Problem-solving using geometric construction

- Use pencil, compass and straight-edge only to complete these tasks (no protractors).
- You should not be using your straight-edge to measure anything or to create right angles.
- All of these can be made using the basic constructions in the handout.
- Leave your construction arcs and lines in place so that we can follow your logic!

1a) Construct an obtuse isosceles triangle with the given line as the non-equal leg:
b) Construct an acute isosceles triangle with the given line as the non-equal leg:

1c) Construct an isosceles triangle with the given line as one of the equal legs:
2. Find the midpoint of each side of the triangle. Draw a line from each midpoint to the vertex opposite.

You've just constructed the medians of the triangle. The point where the medians meet is called the centroid of the triangle - if we were to cut the triangle out of stiff paper or cardboard and hang it from a thread through the centroid, the triangle would lie flat. This is the centre of gravity of the triangle.

3. Construct a square whose corners just touch the inside of the circle.

Then turn your square into an octagon.

4a) Construct a (non-square) rhombus with the given line as one side.

4b) Construct a square with the given line as one side.
5.

Use the above angles (and no protractor!) to construct: (a) angle $3 b$
(b) angle $(a+b) / 2$
6. Construct:
(a) a 30° angle (Remember: no protractor!)
(b) a 45° angle
(c) a 75° angle

7a) Construct a hexagon with this line as the side length.
(b) Inscribe a hexagon in the circle.

Three very good on-line sources of demonstrations, printable instructions, \& worksheets:
mathopenref.com
mathsisfun.com/geometry/constructions.html
whistleralley.com/construction/reference.htm

