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Abstract
We give a universal method of inducing a Poisson structure on a sin-
gular reduced space from the Poisson structure on the orbit space
for the group action. For proper actions we show that this reduced
Poisson structure is nondegenerate. Furthermore, in cases where the
Marsden-Weinstein reduction is well-defined, the action is proper, and
the preimage of a coadjoint orbit under the momentum mapping is
closed, we show that universal reduction and Marsden-Weinstein re-
duction coincide. As an example, we explicitly construct the reduced
spaces and their Poisson algebras for the spherical pendulum.

1 Introduction

Reduction of the order of mechanical systems with symmetry is a venerable
topic dating back to Jacobi, Routh and Poincaré. Although reduction in the
regular case is well understood [1, 2], interesting and important applications
continue to arise [3, 4]. (See also [5] for a comprehensive exposition.) The
singular case has received much less attention, despite the growing realization
that it is the rule rather than the exception. (See for instance [6–11].) For
example, the solution spaces of classical field theories are invariably singular
and the ramifications of this have only recently begun to be explored [12, 13].
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Singularities also play an increasingly critical role in understanding the be-
havior of simple mechanical systems, such as the photon [14], the Lagrange
top [15], coupled rigid bodies [16], particles with zero angular momentum
[17] and even homogeneous Yang-Mills fields [18].

The central ingredient in the reduction of a mechanical system with sym-
metry is the construction of a symplectic reduced space of invariant states.
This reduction process can be formulated abstractly as follows. Let (M,ω)
be a symplectic manifold and G a Lie group with Lie algebra G. Suppose
that there is a Hamiltonian action of G on (M,ω) with an Ad∗-equivariant
momentum mapping J : M −→ G∗. We consider the problem of inducing
symplectic structures on the reduced spaces

Mµ = J−1(µ)/Gµ

as µ ranges over J(M) ⊆ G∗. Here Gµ is the isotropy group of µ under
the coadjoint action of G on G∗. Marsden and Weinstein [19] solved this
problem in “regular” cases. (See also [20].) Specifically they showed that if
µ is a weakly regular value of J and if Gµ acts freely and properly on J−1(µ),
then Mµ is a symplectic quotient manifold of J−1(µ) in a natural way.

This Marsden-Weinstein reduction breaks down in singular situations. In
this context various reduction techniques were developed and studied in [21]
and [22]. Unfortunately these alternative reductions are not always applica-
ble, and so it is sometimes necessary to switch from one reduction technique
to another as µ varies in J(M). Obviously this would cause havoc in the
context of perturbation theory. Even worse, when these reduction proce-
dures apply, they do not necessarily agree. Other techniques give reduced
Poisson algebras which, however, are not always function algebras on Mµ.

We note that the reduction procedure of Śniatycki and Weinstein [23] suffers
this difficulty.

The purpose of this paper is to present a new reduction procedure which
assigns a Poisson structure to each reduced space Mµ, even in the presence
of singularities. The salient features of this reduction are that:

(1) it always works;
(2) it is natural;
(3) it can be applied uniformly to every Mµ for every µ ∈ J(M).

One can regard it as a universal method of reduction. As such it has advan-
tages over the other singular reduction procedures discussed above.
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As this paper was being written, conversations with P. Dazord [24] in-
dicated that he has independently discovered ideas similar to the notion of
universal reduction treated here. However, his techniques and results differ
from ours in several respects.

The notation and terminology are explained in the appendix.

2 Universal reduction

Let (M,ω), G and J be as in §1. Our reduction procedure is motivated by
the following commutative diagram:

J−1(µ) ↪→ M
πµ ↓ ↓ π
Mµ

iµ−→ M/G .

(1)

Here π and πµ are the G- and Gµ-orbit projections. The map iµ is defined by
associating, to each point mµ ∈Mµ, the G-orbit in which π−1

µ (mµ) lies. Con-
sequently iµ ◦ πµ = π|J−1(µ). An easy argument using the Ad∗-equivariance
of J shows that iµ is one to one. In fact iµ is a homeomorphism of Mµ onto
π(J−1(µ)). In what follows we will identify Mµ with its image under iµ.
Note that Mµ is also π(J−1(Oµ)) where Oµ is the G-coadjoint orbit through
µ. Observe that we make no assumptions regarding the regularity of J or
the smoothness of either Mµ or M/G.

The key observation is thatM/G is a Poisson variety. The Poisson bracket
{ , }

M/G
on C∞(M/G) is given by

{f, h}
M/G

(π(m)) = {f ◦ π, h ◦ π}
M

(m)(2)

where { , }
M

is the Poisson bracket on M associated with ω. This definition

makes sense since C∞(M/G) = C∞(M)G is a Lie subalgebra of C∞(M).
This allows the possibility of inducing a Poisson structure on each reduced
space Mµ by restricting the Poisson structure on M/G. Our main result is
the observation that reduction by restriction always works.
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Theorem 1 For each µ ∈ J(M), Mµ inherits the structure of a Poisson
variety from M/G.

Proof: For each pair of Whitney smooth functions fµ, hµ ∈ W∞(Mµ) set

{fµ, hµ}
µ

= {f, h}
M/G
|Mµ(3)

where f, h are any smooth extensions of fµ, gµ to M/G. Equation (3) defines
a Poisson bracket { , }

µ
on W∞(Mµ), provided we can show that its right

hand side is independent of the choice of extensions f, h. This amounts
to showing that the ideal I(Mµ) of smooth functions vanishing on Mµ is a
Poisson ideal in C∞(M/G), that is,

{C∞(M/G), I(Mµ)}
M/G
⊆ I(Mµ).(4)

Since C∞(M/G) = C∞(M)G and Mµ = π(J−1(Oµ)), equation (4) is equiva-
lent to

{C∞(M)G, I(J−1(Oµ))G}
M
⊆ I(J−1(Oµ))G,(5)

where I(J−1(Oµ))G is the ideal of smooth G-invariant functions which vanish

on J−1(Oµ). Let F,H ∈ C∞(M)G with H|J−1(Oµ) = 0. We must show that
for every m ∈ J−1(Oµ),

{F,H}
M

(m) = −XF H(m) = 0.(6)

Now for every ξ ∈ G,

{Jξ, F}
M

= −ξ
M
F = 0,

where Jξ(m) = J(m)(ξ). The first equality follows from the definition of
the momentum mapping J , while the second follows from F ∈ C∞(M)G.
Consequently for every ξ ∈ G, Jξ is constant along the integral curves of XF .
Hence the integral curve t −→ ϕFt (m) lies in J−1(J(m)). This proves

H(ϕFt (m)) = 0.(7)

Differentiating (7) with respect to t and evaluating at t = 0 gives (6).
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In this fashion each orbit space Mµ is naturally equipped with a Poisson
structure. The corresponding reduced Poisson algebra is (W∞(Mµ), { , }

µ
).

It follows from the definitions that the underlying function space can be
represented as

W∞(Mµ) = C∞(M/G)/I(Mµ)

= C∞(M)G/I(J−1(Oµ))G

= C∞(M)G/I(J−1(µ))
G

where I(J−1(µ))
G

is the ideal of smooth G-invariant functions on M which
vanish on J−1(µ). In the last equality we have used the fact that J−1(Oµ) =
G · J−1(µ), which is a consequence of the Ad∗-equivariance of J .

Formally we see that reduction in singular cases works exactly as it does
in regular cases. We caution, however, that the results of singular reduction
may seem a bit strange. For example, in the regular case, one knows that
the reduced Poisson algebra is nondegenerate in the sense that it contains no
nontrivial elements which Poisson commute with everything, that is, there
are no nontrivial Casimirs. This is not necessarily so in the singular case
without additional assumptions. Likewise in the regular case Mµ is a finite
union of symplectic leaves of M/G. This also is no longer true if the reduced
algebra has nontrivial Casimirs. We illustrate these remarks with the follow-
ing example. Lift the irrational flow on T 2 to an R-action on T ∗T 2. Here Mµ

may be identified with T 2/R × {µ}. The Poisson algebra consists entirely
of Casimirs, some nontrivial. Certainly Mµ is not “symplectic”. Note that
the symplectic leaves of T ∗T 2/R are just points. (See [21, example 3.4] for
more details.) These kinds of behavior cannot occur if the action is proper.
When this is the case, we will show in §3 that the reduced Poisson bracket
is nondegenerate.

If G is noncompact, we encounter another phenomenon which can arise
even in the regular case. For example, let M = T ∗G with G acting on M
by the lift of left translation. Let J : M −→ G∗ be the momentum map
given by J(αg) = R∗gαg for αg ∈M . Every µ ∈ G is a regular value of J and
Mµ = J−1(µ)/Gµ is symplectically diffeomorphic to Oµ with its Kostant-
Kirillov symplectic structure [1]. On the other hand, T ∗G/G is isomorphic
as a Poisson manifold to G∗ with its Lie-Poisson structure [4]. Thus the basic
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commutative diagram (1) becomes

J−1(µ) ↪→ T ∗G
πµ ↓ ↓ π
Oµ

iµ
↪→ G∗

where iµ is the inclusion mapping. Now suppose that Oµ is not closed in G∗.
Then the Marsden-Weinstein reduction, which views Oµ abstractly as a quo-
tient space, differs slightly from the universal reduction, which views Oµ as
a subset of G∗. This distinction is apparent on the level of function algebras.
The Marsden-Weinstein reduced function algebra is C∞(Oµ), whereas the
corresponding function algebra for the universal reduction is W∞(iµ(Oµ)).
In applications there are plausible arguments for the appropriateness of both
function spaces. In general relativity and other field theories, the momen-
tum for the gauge group is constrained to vanish for all physically admissible
states. (See [25] for more details.) This situation strongly suggests using the
Marsden-Weinstein reduced function algebra C∞(Oµ): the extension of func-
tions to nearby, physically unrealizable values of momentum is irrelevant. In
mechanics, however, momentum usually is a parameter which may be var-
ied. In such cases, Hamiltonians should be smoothly extendable to nearby
values, and therefore should lie in the universal reduced function algebra
W∞(iµ(Oµ)).

A concrete example of the above situation is obtained by taking G to be
the subgroup of Sl(2,R) consisting of matrices of the form(

a b
0 a−1

)
, a > 0.

Let

ξ1 =

(
1 0
0 −1

)
and ξ2 =

(
0 1
0 0

)
be the standard basis for G. Viewing (ξ1, ξ2) as coordinates on G∗, the coad-
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joint orbits can be pictured as

Figure 1. The coadjoint orbits of G on G∗.

There are two classes of orbits: (1) the open upper and lower half planes,
where Gµ = {e}, and (2) points along the ξ1-axis where Gµ = G.

3 Universal reduction for proper actions

In this section we give conditions which eliminate the unusual features in
the reduction process illustrated by the examples in §2. We will show that
if the action of G is proper, then the universal reduced Poisson algebras
(W∞(Mµ), { , }µ) are nondegenerate and hence give “symplectic structures”
on the reduced spaces Mµ. If in addition to having a proper action we know
that J−1(Oµ) is closed in M and that the Marsden-Weinstein reduction pro-
cedure applies, then the Marsden-Weinstein and universal reductions agree.
To obtain these results requires some machinery. As a byproduct we will
show that the singularities in J−1(µ) are quadratic.

We first recall some definitions. Throughout this section we will assume
that the action of G on M is proper. This means that

Φ : G×M −→M ×M : (g,m) −→ (g ·m,m)

is a proper mapping, that is, the preimage of any compact set is compact.
For m ∈ M , let Gm be the isotropy group of m. A (smooth) slice at m for
the G-action is a submanifold Sm ⊆M such that
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(i) G · Sm is an open neighborhood of the orbit Om; and
(ii) there is a smooth equivariant retraction

r : G · Sm −→ G ·m

such that Sm = r−1(m).
From these properties one easily derives the following (cf. [26], propositions
2.1.2 and 2.1.4):

(a) Sm is closed in G · Sm, which we call the sweep of Sm.
(b) m belongs to Sm.
(c) Sm is invariant under Gm.
(d) For g 6∈ Gm, the sets Sm and g · Sm are disjoint.
(e) Let σ : U −→ G be a local cross-section of G/Gm. Then

F : U × Sm −→M : (u, s) −→ σ(u) · s

is a diffeomorphism onto an open subset of M .
In the literature a slice is sometimes defined by requiring (a-e) or (i) and
(a-d); these definitions are equivalent to that given above.

Proposition 1 There is a slice for the G-action at each m ∈ M . Each
isotropy group Gm is compact, and M/G is Hausdorff.

Proof: The first statement follows immediately from proposition 2.2.2 and
remark 2.2.3 of [26]. The fact that Gm is compact is a direct consequence of
the properness of the action, since Gm = ρ(Φ−1(m,m)) where ρ(g,m) = g.
Finally, since Φ is proper, it is a closed mapping. Now apply proposition
4.1.19 of [1] to conclude that M/G is Hausdorff.

Remark: Palais’ definition of proper action [26] differs from ours, but a
straightforward exercise in point set topology shows that the two definitions
are equivalent.

The existence of slices for the G-action has several important conse-
quences. One is that it guarantees that there are enough smooth G-invariant
functions to separate orbits. This is a corollary of the following proposition.

Proposition 2 Let N be any G-invariant subset of M and suppose that
f ∈ W∞(N) is constant on each G-orbit. Then there is a smooth G-invariant
extension F of f with F ∈ C∞(M)G and F |N = f .
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Proof: The main ideas of this proof appear in Palais’ argument showing the
existence of an invariant Riemannian metric for a smooth proper action ([26],
theorem 4.3.1). We will pick a set of local slices whose sweeps are a locally
finite open cover of M , and then construct a G-invariant partition of unity
subordinated to this cover. The properties of slices allow us to extend f as
desired on each sweep. Then we patch these local extensions together using
the partition of unity.

As M/G is locally compact, σ-compact, and Hausdorff, we can choose
a sequence of points mi and slices Si at these points such that {π(Si)} is
a locally finite cover of M/G. Then {G · Si} is a locally finite cover of M .
Furthermore M/G is normal, so we may assume that the slices were chosen
so that each mi has a relatively compact neighborhood Ni ⊆ Si such that
{π(Ni)} also covers M/G. On each slice Si construct a function h̃i which
is positive on Ni and has compact support in Si. As Gmi is compact, we
may average over its orbits to get an invariant function on Si. (Here we have
used both proposition 1 and property (c) of the slice.) By properties (d)
and (i) of the slice, we may extend h̃i to the sweep and then to all of M
by requiring it to be G-invariant and to vanish outside of the sweep. Now
by the local finiteness of the covering by sweeps, the h̃i can be normalized
to a G-invariant partition of unity hi. That is, let hi = h̃i/

∑
j h̃j, so that∑

j hj = 1 at all points of M .
To extend f , we first define a function Fi on each sweep G · Si. If N ∩ Si

is empty, set Fi = 0. Otherwise, we can extend f |Si ∩ N smoothly to Si
because f belongs to W∞(N) and Si is a submanifold of M . As above we
can average over the orbits of the isotropy group on Si and extend to a G-
invariant function fi on the sweep. Now define Fi belonging to C∞(M)G

by setting Fi = hi · fi on the sweep and Fi = 0 elsewhere. It is clear that
F =

∑
i hi · Fi has the desired properties.

Corollary 1 C∞(M)G separates G-orbits in M .

Proof: Let N = On ∪ Om and let f = 1 on Om and f = 0 on On; such a
function exists and belongs to W∞(N) since these orbits are closed, embed-
ded submanifolds of M (because the action is proper). Thus by proposition
2, f has an invariant extension F which separates Om and On.

Another consequence of the existence of slices is that the singularities of
J must have a particularly simple form.
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Proposition 3 For each µ ∈ J(M), the singularities of J−1(µ) are quad-
ratic.

Proof: We first reduce to the case µ = 0 by the following standard con-
struction (see theorem 4.1 of [13]). Define an action of G on M × Oµ by
(g, (m, ν)) −→ (g · m,Ad∗g−1ν). This action is proper because the original
action on M is. Then give M ×Oµ the symplectic structure Θ = π∗1ω− π∗2Ω
where ω is the symplectic structure on M , Ω is the Kostant-Kirillov sym-
plectic structure on Oµ, and πi is the projection of M ×Oµ on the ith factor.
Note that on (M ×Oµ,Θ) the G-action is Hamiltonian with Ad∗-equivariant
momentum mapping J : M×Oµ −→ G∗ given by J (m, ν)(ξ) = Jξ(m)−ν(ξ)
for all ξ ∈ G.

The level sets J−1(µ) and J −1(0) are closely related. In fact we can
construct a local diffeomorphism

α : M × U −→M × U ,

where U is a neighborhood of µ ∈ Oµ, such that

α(J−1(µ)× U) = J −1(0) ∩ (M × U).

To do this use a local section for G/Gµ to construct a map β : U −→ G
such that β(µ) is the identity element of G and Ad∗β(ν)−1µ = ν. Then define
α(m, ν) = (β(ν)·m, ν). It follows easily that α is a local diffeomorphism. The
equivariance of the action implies that J(m) = µ if and only if J (α(m, ν)) =
0 for all ν ∈ U . Thus J−1(µ) has a quadratic singularity if and only if J −1(0)
has.

For the case µ = 0, the result follows immediately from [8]; we only
need to confirm that the hypotheses of that paper are satisfied. By theorem
4.3.1 of [26], a smooth proper action admits an invariant Riemannian metric.
The usual polarization construction allows us to assume that the metric and
symplectic structures are compatible in the sense of being related by means
of a G-invariant almost complex structure (cf. p.8 of [27]). By proposition
1, there is a slice at each point. Also by proposition 1, the isotropy group of
each point is compact, so we can construct a metric on the dual Lie algebra
which is invariant under the coadjoint action of the isotropy group. Thus by
theorem 5 of [8] the singularities of J−1(0) are quadratic.

Since the singularities in J−1(µ) are quadratic, we have
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Corollary 2 Each J−1(µ) is locally path connected. in the proof of the
proposition, it case µ = 0. Now connected as quadratic

In fact proposition 3 shows that nearby points of J−1(µ) can be connected
by piecewise smooth curves in M lying in J−1(µ). With these results in hand,
we are ready to prove the main results of this section.

Theorem 2 Let G act properly on M . Then for each µ ∈ J(M) the reduced
Poisson algebra (W∞(Mµ), { , }µ) is nondegenerate.

In other words, each Casimir in W∞(Mµ) is locally constant. Thus in the
context of universal reduction we are able to answer a question of Weinstein
[4, p.429].

Proof: Suppose that cµ ∈ W∞(Mµ) is a Casimir. This means that for all

H ∈ C∞(M)G

{C,H}
M
|J−1(Oµ) = 0,

where C is any smooth G-invariant function M with C|J−1(Oµ) = cµ ◦ π.
Since by Ad∗-equivariance J−1(Oµ) = G · J−1(µ), this is equivalent to

{C,H}
M
|J−1(µ) = −(XC H)|J−1(µ) = 0.(8)

By corollary 1 the G-invariant smooth functions separate G-orbits on M .
Thus (8) implies that XC |J−1(µ) is tangent to the G-orbits in J−1(µ), that is,
at each m ∈ J−1(µ) there is ξ ∈ G such that XC(m) = ξM(m). Equivalently,

dC(m) = dJξ(m).(9)

Since by corollary 2 J−1(µ) is locally path connected, equation (9) implies
that C is locally constant on J−1(µ) and hence that cµ is locally constant on
Mµ.

Theorem 3 Suppose that G acts properly on M , J−1(Oµ) is closed in M ,
and the Marsden-Weinstein reduction is well-defined. Then the Marsden-
Weinstein and universal reductions are the same.

Proof: The reduced spaces are the same and both Poisson brackets descend
from that onM , so the only question is whether the reduced function algebras
are the same. For the Marsden-Weinstein reduction, the function algebra is

C∞(Mµ) = C∞(J−1(µ))
Gµ = C∞(J−1(Oµ))G.
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As J−1(Oµ) is closed, any smooth function on J−1(Oµ) has a smooth exten-
sion, and by proposition 2 we may assume that the extension is G-invariant.
Thus

C∞(J−1(Oµ))G = C∞(M)G/I(J−1(Oµ))G.
But the left hand side of the preceding equation is C∞(Mµ) while the right
hand side is W∞(Mµ), so the Marsden-Weinstein and universal reduced func-
tion algebras coincide.

The results of this section demonstrate that proper actions are rather well
behaved as far as reduction is concerned. In particular theorem 2 shows that
the orbit space M/G for such an action is always partitioned into symplectic
leaves, these being the connected components of the reduced spaces Mµ.

4 Universal reduction for compact groups

In this section we briefly discuss universal reduction when G is a compact
Lie group. This is the nicest of all possible situations, because theorems 2
and 3 apply.

According to a recent result of Gotay and Tuynman [28], every symplectic
manifold of finite type which admits a Hamiltonian action of a compact
(connected) Lie group G can be obtained by equivariant reduction from a
linear symplectic action of G on R2n with its standard symplectic structure
ω. Therefore, without loss of generality, we may suppose that M = R2n

with its standard symplectic form ω and that G is a subgroup of the group
of linear symplectic mappings of R2n onto itself. This symplectic G-action
is Hamiltonian because the mapping J : R2n −→ G∗ given by J(m)ξ =
1
2
ω(ξR2n(m),m) for every ξ ∈ G is an Ad∗-equivariant momentum mapping

[29].
To construct the G-orbit space R2n/G we use invariant theory. Since G

is compact and acts linearly on R2n, the algebra of G-invariant polynomials
is finitely generated [30]. Let σ1, . . . , σk be a set of generators. Define the
Hilbert map for the G-action by

σ : R2n −→ Rk : m −→ (σ1(m), . . . , σk(m)) .
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Since G is compact, σ separates G-orbits [31]. Therefore σ(R2n) is the G-
orbit space R2n/G. Because σ is a polynomial mapping, σ(R2n) is a semial-
gebraic subset of Rk, by the Tarski-Seidenberg theorem [32].

According to Mather’s refinement of Schwarz’s theorem [33], the mapping

σ∗ : C∞(Rk) −→ C∞(R2n)
G

: f −→ f ◦σ is split surjective. An easy diagram
chase shows that the space of smooth functions on R2n/G is isomorphic as
a Fréchet space to the space of Whitney smooth functions on R2n/G ⊆ Rk.
We know that the space of smooth functions on the orbit space has a Poisson
bracket { , }

R2n/G
. The invariant theoretic construction of R2n/G gives rise

to the question: is there a Poisson bracket { , }
Rk

on C∞(Rk) such that

C∞(R2n/G) is a Poisson subalgebra? In all known examples, the answer is
yes.

We can identify the reduced space Mµ with σ(J−1(Oµ)). Moreover,
J−1(Oµ) is an algebraic variety, since J is a polynomial mapping andOµ ⊆ G∗
is an algebraic variety. Consequently, Mµ = σ(J−1(Oµ)) is a semialgebraic
variety, which is a subvariety of the orbit space R2n/G. By theorem 1 we
know that we have a Poisson bracket on the space of Whitney smooth func-
tions on Mµ. Comparing this with [21], in particular propositions 5.5, 5.6,
and 5.7, we see that in the present case universal reduction agrees with geo-
metric reduction and also Dirac reduction, when the latter applies. It then
follows from either theorem 2 or proposition 5.9 of [21] that the Poisson struc-
ture on Mµ is nondegenerate. In [21] one can find an example which shows

that universal reduction can differ from the Śniatycki-Weinstein reduction
even in the case of a compact linear group action.

5 The spherical pendulum

To make this somewhat abstract discussion more concrete, we use invariant
theory to construct the reduced spaces and Poisson algebras occurring in the
spherical pendulum. For other treatments see [34, 35].

Consider the linear symplectic action of S1 on (TR3, ω) defined by

Φ : S1 × TR3 −→ TR3 : (t, (x, y)) −→ (Rt x,Rt y)
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where

Rt =

 cos t sin t 0
− sin t cos t 0

0 0 1

 .

Φ leaves the subspace defined by {x1 = x2 = y1 = y2 = 0} fixed and is the
diagonal action of SO(2,R) on R2 × R2, which is the subspace defined by
{x3 = y3 = 0}. A theorem of Weyl [36] states that the algebra of S1-invariant
polynomials is generated by

τ1 = x3 τ3 = y2
1 + y2

2 τ5 = x2
1 + x2

2

τ2 = y3 τ4 = x1y1 + x2y2 τ6 = x1y2 − x2y1.

Later calculations are simplified by using the equivalent set of generators

σ1 = x3 σ3 = y2
1 + y2

2 + y2
3 σ5 = x2

1 + x2
2

σ2 = y3 σ4 = x1y1 + x2y2 σ6 = x1y2 − x2y1.

The Hilbert map for the S1-action is

σ : TR3 −→ R6 : m −→ (σ1(m), . . . , σ6(m)) .

Here the σi satisfy the relation

σ2
4 + σ2

6 = σ5(σ3 − σ2
2)(10)

together with

σ3 ≥ 0 & σ5 ≥ 0.(11)

As is shown in [36] these are the only relations. Thus the S1-orbit space
TR3/S1 is the semialgebraic variety σ(TR3) definedby (10) and (11).

Now observe that

TS2 = {(x, y) ∈ TR3 |x2
1 + x2

2 + x2
3 = 1 & x1y1 + x2y2 + x3y3 = 0}

is invariant under Φ. Moreover ω|TS2 is a symplectic form on TS2. Therefore
the S1-orbit space TS2/S1 of Φ is the semialgebraic variety σ(TS2) defined
by (10), (11) and

σ5 + σ2
1 = 1

σ4 + σ1σ2 = 0.(12)
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Solving (12) for σ5 and σ4, and substituting the result into (10) gives

σ(TS2) = {(σ1, σ2, σ3, σ6) ∈ R4|
σ2

1σ
2
2 + σ2

6 = (1− σ2
1)(σ3 − σ2

2), |σ1| ≤ 1 & σ3 ≥ 0}.

The S1 action Φ has the angular momentum mapping

L : TR3 −→ R : (x, y) −→ x1y2 − x2y1 = σ6.

Set J = L|TS2. Then the reduced space

M` = σ(J−1(`)) = σ(L−1(`) ∩ TS2)

is the semialgebraic subvariety of σ(TS2) given by

σ6 = `.(13)

Equivalently M` is the semialgebraic variety in R3 defined by

(1− σ2
1)σ3 = σ2

2 + `2

with |σ1| ≤ 1 & σ3 ≥ 0. When ` 6= 0, M` is diffeomorphic to R2, being the
graph of the function

σ3 =
σ2

2 + `2

1− σ2
1

, |σ1| < 1.

When ` = 0, M0 is not the graph of a function, because it contains the
vertical lines {(±1, 0, σ3) ∈ R3|σ3 ≥ 0} (see figure 2). However, this singular
space is still homeomorphic to R2.

Figure 2. The reduced spaces M`.
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Next we compute the Poisson structure on TS2/S1. We could do this
using (2) and the symplectic form on TS2. However, we proceed in a slightly
different (but equivalent) way. A straightforward calculation shows that
C∞(R6) with coordinates (σi) has a Poisson bracket whose structure ma-
trix is the skew symmetric matrix, half of which is given in table 1.

{A,B}R6 σ1 σ2 σ3 σ4 σ5 σ6 B
σ1 0 1 2σ2 0 0 0
σ2 0 0 0 0 0
σ3 0 −2(σ3 − σ2

2) −4σ4 0
σ4 0 −2σ5 0
σ5 0 0
σ6 0

A

Table 1. Structure matrix for the Poisson bracket on R6.

Another calculation shows that C1 = σ2
4 + σ2

6 − σ5(σ3 − σ2
2) and C2 = σ6

are Casimirs. Since σ(TR3) ⊆ R6 is defined by C1 = 0, the Poisson bracket
on TR3/S1 has the same structure matrix as the Poisson bracket on R6.
Because

{σ5 + σ2
1, σ4 + σ1σ2}

σ(TR3)
|σ(TS2) = 2(σ5 + σ2

1)|σ(TS2) = 2,

σ(TS2) is a cosymplectic subvariety of σ(TR3). Consequently, the Poisson
bracket on σ(TS2) = TS2/S1 may be computed using the Dirac process [37].
The structure matrix of { , }

TS2/S1
is given in table 2.
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{A,B}TS2/S1 σ1 σ2 σ3 σ6 B
σ1 0 1− σ2

1 2σ2 0
σ2 0 −2σ1σ3 0
σ3 0 0
σ6 0

A

Table 2. Structure matrix for the Poisson bracket on TS2/S1.

Since the reduced space M` ⊆ σ(TS2) is defined by C2 = `, the Poisson
bracket on M` has the same structure matrix as given in table 2 (with the
last row and column deleted). If we set

ψ(σ1, σ2, σ3) = σ3(1− σ2
1)− σ2

2 − `2,(14)

then a careful look at table 2 shows that

{σi, σj}
`
=

∑
k

εijk
∂ψ

∂σk
(15)

{f`, g`}
`
= (∇f` ×∇g`) · ∇ψ(16)

via the calculation:

{f`, g`}
`

= df` ·Xg` =
∑
j

∂f`
∂σj

dσj ·Xg`

=
∑
j

∂f`
∂σj
{σj, g`}

`
= −

∑
j

∂f`
∂σj

dg` ·Xσj

=
∑
j,k,i

∂f`
∂σj

∂g`
∂σk

εjki
∂ψ

∂σi

= (∇f` ×∇g`) · ∇ψ.

Therefore Hamilton’s equations for h` ∈ W∞(M`) are

σ̇ = ∇h` ×∇ψ

17



where × is the vector product on R3, because

σ̇i = {σi, h`}
`

= (∇σi ×∇h`) · ∇ψ
= (∇h` ×∇ψ) · ∇σi
= (∇h` ×∇ψ)

i
.

So far we have only treated the S1 symmetry of the spherical pendulum.
To treat the dynamics, we consider the Hamiltonian

H : TR3 −→ R : (x, y) −→ 1

2
(y2

1 + y2
2 + y2

3) + x3.

When restricted to TS2, H is the Hamiltonian of the spherical pendulum.
Since H is S1-invariant, it is a function of the invariants, namely

H =
1

2
σ3 + σ1.(17)

The reduced Hamiltonian on M` is h`, given also by (17). A short calculation
shows that the critical points of h` occur only when σ2 = 0. Geometrically
they occur in the σ1, σ3-plane when the line defined by h` = e is tangent to
the fold curve of the projection of M` on the σ1, σ3-plane (see figure 3).

Figure 3. The darkened curve is the fold curve of
the projection of M` on the {σ2 = 0} plane. The
dots are the critical points of h` on M` ∩ {σ2 = 0}.
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Over every point on a line in figure 4 lie two points of M` except when (i) the
line intersects the darkened fold curve where there is only one point of M`

or (ii) outside the darkened curve where there are no points of M`. Hence
P`, P0 are stable equilibrium points of Xh` , and correspond to stable periodic
orbits of XH . On the other hand, P ∗0 is an unstable equilibrium point of XH .
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6 Appendix: Notation and terminology

We deal with varieties in a generalized sense. For us a variety consists of a
topological space X together with a choice of a set of “smooth” functions
C∞(X) ⊆ C0(X). This choice defines a differential structure on X. If
π : X −→ Y is a surjection of a variety X onto a space Y , we make Y a
quotient variety of X by putting the quotient topology on Y and taking

C∞(Y ) = {f ∈ C0(Y )|f ◦ π = F for some F ∈ C∞(X)}.

Similarly if Y is a subset of a variety X, we make Y into a subvariety of X
by putting the relative topology on Y and taking C∞(Y ) = W∞(Y ), where

W∞(Y ) = {f ∈ C0(Y )|f = F |Y for some F ∈ C∞(X)}

are the Whitney smooth functions on Y . A map f : X −→ Y between
varieties is smooth provided it is continuous and f ∗C∞(Y ) ⊆ C∞(X). If
Y ⊆ X is a subvariety, then the ideal I(Y ) ⊆ C∞(X) of Y consists of all
smooth functions on X which vanish when restricted to Y .

Let G be a Lie group, which acts smoothly on a variety X. Let Y =
X/G be the corresponding orbit space. From the definitions it follows that
C∞(X/G) = C∞(X)G, the space of G-invariant smooth functions on X.
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421-434.

[5] Marsden, J. and Ratiu, T., Mechanics and Symmetry, (to appear).

[6] Cushman, R., Reduction, Brouwer’s Hamiltonian and the critical incli-
nation, Celest. Mech., 31 (1983), 401-429.

[7] Cushman, R., A survey of normalization techniques applied to perturbed
Keplerian systems, (to appear in Dynamics Reported).

[8] Arms, J., Marsden, J., and Moncrief, V., Symmetry and bifurcations of
momentum mappings, Comm. Math. Phys., 78, (1981), 455-478.

[9] van der Meer, J.C., The Hamiltonian Hopf bifurcation, Lect. Notes in
Math., 1160, Springer Verlag, New York, 1985.

[10] Kummer, M., On resonant Hamiltonian systems with finitely many de-
grees of freedom, Lect. Notes in Phys., 252, (1986), 19-31.

[11] Kummer, M., Realizations of the reduced phase space of a Hamiltonian
system with symmetry, Lect. Notes in Phys., 252, (1986), 32-39.

[12] Marsden, J., Spaces of solutions of relativistic field theories with con-
straints, Lect. Notes in Math., 987, (1982), 29-43.

[13] Arms, J., Symmetry and solution set singularities in Hamiltonian field
theories, Acta Phys. Polon., B17, (1986), 499-523

20



[14] Gotay, M.J., Poisson reduction and quantization for the (n+1)-photon,
J. Math. Phys., 25, (1984), 2154-2159.

[15] Cushman, R. and Knörrer, H., The momentum mapping of the Lagrange
top, Lect. Notes in Math., 1139, (1985), 12-24.

[16] Patrick, G., The dynamics of two coupled rigid bodies in three space, (to
appear).

[17] Gotay, M.J. and Bos, L., Singular angular momentum mappings, J. Diff.
Geom., 24, (1986), 181-203.

[18] Gotay, M.J., Reduction of homogeneous Yang-Mills fields, (to appear in
J. Geom. Phys.).

[19] Marsden, J. and Weinstein, A., Reduction of symplectic manifolds with
symmetry, Rep. Math. Phys., 5, (1974), 121-130.

[20] Meyer, K., Symmetries and integrals in mechanics, in: Dynamical Sys-
tems, ed. M. Peixoto, 259-272, Academic Press, New York, 1973.

[21] Arms, J., Gotay, M.J., and Jennings, G., Geometric and algebraic re-
duction for singular momentum mappings, Adv. in Math.. 79, (1990),
73-103.
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