different cases.

6.3.1 No water

The system 6.1 6.4 may be rewritten as

B =i
oT 2T
€El——F = Py
ot 022
oT R
- = T
S
2=0
oT R
E ) = —OélT—FOéQ.
=B




a0

The above parameters take the values,

A2I{i
€1 =

TpiCi
€2 = MH;

Hai+MCw+X60
(051 = A

K

X [(rHiw?  MW?
Qay = — +

K 2¢c, 2

6.3.2 Water present
The system 6.5-6.14 may be rewritten as
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T, — T,
T; — T,

+MLff (H,”-+Mcw-|-xeg)>.

B = t— f3h
oT 8T
€1 = = =
ot 0z?
0 50
€3 —= -
° ot 932
oT R
€9 62 = T
2=0
B 9T 96
a ezl . "oz
T(:2=B) =
6(2=B) = 0
9 R
33 = —p10 + Pa.
t=B+h
The new parameters take the values,
A Ky
€3 =
TPuwCuw
- Piki
T PLi(T, T
_ Pt
" TM2L(Ty — Ty)p;
Haw M w
8, = A + Mey + Xeo
R
A (rHiW?  MW? T, Ty :
p - - Haw M w
& Koo ( 2%, 2 1,1, Hew T Mew+ xeo)
B = £
Pi

Taking the values from Table 2 for €;, €5 we find that for 7 < 400s both these terms may be neglected.
€3 also remains small when the water layer is thin. In the next section we will consider the solutions for
the problem as stated above but for ¢; = €5 = €3 = 0.

Please note the hats,

, over the dimensionless variables will be dropped from this point for the

remainder of this and the next secion for notational convenience.



CHAPTER 6. ICE ACCRETION o1

6.4 Asymptotic Solution

6.4.1 Initial Stage (no water)

In the asymptotic case the temperature profiles are linear in the thickness z, but not in time. The profile
is given by

0°T

-0

022

TO) = 0
oT
— = —aoT.
92 s a1 — @2

which is easily solved to give
a1z

T(z,t) = ————.

&) = T B®

To find the thickness, B,, at which water first appears we set T'(B,,, t,,) = 1 which defines

By = (6.15)

6.4.2 Model with ice and water

In the asympotic regime both temperature profiles are linear.

o v
822 822

With the boundary conditions

and 5
0
0B)=1 5| =-p+b
Z\lz=B+h
the profiles are given by,
z B2
T=—, =1 - B).
B’ MY ACRE

Notice that we have solved the temperature profiles without invoking the Stefan condition! Substituing
the profiles into the Stefan condition gives an ODE for the thickness of the ice layer.
FaB _ 1 B
ot B 1+ Bk

Once this has been computed the profiles may be recovered. Recall that the height of the ice layer and
that of the water layer are related by the conservation of mass equation 6.5.

6.4.3 Asymptotic results in dimensional variables

In order to compare to experiment and the full numerical simulations we must convert our dimensionless
results back into their dimensional form.
The height at which water first appears is given by,

Kj (Tf — Ts)

Bw = 2 T2 . . '
rH W2y MW?2 4 1M — (T — To)(Hai + Mey + xeo)
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In terms of the given parameter values this works out to
By ~ 2.5mm

which agrees very well with experiment [3]! For these values one also finds ¢,, = 7 ~ 50s which is well
below the upper limit of 400S.

Setting B,, = o0, or a; = ay in (6.15) we can determine the temperature difference such that no
water ever forms, The temperature difference beyond which no water forms is given by

rHa; W2 MW? )
rHe W MW 4 ;M
Ty Ty=AT=—2 2 !
Hui+ Mcey + xeo)

This gives an approximate value of,
AT ~ —16C.

6.5 Numerical solution of the complete problem

The numerical solution of this problem proceeds in the same stages as the analytic solution. First
the ice-only problem is considered and then once water has appeared, the combined problem is solved.
Because the interface is unknown and no modelling of the exterior air region is done, we propose to use a
coordinate transformation to map the physical layers, [0, B(t)] and [B(t), B(t) + h(t)] whose thicknesses
vary with time to fixed computational intervals on [0, 1]. This is done by defining the coordinates

T B
_ z—B(1)
YT T

This transformation causes two difficulties, it makes the equations to be solved more complicated
and it is singular as the layer thicknesses tend to zero. The first is not a significant issue numerically
and the second may be handled either by using an implicit method or adding an arbitrarily thin base
layer. For convenience we shall employ the latter strategy. Because the timescale 7 = t,, is not known
a priori we must solve the full dimensional system 6.1 6.4. Again we begin with the case where water
has yet to form.

6.5.1 No water present

Because the ice layer grows at a constant rate

upon defining
Flat) = T(z,1)
we have a simple PDE for f,

T

3
pi PiCi
=—Jz + ——.
fo= St ke M 212

This is solved with the boundary conditions

T iHs
L el gy
M

3

. H,,W? MWwW?2 .
:(Hai+Mcw+XeO)(T_Ta)_<r 2; T +MLf>-

Mliz' oT
— t —
pi 0z 2=B
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and an initial artificial layer
B(O)=By <1 (~1079

until f(1,%,) = T; at which point water will form at the upper surface. This relationship defines #,,.
Then we move on to the coupled problem.

6.5.2 Water present

Now that the ice growth rate is no longer constant we need to solve the ODE for the free boundary as
well. Defining
9(y.t) = 0(z, 1)
we need to solve the coupled system
B'zx piC;
fr= ?fz + szza

_ y+B PwCuw
gt = 7 gy + Iiwh2gyy7

Mt = p;B + puh
and . p
(] w
pil;B' = Efz - v
The last equation is evaluated across the interface z = 1, y = 0. Because of the non-local nonlinearity

in the system an implicit-explicit formulation should be used where the PDEs for f and ¢ are integrated
with a Crank-Nicholson scheme keeping B and h fixed, after each step B and h are updated.

6.6 Conclusions

In this report we have constructed a one-dimensional model for the growth of ice and water layers due
to incoming supercooled drops. This model accounts for all significant physical effects and is hence
somewhat unwieldy. Instead of analysis of the full set of equations an asymptotic reduction was made
to produce a mathematically tractable model. This reduces a coupled system of PDEs to a single order
ODE for the thickness of the ice layer. Once this has been numerically calculated the temperature
profiles and water layer thickness may be easily obtained.

The model predicts that initially a layer of ice forms on the surface until enough latent heat has been
released to melt the surface layer. A simple expression for this thickness at the onset of water formation
was derived and found to agree not only with the numerical simulations but experimental data as
well. From this expression one can easily see the relevant importance of the considered physical effects.
Additionally we derived a critical temperature difference between the surface and air temperatures for
which no water forms. This also agrees well with experimental evidence!

A general scheme for integration of the full system was attempted in MatLab but due to the large
number of physical parameters, the difficulty of the problem and time constraints no satisfactory results
were obtained. The general scheme is sound and, given sufficient time we believe that reliable results
could be checked against the asymptotics.
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Chapter 7

Estimating Risk-Neutral Probability
Measures

Participants: Miro Powojowski (Mentor), Joel Hanson, Kristen Jaskie, Judy Lai, Shuqging Liang, Has-
san Masum, and Rafael Meza.

PROBLEM STATEMENT: The Black-Scholes formula is commonly used to price options, due to its
ease of use and comprehensibility. However, the formula assumes that the volatility of the underlying
security is constant across strike prices, which is empirically not the case. For instance, the ”volatil-
ity smile” refers to the fact that options which are far-from-the-money often trade at higher implied
volatilities compared to options which are close-to-the-money.

It’s therefore of interest to find a probability measure on option strike prices, such that using this
probability measure smooths the implied volatility of the option to a constant value. This probability
measure is called the Risk-Neutral Probability Measure (RNPM) .

We looked at several possible methods for finding the RNPM, and explored two in some detail:
histograms and Hermite polynomials. A regression algorithm was then implemented for fitting param-
eterizable histograms to the observed option price data. Background, methodology, results, ideas for
future work, and references follow.

o4
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7.1 Problem Background

7.1.1 Assumptions and Binomial Tree Models

Real securities are extremely complex and hence require some level of simplification. We therefore
assume:

e A single-period model with two time steps: now (time 0), and some future time T.
e A risk-free rate of interest r exists (e.g. government bonds).

e No arbitrage opportunities exist (i.e. an astute investor cannot make money with zero risk through
exploiting pricing imperfections).

e The securities in question are highly liquid and tradeable at will.

Suppose the stock has price S now, and can rise or fall in price into one of 2 states at time T,
with prices Sy, and Sgown respectively: this gives the 1-step Binomial Tree model. (The model can be
generalized to multiple time steps and higher-fanout trees in intuitive ways, although the computational
effort involved grows rapidly due to the exponentially-increasing size of the tree.)

We can use this simple model to price the current value of an option to buy the stock at time T. To
do this, we create a particular portfolio of the stock and the option which has no uncertainty as to its
future value. Since this “replicating portfolio” has no rigk, it must earn a rate of return equal to the
risk-free rate.

Denote the current (unknown) price of the option by O; denote the payoff on the option if S goes up
or down by O, and Ogoun respectively. Consider a portfolio consisting of a long position in N shares
of the stock and a short position in one option. We can then express the value of this portfolio under
the two possible outcomes:

1. Stock goes up: Syp N - Oyp.
2. Stock goes down: Sgown N - Ogown-

The value will be equal (and the portfolio will therefore be riskless) when these two quantities are
equal, i.e. when

Oup - Odmun
Sup - Sdown
This could be considered as the ratio of option price change to stock price change between the two

outcomes.
If the interest-free rate is r, the present value of this portfolio is found by discounting backward:

N = (7.1)

PV =e (SN — Oup) (7.2)
(The first term comes from the formula for continuous compounding: (14+r/m)™7 approaches e’ in
the limit.) Since the portfolio cost was S N - O, we can equate the present value of the portfolio with
its current cost and solve for O:

O=e""(pO0uy — (1 = D)Odown) (7.3)

where p is a derived quantity equal to

erT - (Sdown/s)

(SUI)/S) - (Sdmun/s)

So, the point of this is that we can price an option using a 1-step binomial model, if we can observe
the prices of the option and stock under both conditions at time T, and the price of the stock now. This

(7.4)
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is not too useful for a single time step, but if we are investing over a long period of time (and if market
conditions stay similar), then we can use a series of 1-step observations to derive “expected” option
prices. (Note that the option price does not depend on the probability of the stock price increasing or
decreasing; this is basically because the option is being valued relative to the underlying stock and not

in absolute terms.)

7.1.2 Risk-Neutral Probability

The variable p above can be interpreted as the probability of an up movement in the stock price; thus
the quantity

(p Oup ‘(1‘p) Odown)
is the expected payoff of the option. With this interpretation, the expected stock price at time T is

1% Sup +(1‘p)sd0wn

Substituting the previous definition of p, we get S e’”. In other words, the stock price grows at the
risk-free rate.

This illustrates the principle of risk-neutrality. In a risk-neutral world, investors require no com-
pensation for risk but are concerned only with the expected return of securities. For a completely
risk-neutral investor, a government bond with guaranteed payoff is equivalent to a highly leveraged
speculative portfolio, as long as both have the same expected payoff.

(NB: Risk-neutrality is obviously not true in general in the real world, where e.g. investors have
finite bankrolls and are usually risk-averse toward going bankrupt. However, it may be a reasonable
approximation in a sizeable range of expected payoff values for a large investor, where the investor’s
utility function of wealth is relatively flat.)

7.1.3 Valuing Options

What we are looking for, then, is a measure under which risk-neutral valuation holds. We applied these
concepts to the valuation of European options, which can only be exercised at expiry. (In contrast, most
traded options are American options which can be exercised at any time prior to expiry.) There are two
main reasons for the use of European options in math finance:

1. Analytical tractability: since there is a single expiry time, the investor has only two possible
actions, i.e. to exercise or not at time T.

2. The counterintuitive theoretical result that it is suboptimal to exercise American call options
prematurely, due to both foregone interest on the cash used to purchase the call option and
downside risk from holding the stock instead of the option. (Note that, due to our assumption of
stock prices following geometric Brownian motion, this result assumes the investor has no advantage
over other investors in picking undervalued stocks and predicting the future path of stock prices.)

For our case of valuing European options, the risk-neutral measure could intuitively be considered as
a probability density function (PDF) of the possible option prices at expiry; integrating this PDF with
the value of the option payoff gives the value of the option. Formally,

CallPrice = exp(—rT) / (S — K)dF(S) (7.5)
K
where CallPrice denotes the market price of the call option, K the corresponding strike price, and S the
price of the underlying stock. (We integrate over all stock values that give us a non-negative return on
exercising the option.)
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7.1.4 Our Data
We had several data files to work with:

e Option Prices (both calls and puts) for the S&P 100, S&P 500, GM, and Microsoft. As with
much financial data, there are limitations in the data, e.g. lack of information on thinly traded
options. (Note that some practitioners argue that more weight should be given during analysis to
the implied volatility of close-to-the money options; far-from-the-money options tend to have less
volatility anyway.)

e Interest rate data from 1997 to 2001. The data included, for each date, a selection of rates for
different periods; it is thus possible to view the term structure of (future) interest rates at each
day in the past. We can interpolate to estimate interest rates that are not explicitly given.

e Some graphs of implied volatility, and miscellaneous supporting data.

7.2 Models

7.2.1 Geometric Brownian Motion and the “Volatility Smile”

Our basic continuous case is geometric Brownian motion, where stock prices follow a random walk with
positive bias (i.e. stock price changes are normally distributed with positive mean).

This implies that the distribution of asset prices in the future, conditional on current asset prices,
should be lognormal (i.e. the instantaneous rate of return on the asset should be normal). As a conse-
quence of this fact and the risk-neutrality principle, a graph of the strike price of an option against the
implied volatility of the option (or the graph of observed log return against implied volatility) should be
flat.

The implied volatility is a derived parameter calculated using the Black-Scholes equation for option
pricing; one assumes Black-Scholes holds, observes prices, and then solves for the volatility variable in the
equation. It’s important to note therefore that implied volatility is not a directly observable parameter,
but rather a derived parameter which is only provably valid if the model assumptions on the option’s
behavior hold. (Implied volatility may still be useful if the option’s behavior is “close enough” to what
our models say it should be ... note that defining “close enough” is also an open research problem).

Both these implications are violated in actual markets. In particular, the “volatility smile” is a
phenomenon in which the implied volatility of options close to the money is less than options far from
the money; these fat tails may come from larger numbers of extreme market events than predicted, or
non-neutral investor risk preferences, or systematically biased expectations of future market events.

7.2.2 Martingales and Asset Pricing

A Martingale is a process for which E[X;+1 | X1,..., X¢] = X;; you expect the process to generate an
outcome with expected value equal to the most recent outcome, but change your expectations to match
whatever actually happens. As an important example, a sum of successive IID variables, each of which
has mean 0, will give a martingale. (Note that martingales are not necessarily Markov, but if they are
then we have a very nice situation indeed.)

The relevance to risk-neutral valuation comes from a series of key results:

e The no-arbitrage theorem tells us that the absence of arbitrage opportunities in the market implies
the existence of an equivalent measure under which discounted stock prices are martingales.

e The completeness theorem tells us that these martingale measures are unique if replicating port-
folios exist for all contingent claims.

e Finally, the Fundamental Theorem of Asset Pricing tells us that a unique equivalent martingale
measure exists. This measure is exactly the risk-neutral probability measure that we are searching
for.
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More detail can be found in e.g. (Bingham & Kiesel 1998).

7.3 Inferring the Risk-Neutral Measure

7.3.1 Our Basic Idea

Using the data described above, we have explored several methods for inferring the risk-neutral probabil-
ity measure (RNPM). Two methods were looked at in some detail with regard to our sample set, Hermite
polynomials and histograms (these methods define the model class used to estimate the RNPM).

The basic idea contains several steps. First, we define a model class for our risk-neutral probability
measure. This model class defines the parameterized search space of functions in which we will be
looking for the closest approximation to the RNPM (where “closest approximation” is defined by some
loss function like least-squares).

Next, we need to actually find the particular function that best approximates the RNPM. We did
this using standard regression techniques to estimate the parameters for our model, given that the model
has to fit the observed option prices.

Finally, we need to check our estimated RNPM for validity. This is a statistical hypothesis testing
problem for which many techniques are available; our basic approach was to compare the error terms to
the expected lognormal distribution. (Note that this last step, while essential to have any faith in the
inferred RNPM, is difficult to do well due to noise in the data, peculiarities in financial markets, and so
on.)

7.3.2 Expansion Methods

One way to estimate the RNPM is to assume it can be approximated by:
(@) =) 0ifi(x) (7.6)

for a suitable base of functions. This is just a general technique of decomposing a function into a
linear combination of simpler basis functions; the ; are scalar parameters, and the f; are some set of
basis functions.

A simple example, which we implemented, uses a histogram approach. Each f; is simply a histogram
bin, i.e. a function which takes a constant value on some interval of predetermined width and zero value
everywhere else. The 6; then represent the height of each bin.

A more sophisticated example is given by:

fl@) =6, (x) (7.7)

where (") (z) denotes the nth derivative of ¢(z) = exp(—(%)?)
Thus this particular expansion takes the form:

f(z) = o(z)(1 + by Hy(x) + boHa(z) + ...) (7.8)

where H,, denotes the Hermite polynomial of order n and the first coefficient is equal to one to ensure
a function whose integral is 1.

It is important to note that in order to get a density, f(z) has to be positive everywhere, a condition
that is not always satisfied.

Estimation of the Coefficients.

Given a set of options with the same maturity and different strike price, we are looking for a probability
measure which satisfies:

C; = exp(—rT) /koo(s —k;)dF(s)+¢ej,j=1.n (7.9)

J
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where C; denotes the observed market price of the jth option and &; its corresponding strike price.
Assuming that F(z) has a probability density f(z) which can be expressed as an expansion of the
form (7.6), we get the result that the price of the options is given by:

C; = exp(—rT) 2(91/ (s — kj)fi(s)ds) +€5,j=1.n,i=1.m (7.10)
i k;
Thus, we have to find coefficients 6;, such that:

C=W6l+e (7.11)

where W is a matrix defined by
oo
Wi = e:np(—rT)/ (s — kj) fi(s)ds (7.12)
k;
Now we have a regression problem, which can be tackled in the standard way (except that we have
the restriction that the resulting function has to be positive).
Two cases: Histograms and Hermite polynomials

As an initial example we adjusted a histogram to the data, i.e. we used indicator functions as our basis
functions. In this case, to ensure that we get a density, we have to force the coefficients to be positive.
This can be done using constrained optimization techniques, when solving the least squares problem
associated with the regression.

As a second example, we explored the use of the expansion (7.8) which uses Hermite polynomials.
In this case, the positivity condition is broken in some cases regardless of the sign of the coefficients, so
we have to find the proper number of terms in order to get a logical result.

7.3.3 Other Methods

A number of other methods have been proposed for estimating RNPM’s:

e Generalized distributions. More general distributions than the ones mentioned above.

e Mixture distributions. A combination of two or more distributions. The parameters defining the
combination weights could potentially change over time, to better model dynamic option behavior
as the expiry date approaches.

e Kernel smoothers and implied volatility smoothing.

e Entropy methods.

e Heuristic optimization methods.

e Implied binomial trees.

e Monte Carlo and Markov Chain approaches.

Many of these methods are surveyed in (Jackwerth 1999). Clearly, a great deal of fertile ground for
exploration remains in this area.
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7.4 Results and Applications

7.4.1 Statistical Inference

Our goal was to check if our models of risk-neutral measures match reality, within some confidence
interval. As explained in the previous section, we had several observed parameters for our model:
observed option prices, strike prices and maturity dates for each option, and the riskless (i.e. interest)
rate.

The next step was to specify a statistical hypothesis that could be used for testing. Our hypothesis
was that two sets of observed prices were generated by the same risk-neutral measure. Under this null
hypothesis, the ratio of residuals squared should follow an F-distribution; we can thus construct an f-test
that should reject the null hypothesis if large values of the f statistic are observed.

Unfortunately, a number of difficulties were encountered while carrying out this procedure. The most
serious involved computational inaccuracies in the statistical packages being used (including S-Plus).

However, we were still able to implement the test for the histogram approximation method. Day-to-
day changes in the RNPM were detected using our test, at a qualitatively high level of significance.

More work is needed to interpret the results of our test. Given that the RNPM has changed between
two time periods, what can we infer? This requires further analysis, and correlation of changes in the
RNPM with changes in market sentiment and fundamental valuation. Developing automated procedures
for estimating these latter subjective quantities would be very useful, from the point of view of both
hypothesis testing and interpretation of results.

7.4.2 Inferring Market Sentiment

What can we infer if the “term structure of call option prices” changes? E.g. if the observed value of an
out-of-the-money call option at a specific strike price drops, two somewhat contradictory explanations are
possible: i) investors have become more bearish (they expect stock prices to decrease) and hence expect
that the stock price will not rise enough to exercise the options; ii) volatility in the market has been
reduced, and so the chances of the stock price changing enough for the option to become in-the-money
have dropped. Since increased volatility is often associated with bearish market conditions (e.g. selloffs),
it takes some care to interpret changes in option prices. Developing robust quantitative estimators for
such changes in sentiment seems to be an open question.

Changes in the risk-neutral distribution or in implied volatility may also imply important changes in
market, sentiment.

7.4.3 Future Work

Along with testing whether risk-neutrality holds and deriving a probability measure under which in-
vestors are risk-neutral, it would be useful to investigate the sensitivity of risk-neutral valuation to
changes in assumptions or market conditions. This is clearly a large task, requiring a good deal of sub-
jective evaluation and judgement in assessing market conditions and reactions; relaxing the assumptions
would also make analysis more difficult.

Although general linear tests are useful in detecting changes in an RNPM, more powerful tests would
be helpful in detecting only those changes which are important from a risk-management point of view.
An RNPM, once estimated for a given financial instrument, can be used to price other types of financial
instruments. It is therefore important to keep working to improve estimation techniques.
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Chapter 8

City Lights

Participants: Moshe Rosenfeld (Mentor), Tom Alberts, Angus Argyle, Andrew King, Nathan Krislock,
Jill Zarestky.

PROBLEM STATEMENT: We consider a theoretical city, arranged in a grid pattern with a specified
number of North-South streets (columns) and East-West avenues (rows). At each intersection of a street
and avenue, there may be a light that requires power. The power switches are organized so that there
is exactly one switch for every column and exactly one switch for every row. In order to save energy, we
would like to minimize the number of switches turned on (and hence the unnecessary lights with power)
but at the same time guarantee that all the necessary intersections have been lighted.

62
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8.1 The Problem

WLy, ”

Consider the ten by ten grid in figure 8.1. The squares marked by an “x” represent intersections that
do not need power and the blank squares represent intersections that must be powered. In order to
minimize the number of switches turned on while still covering all the necessary intersections, we begin
by examining a similar problem, placement of rooks on a chessboard.
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Figure 8.1: Sample grid.

Recall the allowable movements of the rook (or castle) in chess. The rook may move any number of
squares in either the vertical or horizontal direction at each turn. The object is to place as many rooks as
possible on a given chessboard! under the restriction that no two rooks should be able to take each other.
In other words, there may only be one rook per row and column. It is well established that the question
concerning the maximum number of rooks can be answered by the rook polynomial where the coefficient
of z¥ gives the maximum number of ways that k rooks may be placed. Clearly, the highest power of x
with a non-zero coefficient gives the largest possible number of rooks. Unfortunately, this method does
not address the issue of the switches but we may still use the basic idea of rooks to implement a solution
to the city lights problem (see Grimaldi [1]).

Relevant to the lighting issue is the notion of independent rows and columns. Specifically, for each rook,
we know that either the row or column occupied by the rook must be lit to ensure that the intersec-
tion represented by the rook is illuminated. From this, we may conclude that the minimum number of
switches is at least as large as the maximum number of rooks placed on the grid. Furthermore, we will
show that the minimum number of switches is exactly the maximum number of rooks. This is a simple
consequence of Honig’s Theorem and is discussed in Section 8.3.

This document is organized as follows: In Section 8.2 we will discuss our methods for solving the problem.
In Section 8.3 we will present our solution of the problem and in Section 8.4 our conclusions. Finally, in
Section 8.5 we will make recommendations for future study.

8.2 Methods

We used a progression of algorithms to build up to an optimal solution of the switch problem usind ideas
from the rook placement problem.

1. A Greedy algorithm for the initial placement of rooks.
2. The Method we call Augmented Paths to maximize the number of rooks.

3. A systemized marking of columns and rows generated by Alternating Paths in order to minimize
the number of switches.

Hn order that the problem stated be nontrivial, we assume that a chessboard is a proper subset of the usual 8 by 8
grid, corresponding to the open squares in the streetlight grid.
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The combination of these three algorithms leads to a solution in which the number of rooks is the same
as the number of switches. Let us now describe the algorithms.

8.2.1 Greedy Algorithm

In the greedy algorithm, the grid is traversed row by row, starting with the topmost row. In each row, a
rook is placed in the leftmost available square which does not already have a rook in the corresponding
column. If the entire row is marked with x’s or if all the empty squares have rooks in the associated
column, then the row is skipped and we proceed to the next one. In this manner we place a sufficient
number of non-interfering rooks on the grid to be sure that every lit square has a rook in either its
corresponding row or column, however we cannot know if the number of rooks is or is not maximal at
this stage.

8.2.2 Augmented Paths

The augmented paths algorithm finds an ordering of the rooks which allows for the maximum number
to be placed on the grid. We proceed by traversing through all the blank spaces in the rows which do
not contain a rook. For each appropriate space in such a row, move from the space to the rook of the
same column. That each such space has a corresponding rook in it’s column is a consequence of the
greedy algorithm.

From this rook, we next traverse to an empty space on the same row. We will, for convenience, choose
the leftmost empty space and move to the right if necessary as we proceed. There are three possible
cases which we must consider.

1. The column of the leftmost space has not yet been visited by the path. We are then allowed to
choose this space. If there is a rook in the column, then move to it and continue as before. If there
is no rook, we may place an additional rook at the current location. Then rooks previously visited
along the path constructed must be shifted 'back’ along the path to accomodate the new rook. We
have successfully added a new rook to the chessboard at the expense of moving a pre-existing rook
to an unoccupied row.

2. The column of the leftmost space has already been included in the path at some point. We may
not choose this space and instead must consider the next (counting from the left) blank space in
the row.

3. There are no available spaces in the row. Either all blank spaces have been visited by the alternating
paths algorithm or all the spaces have x’s. We will not be able to augment the set of rooks from
the blank space chosen from the original row without a rook.

Using the algorithm as stated, we find a set of non-interfering rooks for the grid which cover all the
blank spaces in the sense that the greedy algorithm covered, after considering the paths from all the
blank spaces in rows without a rook. Note that there may be several possible arrangements for this set
for each grid. We will show later that this arrangement of rooks is in fact maximal.

8.2.3 Alternating Paths

Note that by the method of Augmenting Paths, after each traversal of the grid we have either added an
additional rook or we are stuck on a rook and unable to move any further. If the latter is applicable
there can exist no successful augmenting paths from ANY blank spaces on the corresponding column
and the algorithm will turn on the switch for that column, then back track to the previous rook on
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our path in an attempt to find another augmenting path. Continue in this manner until all possibilities
have been exhausted and thus it is certain that an augmenting path cannot be found from our starting
square. So, for the same reason we light the column of our starting square. In this way, for each starting
square in the rookless row we produce a number of lit columns characterized by the property that for
each such column, its corresponding rook cannot be part of a successful alternating path.

The algorithm finishes by turning on the switches for each row which contains an unlit rook.

To summarize the method, even considering the large amount of repetition in the algorithm, it will
clearly terminate eventually. At the finish, we will have a number of columns selected which must be
“switched on”. Then, if we select the rows which are occupied by rooks that have not been selected in
column form, we will have covered all the necessary spaces. Only spaces with x’s will be left, and all
blank spaces will have been selected as part of the row or column selections of the rooks. Moreover, the
number of switches will exactly match the number of rooks found by the augmenting path algorithm.
By Honig’s theorem referenced in Section 8.1 we know that this solution must be optimal. The greedy
algorithm has created the initial conditions and the augmenting and alternating path algorithms have,
in conjunction, found the maximal number of rooks and the minimum number of switches for our city

grid.

8.2.4 The King Rook Algorithm

Another possible algorithm for finding the maximal set of rooks and minimal set of switches is as follows:
1. Create an initial rook set using the Greedy Algorithm.

2. For each row without a rook, iterate over each blank space in that row: select the corresponding
column of the blank space. We are left with a collection of selected columns, each containing a
rook.

3. Iterate over the columns without rooks

(a) Iterate over the blank spaces in the column
(b) If the blank has an unselected rook in its row, select that row.

(c) Otherwise, create an augmenting path using the current space, the rook in its row, and the
space that originally caused the rook to be lit. Remove all selections and return to step 2.

4. Light the column of every unselected rook.

The previous algorithm accomplishes the same goal as the first method described, and indeed it uses
the same principles of augmenting paths. It has the advantage however, of eliminating a significant
amount of the repetition involved previously. As before, the final rook set is maximal since the number
of switches “on” is equal to the number of rooks. This algorithm runs in O(n?®) time as the lighting
of the columns or rows is O(n?) and must be repeated a maximum of n times (as many as n possible
rooks).

8.3 Results

Consider the correctness of the method. From the methods construction of a solution, we know the
number of columns and rows switched on equals the number of non-interfering rooks on the grid. But
how do we know that all the blank squares are lit after the algorithms terminate?

Two scenarios need to be examined. In the first scenario, a blank square, S, lies in a row with no rook
in the row. This blank square must lie in a column containing a rook; otherwise, the greedy algorithm
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would have placed a rook in the blank square. Now, since the blank squares row has no rook, the method
did not find any possible augmenting path originating from our starting square S. The alternating paths
algorithm would have therefore “switched on” the column containing the blank square S. And so the
blank square is lit.

In the second scenario, a blank square, S, lies in a row with a rook R;. The method has switched on
either the row or the column (but not both) containing this rook. If the row is switched on, then the
blank square S is lit. However, if the column containing the rook is switched on, then we must consider
two separate cases:

e In the first case, no rook lies in the column containing the blank square S. But this cannot happen
for the following reason: The column containing rook R; was switched on because R; was on an
alternating path and the path was unable to move from R; in order to find a successful augmenting
path. However, we are able to move from rook R; along its row to the blank square S. The blank
square S is in a column with no rook. So S is the end of a successful augmenting path, and so the
method would have placed a rook in the blank square S as a consequence (and shifted the other
rooks on the augmenting path accordingly). Now, since the method did NOT place a rook in the
blank square S, we conclude there must be a rook somewhere else in the column containing S.
This leads us to the second case.

e In the second case, a rook R, lies in the column containing the blank square S. The column
containing rook R; was switched on because R; was part of an alternating path. his implies that
the blank square S was unavailable (it would not lead to a successful augmenting path). So, the
column containing S must have been switched on. And so the blank square S is lit.

Thus our algorithm, which gives the same number of switches as rooks, must light all blank spaces and
therfore be optimal.

In addition, we may think about this problem in terms of graphs. An alternate representation of our
city grid is as a bipartite graph with rows represented as vertices on one half and columns as vertices
on the other. The edges represent the intersection of a row and column where a possible rook may be
placed or, referring to the original problem statement, where the light must have power. Consider figure
8.2 which demonstrates a sample grid and the corresponding bipartite graph.

Rows Columns.

o
MM K
MK

Figure 8.2: A grid and the associated bipartite graph.

If we approach the bipartite graph from the perspective of a maximum matching coupled with a mini-
mum cover, then there are results which correspond to our algorithm. Specifically, the number of edges
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in the maximum matching is equal to the number of vertices in the minimum cover. (Honig’s Theorem,
J. Gross and J. Yeller [2]) The edges in a maximal matching correspond to the number of rooks placed
on the grid and the minimum cover corresponds to the switch which must be turned on.

8.4 Conclusion

Thus we have constructed an algorithm which finds an optimal solution and proven its correctness.
In addition, our results are backed by the literature, specifically the work related to bipartite graphs,
which are clearly related to our grid problem. We feel that the solution of the two dimensional city
lights problem has been sufficiently addressed and that future work should be directed towards the three
dimensional problem rather than this one.

8.5 Future Work

We recommend that future efforts be directed towards the three-dimensional case of this problem. In
the three-dimensional problem, the lights are arranged on the vertices of a rectangular or cubic mesh.
Figure 8.3 shows a small example where the large shaded vertices are the city lights we want to turn
on, and the small vertices are the lights that do not need to be lit. Like the two-dimensional case, each
row, column or pillar of lights is controlled by a switch. Again, the goal is to minimize the number of
switches to be turned on yet make certain the desired lights are lit.

-~
T

L
1~

I_I.

Figure 8.3: A sample 3D problem requiring more switches than rooks.

In the two-dimensional grid, the minimum number of switches equaled the maximum number of inde-
pendent rooks. Is this true for the three-dimensional mesh? When placing rooks on shaded vertices in
the 3D mesh, at most one rook can appear in any row, column or pillar. Figure 8.3 demonstrates a mesh
where seven lights need to be lit, but the minimum number of switches exceeds the maximum number
of independent rooks. At most three independent rooks may be placed in the mesh, but four switches
are required to light all seven shaded vertices. So, in 3D meshes, the minimum number of switches is
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greater than or equal to the maximum number of rooks.

In a larger mesh, permutations of Figure 8.3 may appear several times. Then, 3k independent rooks
would require 4k switches. This would cause a ratio of 4 : 3 switches-to-rooks. Other arrangements of
shaded vertices in a mesh may produce a higher switches-to-rooks ratio.

An algorithm to compute the minimum number of switches for the 3D mesh has not been found. How-
ever, this problem can be translated into the Set Cover problem. In the set cover problem, a collection of
subsets exists from a set S. The object is to find the smallest number of subsets whose union covers the set
S. In our case, the set S is the collection of shaded vertices. Each row or column is a subset and we would
need to find the minimum number of subsets which together contain all the shaded vertices. Although
the general set cover problem is NP-complete, a polynomial time algorithm may exist for our special case.
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