

DEFINITION OF SYMMETRY

A geometric shape or object is symmetric if it can be divided into **two or more** identical pieces that are arranged in an organized fashion.

- An object is symmetric if there is a transformation that moves individual pieces of the object but doesn't change the overall shape.
- The type of symmetry is determined by the way the pieces are organized, or by the type of transformation:

DIFFERENT TYPES OF SYMMETRY

• An object has reflectional symmetry (line or mirror symmetry) if there is a line going through it which divides it into two pieces which are mirror images of each o

• An object has <u>rotational Symmetry</u> if the object can be rotated about a fixed point without changing the overall shape.

• An object has <u>translational symmetry</u> if it can be translated without changing its overall shape.

MANY TYPES OF SYMMETRY

• Other symmetries include <u>glide reflection</u> symmetry and <u>rotoreflection</u> symmetry.

SPECIAL KIND OF SYMMETRY

• An object has <u>scale symmetry</u> if it does not change shape when it is expanded or contracted. <u>Fractals</u> exhibit a form of scale symmetry, where small portions of the fractal are similar in shape to large portions.

LINE OF SYMMETRY (REFLECTIONAL SYMMETRY)

Definition #1	Definition #2	
Line symmetry occurs when two halves of a figure mirrors each other across a line. The line of symmetry is the line that divides the figure into two mirror images. A simple test to determine if a figure has line symmetry is to fold the figure along the supposed line of symmetry and see if the two halves of the figure coincide.	A set of points has line symmetry if and only if there is a line, I, such that the reflection through I of each point of the set is also a point of the set.	
Definition #3	Definition #4	
If half the figure is a mirror image of the other half.	A figure in the plane has a line of symmetry if the figure can be mapped onto itself by a reflection in the line.	

NON-EXAMPLES

NON - Example #1	NON - Example #2	NON - Example #3	NON - Example #4
	2 2 2 2	•,	

FIND ALL THE LINES OF SYMETRY:

FOLD & CUT THEOREM - CUT ANY SHAPE FROM ONLY ONE CUT

The fold-and-cut theorem states that any shape with straight sides can be cut from a single sheet of paper by folding it flat and making a single straight complete cut

The first published reference to folding and cutting of which we are aware is a Japanese book, *Wakoku Chiyekurabe* (Mathematical Contests), by Kan Chu Sen, published in 1721

https://www.youtube.com/watch?v=ZREp1mAPKTM https://www.youtube.com/watch?v=G8SoJ530JAs

https://www.youtube.com/watch?v=GKzl0_6NKJ8

References:

Wikipedia: Symettry

http://www.brotherstechnology.com/docs/fractals.pdf

http://www.geometrycommoncore.com/content/unit1/gco3/teachernotes1.html

