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Theorems are proved that establish the unitary equivalence of the extended and reduced phase
space quantizations of a constrained classical system with symmetry. Several examples are

presented.

I. INTRODUCTION

Among classical dynamical systems, those which are
“constrained” are often the most important and interesting.
Typically, constraints arise when the equations of motion
are overdetermined or when symmetries are present. In the
first circumstance the constraints take the form of restric-
tions on the admissible initial data for the evolution equa-
tions of the system. The divergence constraints of elec-
tromagnetism and Yang-Mills theory and the super-
Hamiltonian and supermomentum constraints of general
relativity are standard examples. In the second case the con-
straints consist of a posteriori specifications of the constants
of motion associated with the invariances of the system. The
mass and charge constraints in the Kaluza—Klein formalism
for a relativistic charged particle are of this type, as is, for
example, fixing the angular momentum of a rotationally in-
variant system.

All constrained systems can be described naturally in
terms of symplectic geometry."? Beyond this, however,
many such systems have a rich group-theoretical structure.
It is an amazing fact that the constraints are usually given by
J = const, where J is a momentum mapping for an appropri-
ately chosen group action.’ These observations lead us to
model a constrained dynamical system as follows.

Let (X,») be a symplectic manifold that represents the
“extended” phase space of a system. Suppose that Gis a Lie
group which acts symplectically on (X,») and thatJ: X—2*
is a momentum mapping for this action, where ¢ is the Lie
algebra of G. We interpret G as a *“symmetry” or “gauge”
group; J is the corresponding conserved quantity. A con-
strained classical system with symmetry is given by
(X,0,G,J) along with a fixed choice of uez*. The constraints
are then J =y and J ~'(u) C X is the constraint set.

One may reduce the number of degrees of freedom of a
constrained system by factoring out the symmetries of the
constraint set. Subject to certain technical assumptions,
Marsden and Weinstein* showed that the resulting orbit
space X, . is a quotient manifold of J ~'(x) and inherits a
symplectic structure @, from that on X. The symplectic
manifold (X, ,@, ) is the reduced phase space of invariant
states of the system.

There are thus two symplectic manifolds associated to
each constrained system: the extended and reduced phase
spaces (X,w) and X @, ), respectively. Classically, there is
no formal distinction between working on (X,w) while car-
rying along the constraints versus solving the constraints,
reducing the system and working on (I’# @, ). But these two
approaches are not necessarily equivalent on the quantum
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level. This was recently emphasized by Ashtekar and Horo-
witz,” who showed that these two classical formalisms may
engender real and significant physical differences in the
quantum behavior of the system.

Recall that quantization associates to a phase space
(X,») a Hilbert space 5 of quantum states and to some
class of smooth functions fon X quantum operators £f on
&7 . For a constrained classical system one may, as indicated
above, quantize either the extended or the reduced phase
space. The purpose of this paper is to determine under what
conditions and in what sense these two quantizations will be
equivalent.

We first consider the extended phase space quantization
following Dirac.® The essential idea is that as the constraints
have not been eliminated classically, they must be enforced
quantum mechanically. This is possible if quantization pro-
vides a representation of ¢ on 5. Since the constraints are
given classically by J = y, it follows that the physically ad-
missible quantum states are those which belong to the sub-
space %, of % defined by

¥, ={Ve¥| 27 [¥] =uV¥}.

The situation is somewhat simpler for the reduced phase
space X ..+, ) as the constraints have already been solved
and the symmetries divided out. There are no restrictions to
be imposed on the quantum system and so, by construction,
the associated Hilbert space 7, . consists of all the physical-
ly admissible states of the system.

These two quantizations each yield spaces of “physical-
ly admissible quantum states” which in general will not coin-
cide. We may thus phase our question as follows: When will
K, and x, . be unitarily isomorphic? There are three sets of
obstructions to the existence of such an isomorphism, in-
volving (i) the naturality of the extended phase space quan-
tization, (ii) the compatibility of the extended and reduced
phase space quantizations, and (iii) the unitary relatedness
of the Hilbert space structures on ¥, and 7, .

The first impediment is whether in fact the quantization
of the extended phase space gives rise to a representation of
the Lie algebra & of G on 7. A necessary condition is that
J (1) be a coisotropic submanifold of (X,w). This ensures
the internal consistency of the quantization and effectively
restricts the allowable values of ueg*.

The next difficulty is to properly correlate the quantiza-
tions of the extended and reduced phase spaces. This can be
accomplished by requiring that the auxiliary structures on
(X,) necessary for quantization be G-invariant—provided
this is possible—for they will then project to compatible
quantization structures on (X, 1@y ).
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Physically, the above obstructions take the form of
“quantization conditions” and/or “superselection rules”
and place restrictions on the topology of G as well as the
choice of quantization structures. Once they have been over-
come, one obtains “smooth” quantizations of (X,w) and
(X,.@,), i.e., linear spaces of C* wave functions #° and
H,,, respectively. The final obstructions appear when one
introduces the quantum inner products on these spaces. It
may happen that 7, does not inherit an inner product from
#° and, when it does, it must be checked that an equivalence
of the underlying smooth quantizations extends to a unitary
isomorphism of the corresponding Hilbert spaces.

Substantial progress towards answering this question
has already been made by Gotay and Sniatycki,” Guillemin
and Sternberg,® Puta,’ Sniatycki,'® Vaisman,'' and Wood-
house.'? Because of the intricacy of the problem and the
vagaries of the quantization process, however, it is difficult
to obtain results in a completely general setting that provide
explicit information about concrete systems.

To rectify this, we concentrate in this paper on one spe-
cific class of constrained systems—those whose phase spaces
are cotangent bundles and whose groups act by point trans-
formations. There are numerous reasons for considering
such systems.

(1) They are the most common and hence the most
important physically. Indeed, all of the examples cited ear-
lier—with the exception of the mass constraint in the Ka-
luza—Klein theory—fall into this class.

(2) Cotangent bundles, along with Kéhler manifolds,
are exceptional examples of symplectic manifolds as they
have naturally defined polarizations (the vertical and anti-
holomorphic ones, respectively); this is a crucial advantage
insofar as quantization is concerned. Guillemin and Stern-
berg® have studied the Kihler case and so the results we
present here are, to some extent, complementary to theirs.

(3) Reduction keeps us within the cotangent bundle
category: subject to certain assumptions (which are in any
case necessary for quantization), the reduced phase space
will also be a cotangent bundle. We may therefore quantize
both the extended and reduced phase spaces using the corre-
sponding vertical polarizations. This means, in physicists’
terminology, that we always quantize in the “Schrodinger
representation.”

(4) We are able to obtain relatively “hard” results.
Namely, we can explicitly identify and construct the mo-
mentum mapping, the reduced phase space, and all of the
required quantization structures. The formalism we develop
will also enable us to detail precisely the various obstructions
discussed earlier as well as verify directly whether the as-
sumptions we impose are satisfied in specific cases. Thus our
general problem is reduced to a conceptually and computa-
tionally much simpler one.

The plan of attack is as follows. We consider systems of
the form (T *Q,w,G,J,ut), where G acts on T *Q by pullback
and u is Ad*-invariant. Applying the reduction technique of
Kummer,'? Satzer,'* and Abraham and Marsden,'® we show
that the reduced phase space is symplectomorphic to
T*(Q /G) (with a possibly noncanonical symplectic struc-
ture). These results are summarized in Sec. II.
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Sections III and IV form the heart of the paper. After
discussing some generalities on the quantization of con-
strained systems we quantize both the extended and reduced
phase spaces. In particular, we show that quantization does
indeed yield a representation of the symmetry algebra .

In the next section we construct a canonical unitary iso-
morphism between the two quantizations obtained in Sec.
III. We also prove that it is possible to quantize invariant
polarization-preserving functions in either formalism with
equivalent results.

The following section presents several examples and we
conclude with a discussion of possible generalizations of our
results.

Il. CONSTRAINED CLASSICAL SYSTEMS

We begin by reviewing some basic facts about group
actions, momentum mappings, and reduction. The main ref-
erences for what follows are Refs. 4, 15, and 16.

A. Hamiltonian G-spaces

Let G be a connected Lie group with Lie algebra & and
let ¥: G X @—Q be a smooth action of G on a manifold Q.
For each {ez, we denote by {,, the corresponding infinitesi-
mal generator on Q. The orbit of a point geQ is written G-q.
Recall that when @ is free and proper the orbit space Q0
= Q /G is a Hausdorff quotient manifold of Q and, further-
more, 7g: Q—Q is a left principal G-bundle.
Now suppose (X,w) is a symplectic manifold on which
G acts symplectically. A momentum mapping for this action
is a map J: X—¢* such that, for each {eg, the associated
function J, (x) = (J(x),{ ) satisfies

bxdo= —dJ, . 2.1
Then J is Ad *-equivariant provided
J(®, (x)) = Ad¥.J(x), 2.2)

for all geG, where Ad* is the coadjoint action of G on g*. If
an Ad*-equivariant momentum map J exists for the action
®, we call (X,0,G,J) a Hamiltonian G-space.

Let ueg* be a weakly regular value of J, so that the level
set J ~'(u) is a manifold with 7J ~'(u) = ker 7J. The fol-
lowing result relates the geometry of J ~' () with that of the
orbits of G and G,, where G, is the isotropy group of u
under the coadjoint action.

Proposition (2.1): For xeJ ~'(u),

(i) T.(G,x) =T (Gx)nTJ '(n),

and
(i) T, ') =T,(Gx).

Here “1” denotes the w-orthogonal complement.

By equivariance,J ~ ! (u) is stable under theaction of G,

so that the orbit space X . =J 7' (1)/G,, is well defined. Let

Juid ™ '(#)—X be the inclusion and 7,: J ~ '(u)—X, the
projection. The next result, due to Marsden and Weinstein,*
is central to the theory.

Theorem (Marsden—-Weinstein  reduction):  Let
(X,w,G,J) be a Hamiltonian G-space. If uez* is a weakly
regular value of J and the action of G,, onJ ~ '(u) is free and
proper, then there exists a unique symplectic structure @, on
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the manifold X, . such that m}@, = jto.

Remark: If the Marsden—Weinstein reduction proce-
dure fails [e.g., & is not weakly regular or (X 1@, ) does not
exist as a smooth symplectic manifold, as is the case in a
number ofimportant examples ], one canstill reduceJ ~' ()
on the level of Poisson algebras."’

B. The cotangent category

For the reasons cited in the Introduction, we restrict
attention to constrained classical systems that belong to the
“cotangent bundle category.” Reduction in this category
was first carried out by Satzer'* for u = 0 and then extended
to 2 #0 by Abraham and Marsden'® and Marsden.'® Subse-
quently, Kummer'? improved upon these results and put the
theory into its present form. Our presentation is drawn from
both Refs. 13 and 15.

Suppose that the system has configuration space Q and
symmetry group G. We assume that G carries a bi-invariant
metric and that @ is a free and proper left action of G on Q.
Let the extended phase space be X = T *Q, where 7, is the
cotangent bundle projection and w and © denote the canoni-
cal two- and one-forms on T *Q, respectively, with » = d©.
Theinduced symplecticaction T*®: G X T'*Q—T *Q, given
by

T*®(gp) =0, B,

is also free and proper. There is a natural Ad*-equivariant
momentum map for 7 *® defined by

J(B)5) =Ollreo(B))=B(Lo) - (2.3)

We refer to the Hamiltonian G-space (7 *Q,0,G,J) so
defined, along with a fixed choice of ueg*, as a constrained
cotangent system.

Regarding reduction, one of the main advantages of our
formalism is the following proposition.

Proposition (2.2): Every ucg* is a regular value of J.

Proof: Suppose that T;J was not surjective for some
peT*Q, in which case there exists {€p such that
(TgJ(v),6) =0 for all veTz(T*Q). Then (2.1) yields
@(§ 1+ (B),v) = 0 for all v and nondegeneracy implies that
S1sg (B) = 0, contradicting the fact that 7*® is free. W

EachlevelsetJ ~'(u) is therefore an imbedded subman-
ifold of T *Q. Furthermore, since T *® is free and proper and
G, isclosed in G, theactionof G, onJ ~ '(1) isalso free and
proper. This observation, combined with Proposition (2.2)
and the Marsden—Weinstein Theorem, give the following
proposition.

Proposition (2.3): J ~'(u) is reducible for every ueg*.

Insofar as the quantization of these systems is con-
cerned, however, it is not necessary to consider general
uegz*. We will see in Sec. III B that only those ¢ which are
“invariant” are relevant.

Definition: ueg* is invariant if Ad} (1) = p for all geG.

Equivalently, u is invariant iff G, = G. For such y the
reduction of J ~'(u) is particularly simple and elegant. We
first reduceJ ~'(0) and then transform the case 12 #0 to this;
note that & = 0 is always invariant.

Let @ = dO be the canonical symplectic structure on
T*Q, where 0 = Q/G.

Proposition (2.4): The reduced phase space ( T*Q (,@,)
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is symplectomorphic to (7 *Q0,@).

Proof: First note that the pullback bundle

7H(T*Q) =J~(0), (24)
where 75: Q—Q is the canonical submersion. Indeed,_since
Try (o) =0, a 1-form B on Q belongs to 73(7T*Q) iff
B(o) =0 iff BeJ ~'(0) by (2.3). Quotienting by G in
(2.4) then gives T*Q =~ T*Q .

It remains to show that the reduced symplectic form @,

on T*Q ,canbeidentified with@ on T*Q. Using (2.4) and
the induced commutative diagram

Jo
J~X0) T*Q
To - ’ T To ,
T*Q )

a straightforward computation establishes 740 = j*© and
consequently 7¥® = j#w. The result now follows from the
uniqueness of the reduced symplectic structure in the Mars-
den-Weinstein Theorem. ]
When u is nonzero but invariant, we first choose a left
connection a on the left principal G-bundle 7,: Q—0. Set
a, = pula.Thena, is G-invariant and, viewed as a one-form
on Q, takes values in J ~'(u). Construct the invariant sym-
plectic form Q, =  + 7% da,, on T*Q. The key step in the
transition from g = 0 to 2 #0 is the following proposition.
Proposition (2.5): There exists a G-equivariant presym-
plectomorphism of (J ~'(0), ¥, ) with (J ~' (), f*).
Proof: Define a diffeomorphism §,, of T*Q by

5,B)=F +a,lro(B). (2.5)
Since a,, is invariant §, is equivariant and, as J(a, ) =4,
é,, induces a diffeomorphism J ~1(0)—J ~'(u), which we
also denote by §,, .

Now &, is just translation along the fibers, so

620 =0 + 75a,
and hence &¥w=1{,. But this and the relation
Ju©8, = 6,0 joimply that§,, is a presymplectomorphism. B

Propositions (2.4) and (2.5) enable us to identify the
reduced manifolds 7*Q , for u invariant with T *Q. To
complete the reduction we have only to compute the reduced
symplectic forms @,,. _

Lemma (2.6): There exists a closed two-form F,, on Q
such that 73 F,, = da,,.

Proof: We first claim that da,, = uoDa, where Da is the
curvature of the connection a. To prove this, take the  com-
ponent of the Cartan structure equation

da(uw) = [a(u),a(v)] + Da(u,v)
and observe that
pela(u),a(v)] = plad,,, a(v))
= (ad¥,,p) (@)
vanishes as g is invariant. Thus da,, is horizontal. Since in
addition da,, is invariant and 7, is a submersion, de,, pro-
Jects to a two-form F,, on Q with the required properties. Bl

The reduction of (J ~'(0), j§12,,) is clearly (T*Qﬁ# ),
where
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Q, =0+ 5F, . (2.6)
Taking Proposition (2.5) into account and noting that, by
equivariance, §, passes to the quotient, we have proven the
following theorem.

Theorem (Kummer-Marsden—Satzer reduction): Con-
sider the constrained cotangent system (T *Q,0,G,Ju). If
p€g* is invariant then each choice of connection on Q de-
fines a symplectomorphism between the reduced phase
space ( T*Q ,,@,) and (T*0,Q,), where 0 = Q /G and
Q, is defined by (2.6).

In essence, the reduction of a cotangent bundle is again a
cotangent bundle. This fact will be of paramount importance
in the sequel.

Remarks: (1) It is crucial here that y be invariant.
When G, CG, T*Q , can only be identified with a sym-
plectic subbundle of T*(Q/G,) (cf. Refs. 13 and 15). In
other words, the invariance of u is necessary as well as suffi-
cient for the reduced manifold to be a cotangent bundle.

(2) In general the symplectic structure ﬁp on T*Q will
not be canonical due to the presence of the curvature term
F, . This “extra” term has been used as a means of introduc-
ing Yang-Mills-type interactions (see, e.g., Refs. 18 and 19
and the references contained therein for the details of this;
we shall encounter an instance of this phenomenon in our
study of the Kaluza-Klein theory in Sec. V C). However,
when Q carries a flat connection we may take {2, to be exact.

(3) Although the proof of the Kummer-Marsden—
Satzer Theorem required choosing a connection, this choice
is irrelevant. Other such choices simply lead to different, but

nonetheless symplectomorphic, realizations of ( 7*Q ,,
@, ). It is also possible to derive this theorem using a Rie-
mannian metric to obtain the required invariant J “Tw)-
valued one-form a,, (cf. Refs. 14 and 15). This approach
seems more cumbersome and less “physical” than the one
employed here, which is due to Kummer."?

(4) Montgomery?® has recently shown, subject to cer-
tain additional assumptions, that the Kummer-Marsden-
Satzer reduction procedure may be extended to the case
when @ is not free.

We close this section by noting that we may also reduce
observables: if feC = (T *Q) is invariant, then it projects to

T*Q ,,. To describe this function on T*Q,setf, =f°8,
and define f,eC=(T*Q) by f,°omo=/,. Since
fu0Jo=10°j,, it follows that f,, represents the reduced ob-
servable. In particular, if / is a Hamiltonian on (7'*Q,0)
then J,, is the “amended” Hamiltonian on (7*Q,Q1,,) (cf.
Refs. 14-16).

1. QUANTIZATION

To properly address the subtleties and complexities of
the transition from the classical to the quantal domain it is
essential to use a well-defined quantization technique. We
choose the geometric quantization framework of Kostant
and Souriau because it is formulated in terms of symplectic
geometry. In Sec. III A we briefly outline those elements of
this theory that are needed here, referring the reader to Snia-
tycki2! and Woodhouse'? for comprehensive expositions.
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A. Quantization structures

Let (X,0) be a 2n-dimensional symplectic manifold.
The supplementary structures needed for the geometric
quantization of (X,w) are a polarization,a prequantization
line bundle, and a metalinear frame bundle.

A (real) polarization of (X,w) is an involutive n-dimen-
sional distribution P on X such that P* = P.

A prequantization of (X,w) consists of a complex line
bundle /: L—X with a connection V such that

curvature V= — (1/h) [ *w, (3.1)

where % is Planck’s constant. A prequantization of (X,w)
exists iff the de Rham class of w/A in H*(X,R) is integral
and, if nonempty, the set of all prequantizations is parame-
trized up to equivalence by a principal homogeneous space
for the character group of 7, (X).

Remark: We make no distinction between L and its as-
sociated principal C*-bundle.

Fix a polarization P of (X,w) and let FP be the linear
frame bundle of P. It is a right principal GL(n,R)-bundle
over X. Let ML(n,R) be the n X n metalinear group, that is,
the set of all matrices of the form

M:(M O),
0 z

where MeGL(n,R) and 22 =det M. A metalinggr frame
bundle for Pis a right principal ML (n,R)-bundle FP over X
along with a 2:1 projection p: FP—FP such that the diagram

FP XxML(n,R) Fp
pXo P
FP XGL(n,R) FP

commutes, where the horizontal arrows are the group ac-
tions and o: ML (#,R)—GL(n,R) is the twofold projection
M—M.

The existence of a metalinear frame bundle is equivalent
to the vanishing of a class in H *(X,Z,) characteristic of FP
and, if nonempty, the set of all such is parametrized up to
equivalence by H ' (X,Z,).

Remark: We need not consider the more general meta-
plectic structures here since we will not be moving polariza-
tions.

Let A: ML{n,R)—C be the unique holomorphic square
root of the determinant function on GL(#,R) such that
A(I) = 1, where T is the identity. The bundle v/ A" P of
half-forms relative to P is the bundle associated to FP with
typical fiber C on which ML (#,R) acts by multiplication by
A. This bundle has a canonically defined partial flat connec-
tion covering P. Denote by ['(v/ A" P) the space of all
smooth sections of v/ A" P. Each veI' (1/ A" P) can be iden-
tified with a function v¥ : FP—C satisfying

vE(FM) = AM) ~'# ()
for all metaframesZef’P and MeML(#n,R).
Consider the bundle L ® v/ A" P. It carries a partial flat
connection covering Pinduced from those on L and v A"P.
A section YeI'(L @ v/ A" P) is said to be polarized if it is
covariantly constant along P. Let 5 be the subspace of
I'(L ® v/ A" P) consisting of polarized sections. Elements of

(3.2)
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¥ are interpreted as smooth quantum wave functions, i.e.,

F7 is the smooth quantum state space associated to (X,w) by

the geometric quantization procedure in the representation

defined by the polarization P.

We now turn to the quantization of classical observables

feC=(X). Suppose f preserves P in the sense that

T¢* (P) = P forallreR, where ¢’ is the flow of (the Hamilto-

nian vector field of) f, which we assume is complete. Then f
is quantizable as a first-order linear differential operator 2f
on 5. The mechanics of this are as follows. The flow ¢* has
a natural lift to L consisting of connection-preserving auto-

morphisms. On the other hand, ¢* operates on FP by push

forward of frames—this is well defined since fis Bolarization
preserving—and this flow automatically lifts to FP because p

is a 2:1 submersion. Assembling these, we obtain a one-pa-
rameter group of automorphisms of L ® v/ A"P that in turn
induces a one-parameter group of linear isomorphisms of
#, which we also denote by ¢* . Setting # = 4 /2, the quan-

tum observable 2fis then defined by

d
2f[¥] =iF— (&'V)|, -0 »
fIV] =i ar (¢ )lz_o

for all Y57

Remark: This technique is not applicable if the observa-
bles to be quantized do not preserve the polarization. One
must use the Blattner—Kostant-Sternberg kernels to quan-
tize such functions and the corresponding quantum opera-
tors—if they exist—will generally be more complicated.

Of principal interest is when X is a cotangent bundle
T *Q with the canonical symplectic structure @ = d©. We
study this case in detail and present several formulas which
will be useful later.

Let (¢,p;), i = 1,...,n, be a canonical bundle chart on
UCT*Q. Then

6|U= 2 p:dq’

i=1

(3.3)

(3.4)
and

w|U= Y dp,Ndq' . (3.5)
i=1

A cotangent bundle carries a naturally defined polariza-
tion: the vertical polarization V = ker Tr,. Locally,

_ [ J d ]
V =span {—,..., .
dp, dp,
Since w is exact, T *Qis always prequantizable. Relative
to a locally trivializing section A: U—L, the covariant differ-
ential is given by

VA= (1/ifi) Oel. (3.6)

A metalinear structure on a cotangent bundle will al-
ways mean a metalinear frame bundle for the vertical polar-
ization. In this case the existence criterion is quite simple: a
metalinear structure exists on T*Q iff w,(Q)? = 0, where
w,(Q) is the first Stiefel-Whitney class of Q (see Ref. 22).

Let f= (3/dp,,...,0 /dp, ) be a local frame field for V'
and fa lift of f to FV. Define v;eI'(v/ A" ¥) according to

vf°Z= 1. 3.7

Both A and v; are covariantly constant along ¥ and every
section ¥ of L ® v/ A" V may be written
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Y|U=1y(gp)iev, (3.8)

for some smooth function ¢ on U. Such a ¥ is polarized iff
¥ = ¥(q) only. In particular, when L and v/ A"V are trivial
with global sections A and v, respectively, the association
Y(gp)Ae v ¥(qp) defines an isomorphism
F'Lev A"WV)=C=(T*Q,C). The space ¥ of polarized
sections may similarly be identified with C = (Q,C).

Now suppose g is an observable which preserves V.
Then for ¥ given locally by (3.8), (3.3) reduces to

2g[V1|U=[{—#iVy +g—LHitrd,(X,)}A ] ®v;,
(3.9)

where X, is the Hamiltonian vector field of g and the compo-
nents a; of the matrix 4,(X, ) are found from

a &S ;0
X, —|= > ag—.
[ * ap; 1‘;1 japj

B. The quantization of constrained systems

We wish to study the equivalence of the geometric quan-
tizations of the extended and reduced phase spaces of a con-
strained classical system with symmetry (X,w,GJu). In
this section we outline our strategy and delineate general
criteria which must be met before we can proceed with the
more technical aspects of the theory (which occupy the re-
mainder of Secs. III and IV).

Our main concerns here are obtaining a natural quanti-
zation of the extended phase space and constructing a com-
patible quantization of the reduced phase space.

First of all, the extended phase space quantization must
be “natural” in the sense that the classical symmetry algebra
# also appears as a symmetry algebra on the quantum level.
Hence the functions J, must all be quantizable and the asso-
ciation J,—2J, must be a Lie algebra homomorphism:

[(2J,,20,]1=ik20,,, (3.10)

for all £,7€¢. This enables us to express the constraintsJ =
as conditions

DI [¥]= ()Y
on the quantum wave functions We%.
Unfortunately, such a quantization will usually be in-
consistent: the constraint operators 2J, will have no non-
zero eigenstates corresponding to the eigenvalues {x,& ). For
suppose ¥ satisfied (3.11) so that

[QJ;,QJ,,,]\I/ = (<:u’1’) </'t’§> - <[t,§> (/‘aﬂ))w
vanishes. But then (3.10) yields

DJieny (V] = u,[En])¥ #£0,

which forces ¥ = 0. Thus the space 77, of physically admis-
sible wave functions will be trivial.
To obtain meaningful results the offending term

. (6m]) = (ad2u,n)
in the last equation must vanish for all § and 7, and this
happens iff u is invariant. One can therefore consistently
quantize (X,,G,J,u) only if u is invariant.

This invariance condition can be expressed geometrical-
ly. From Proposition (2.1) we have that g is invariant iff

(3.11)
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G, =GiffJ ~I(u) is a coisotropic submanifold of (X,w),
ie.,

T ') €TV () .

The invariance of i thus plays two key roles in our for-
malism: it is the primary obstruction to obtaining a consis-
tent natural quantization of the system, and it guarantees
that the reduction of a cotangent bundle is again a cotangent
bundle. Henceforth we assume that u is invariant.

We now return to the naturality question, viz., under
what conditions will quantization produce a representation
of z on 77”7 Once the invariance of 1 ensures that no outright
inconsistencies will occur, this reduces to a problem of mak-
ing suitable choices of the geometric quantization structures
discussed in the previous section. We must choose these so
that the J, are all quantizable and moreover that the quan-
tum operators £J, thus obtained satisfy (3.10). In general,
this will be possible iff the polarization P is G-invariant for
then the J, are all polarization-preserving functions (see
Ref. 21, §6.2). However, if P is not invariant the 2J, need
not exist and, even if they are defined, (3.10) will not neces-
sarily follow.

Having obtained a natural quantization of the extended
phase space we now turn to the quantization of the reduced
phase space. Our task is to correlate these two quantizations.
We first observe that, by construction, the quantization of
(X 1@, ) is completely determined by the structure of the
constraint set. Consequently, if there is to be any hope for an
equivalence of the extended and reduced phase space quanti-
zations, we must ensure that the extended phase space quan-
tization has this same property. This translates into the re-
quirement that the extended wave functions be uniquely
determined by their restrictions to J ~'(u), and effectively
places a further restriction on the choice of polarization.”

It remains only to construct quantization structures on
X .. @, ) that are compatible with those we already have on
(X,»). The basic idea is to project the quantization struc-
tures on the latter down to the former. An invariant polar-
ization P on (X,w) will project to a polarization on X 0 D,,)
if, for example, P is transverse to 7J ~'(u)*. For the pre-
quantization and metalinear structures, we accomplish this
by first lifting the action of G on X to L|J ~'(u) and
FP|J ~'(u) in a suitable manner. This is always possible in-
finitesimally, and the obstruction to extending from g to G is
purely topological. In particular, there is no problem if G is
simply connected; otherwise, one must choose L and FP ap-
propriately—provided, of course, such “invariant” struc-
tures exist. We then quotient by these G-actions, producing
bundles which are the required quantization structures on
X,3,).

We have now laid the foundation for comparable quan-
tizations of the extended and reduced phase spaces. The next
step is to check the above criteria and to explicitly construct
the appropriate quantization structures for constrained co-
tangent systems (7 *Q,0,G,J,u), where u is invariant,
dim Q = n, dim G =r, and dim Q =7 =n — r. In the re-
mainder of this section we work out the details for the three
geometric quantization structures. Then, in Sec. IV, we
show that the conditions we have set forth here are sufficient
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to guarantee the equivalence of the extended and reduced
phase space quantizations.

C. Polarization

Let V =ker T7y, and__T’: ker 775 be the vertical polar-
izations on 7*Q and T *Q, respectively.

Lemma (3.1): VnTJ ~'(u)* = {0}.

Proof: LetveVy nTpJ ~' (1) . Since G, = G, it follows
from Proposition (2.1) that veTg (GB), i.e, v = {1+ (B)
for some {ez. But then Ty (v) = {5 (74 (B)) =0, which
implies that v = 0 because ¢ is free. ]

Taking the symplectic orthogonal complement of
Lemma (3.1) gives

V+TJ Yu)=TT*Q
over J ~!(u). Counting fiber dimensions, we have

2n =dim(V + TV ~'(u))

=dim ¥V +dim 7V ~"(u) — dim(V' n TJ ~'(u)).

By Proposition (2.2) p is a regular value of J, so
dimJ ~'(u) = 2n — r. Itfollows that ¥ n TJ ~'(u) isanin-
volutive 7i-dimensional distribution on J ~'(u). Further-
more, since 75°7,, = 7Ty %7g,
Tro(Tm,(VnTI ~'(w)))

=Tro(Tro(VnTJ ~'(n))) = {0},

so that T, (VnTJ ~'(u)) is vertical on T*Q. We have
therefore proven the following proposition.

Proposition (3.2): V= Tm,,(Vn TJ ~'(u)).

Clearly the action T *® leaves V invariant. It follows
automatically—regardless of the choices of the prequantiza-
tion and metalinear structures—that the quantization of
(T*Q,0,G,J,u) in the Schrodinger representation will be
natural.

Also note that every leaf of V intersects J ~'(u). In-
deed, since J ~'(0) contains the zero section of 7*Q this is
certainly true for J ~!(0). But J ~'(u) is obtained from
J ~1(0) by translation along the leaves of ¥ (cf. Sec. II B), so
this holds for J ~'(u) as well. As ¥V-wave functions are co-
variantly constant along ¥, they will be uniquely determined
by their restrictions to J ~'(u).

These results, coupled with the fact that the vertical po-
larization on T *Q projects to the vertical polarization on
T *Q, imply that we may consistently and compatibly quan-
tize both the extended and reduced phase spaces in the
Schrédinger representation (which is the physicists’ “ca-
nonical” quantization). Moreover, since geometric quanti-
zation is very sensitive to the choice of polarization, it is a
definite advantage to have at our disposal concrete examples
of polarizations that satisfy all the criteria of Sec. III B.

D. Prequantization

Let L bea prequantization line bundle for (T *Q,w ) with
connection form y. We must construct a compatible pre-
quantization line bundle for (T *Qﬁy ). Preliminary results
along these lines have been obtained by Puta.’

The first step is to lift the action of ¢ on T*Q to
L, =L|J~'(p). For each {eg let §; = {¥.., be the hori-
zontal lift of { 7., to L, .
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Proposition (3.3): §—¢; is a Lie algebra antihomomor-
phism.

Proof: We have to verify that [{,7], = — [{,,7, ] and
for this it suffices to prove that [{; ,7, ] is horizontal. The
prequantization condition (3.1) gives

7/( [gL L ] ) = - dy(gL Y/} )

= (1/h) I*[0($rrprMre0) ]
which vanishes by virtue of Proposition (2.1) and the fact
thatJ ~'(u) is coisotropic, since both { .., and 7., belong
to TJ ~ ') CTV ~'(w). [ |

Remarks: (1) The association {i—¢; is an antihomo-
morphism as the G-action is on the left.

(2) Proposition (3.3) will fail if 4 is not invariant, so
that we cannot lift the g-action to L, for arbitrary u. In
particular, the action will generally not be defined on all of L
(unless, e.g., G is Abelian), but, insofar as reduction is con-
cerned, we need only obtain an actionon L,, .

To extend this g-action to a G-action is more difficult.
There are two possible obstructions: the incompleteness of
some of the vector fields £, and the nonsimple connectivity
of G. The first of these presents no problem: since L is a line
bundle and the {';.., are complete the §; will be also. When
7,(G) #0, however, some L, may admit G-actions while
others will not.

Fix an orbit G-BCJ ~'(u). Since orbits are isotropic in
T *Q [cf. Proposition (2.1) ], the prequantization condition
implies that L | (G-3) is flat. As the {; are horizontal the g-
action on L [(G-B) will integrate to a G-action iff the holon-
omy of L | (G-f) is trivial. The crucial observation is that the
holonomy of L | (G-f3) is the same for all orbits in a given level
set J ~H(u).

To show this let ¢(¢), 0<z< T, be a loop in G based at the
identity and let cg (¢) = T *®P,,, (B) be the corresponding
loop in G-Bbased at 5. From Ref. 12, §5.5.2, we find that the
element in the holonomy group of I ~!(3) determined by ¢,

is
(], °)
#id,
Let £, be the curve in & defined by

¢ =TL ) (. (1)),

where L. ,, is left translation by ¢(¢). Then a short calcula-
tion using (2.3) yields

(3.12)

Jcﬁe = JOT (J{eg(D), & >dt= J;T (wedd, (3.13)

which depends only upon i and the homotopy class of ¢ and
not the particular orbit G-8CJ ~'(u). It therefore makes
sense to speak of “the holonomy” of L, .

Proposition (3.4): The action of z on L, can be extended
to a G-action iff L,, has trivial holonomy.

This proposition is essentially a “quantization condi-
tion”’; we will see it in operation in Sec. V.

Assuming that L, has trivial holonomy, we are now
able to construct the reduced prequantization line bundle.
Since the G-action on L, is necessarily free and proper we
may form L, = L, /G, which is clearly a complex line bun-

2057 J. Math. Phys., Vol. 27, No. 8, August 1986

dle over T*Q. Denote the projections L,—L, and
L,—T*Qbym, and /,, respectively.

Set ¥, =¥y, where j,: L,—L is the inclusion. By
(3.1) and (2.1)

Loy=— (1/WI*(rep d0)
and so

Lo v, =(/m)I* () =0.

Consequently y,, projects to a complex-valued one-form ;/ﬂ
on L, such that

Vo = 1r;‘ Y - (3.14)

Theorem (3.5): Zﬂ ,7—/# ) is a prequantization line bundle
for (T*Q,,). _

Proof: It is straightforward to check that y,, is indeed a
connection formon L,, .

To prove the Theorem we must verify the prequantiza-
tion condition

dy, = — (I/h)yI*Q, .
Now d;u = 7:,0 for some two-form p on T*Q. By (3.14),
(3.1), and the Kummer-Marsden—Satzer Theorem,
(7# om, )*p =dy,
— (/)i e
— (/B %o
= — (I/k)I*mQ,
= — (1/h)(I,0om, )*Q, .
Since 7,‘ or, is a submersion, p = — (l/h_)@. [ ]
Thusif L, has trivial holonomy, (T *Q,Q},, ) is prequan-
tizable. In particular, the de Rham class (1/4)[Q, 1,5

= (1/h)[F, ] must be integral. We will have a nice phys-
ical interpretation of this result in Sec. V C.

E. Metalinear structures

Let FV be a metalinear frame bundle for the vertical
polarization V. Since ¥ is invariant, G acts on FV by push
forward of frames. Following the general technique of Ref.
10, we will relate F¥ on T*Q to FV on T*Q and use this
relation, along with a lift of the G-action on FV to F ¥V, to
induce a metalinear structure on 7*Q from that on 7*Q.

We can substantially simplify matters by working on
configuration spaces rather than cotangent bundles. To this
end, let FQ and F *Q be the linear frame and coframe bundles
of Q, respectively. There exist natural G-actions F® on FQ
and F *® on F *Q again given by push forward of frames and
coframes. Let Z: Q—T *Q be the zero section.

Proposition (3.6): There exist canonical G-equivariant
isomorphisms FQ~Z *(FV) and FV =7 (FQ).

Proof: There is a canonical equivariant identification of
T*Qwith Z *V and hence of V' with 7% (T *Q). These induce
similar identifications of F*Q with Z *(F¥V) and FV with
76 (FQ). Moreover, associating to each basis its dual basis
gives rise to a canonical isomorphism FQ~F *Q which is
equivariant with respect to the actions F® and F*®. Com-
bining these isomorphisms establishes the Proposition. W
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This result allows us to transform back and forth from
T*Q to Q. Similarly, there are canonical isomorphisms
FQ=Z*(FV) and FV = 1% (FQ).

Now consider the subbundle B of FQ consisting of
frames of the form b = (v,{, ), where { is a positively orient-
ed orthonormal frame for & with respect to the given bi-
invariant metric on G. The space B is a right principal H-
bundle over Q, where

-G #
- R
is the subgroup of GL(#,R) that stabilizes B.

Let K be the subgroup of H consisting of those matrices
which leave invariant the projection of v to FQ; explicitly,

I O)
={( 2
It is a normal subgroup of H and H /K =GL(7,R). We may
therefore identify

B/K=7% (FQ). (3.15)

Since F®, () = — (Ad,-§)p and themetricon G is
bi-invariant, Ad,-. { is also a positively oriented orthonor-
mal frame for ¢. It follows that the left action F® on FQ
induces an action on B that commutes with the right action
of H. This allows us to quotient by G in (3.15), thereby
obtaining a natural isomorphism

G\(B/K)=FQ. (3.16)

We next lift these constructions to the metabundles. Let
o FQ—FQ be a metalinear frame bundle for Q and set
H =0~ '(H), where o: ML (n,R)—>GL(n, R) is the 2:1 pro-
jection. Then B = p~'(B) is a right principal H-bundle over
Q. Since the determinant of any matrix in X is unity, o~ ' (K)
has two connected components. We identify K with the com-
ponent of the identity in o~ '(K). Then K is a normal sub-
group of H and H /K ~ML(#,R). The bundle B /K is there-
fore a right principal ML (#,R)-bundle on Q such that the
diagram

B/K XML(7A,R)

NeGL(#n,R), ReSO(r)]

ReSO(r)] .

B/K
1 (3.17)
B/K XGL(#,R)—=B/K

commutes, where the horizontal arrows are the right group
actions and the vertical arrows are twofold projections.

Suppose for the moment that the G-action F® on FQ
lifts to an action F® on FQ Then F® will preserve B and
commute with the right H-action on B, and thus giverisetoa
left G-action on B /K that commutes with the right action of
ML(#,R). The space G \ (B /K) of G-orbits in B /K will
therefore inherit the structure of a right principal ML (7,R)-
bundle over Q such that the projection G\ (B/K)
—G\ (B /K) is 2:1. Applying (3.17) and (3.16) it follows
that G \ (B /K) will define a metalinear frame bundle FQ for
0.

In summary, if Q is metalinear and the action of G on FQ
lifts to FQ, then @ is metalinear. To complete the analysis we
must determine whether in fact the group action lifts.

Since p is a 2:1 submersion, the action of g on FQ ob-
tained by differentiating F® lifts to an action on FQ by com-
plete vector fields. Thus the only possible obstruction to lift-
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ing F® is the nonsimple connectivity of G. Now this g-action
defines an involutive distribution on FQ, and we may extend
to a G-action iff this distribution has trivial holonomy when
restricted to each orbit in FQ.

To measure the holonomy, introduce the characteristic
homomorphism 7, (FQ,/)—Z, of FQ (see Ref. 23, §13) and
consider the map m(G)—m (FQ)) defined by
[e(®))—[FD ., (f)]. The above distribution has no ho-
lonomy over G iff the composite homomorphism yg:
m,(G)—Z, is trivial. Furthermore, since Z, has no nontrivial
automorphisms, y is independent of the choice of feFQ.
Thus if the g-action extends over just one orbit, it extends
over all of them.

Proposition (3.7): The action of G on FQ lifts to FQiff the
natural homomorphism y: 7, (G)—Z, is trivial.

There is another version of this result which is often
useful. Note that the restriction of FQ to any orbit G-gin Qis
trivial: each feF, Q definesa global section ®, (¢)—F®, (f)
of FQ |(G-q). Proposmon (3.7) then 1mp11es that we have
lifting iff the restriction of FQ to any (and hence every) orbit
in Q is trivial.

It remains to pull our results back to T*Qand 7 *Q. We
first observe that Proposition (3.6) holds on the metalinear
level, i.e., if FV is a metalinear frame bundle for ¥ then
FQ VA (F'V) is one for Q and, conversely, every metalinear
frame bundle FV is TS (FQ) for some metalinear structure
on Q. Similar resutls are true for ¥ and FQ. Now, since the
mechanics are the same in both cases, it is clear that the G-
action on FQ lifts to FQ = Z *(FV) iff that on FV’ lifts to
Fr= T (FQ) It follows that these metalinear identifica-
tions are G-equxvanant Denote by the same letter B the pull-

back bundle 7§ (B) CFV, and set BM =B |/ ~"(u). We have
proven the following theorem.

Theorem (3.8): If the action of G on FV lifts to FV, then
there exists a compatible metalinear structure

FV=G\(B,/K)
on T*Q.

Remark: Similar results hold for metaplectic struc-
tures.'®

V. EQUIVALENCE OF COMPATIBLE QUANTIZATIONS

The stage is now set to prove the equivalence of the
quantizations of the extended and reduced phase spaces. We
have shown that quantization data on (7 *Q,0,G,J,u) con-
sisting of the vertical polarization V, a prequantization line
bundle (L,y) and a metalinear frame bundle FV induce
quantization data V, (Zy ,7_/”) and F¥ on (T *Q, ﬁ ), pro-
vided both L, and FV have trivial holonomy. ’ The corre-
sponding quantlzatlons of (T*Q.w) and (T "‘Q,Q ) are said
to be compatible. Our main result is that compatible quanti-
zations are equivalent. We will make this precise after dispos-
ing of some preliminaries.

A. Preliminaries

Let v/ A"V and v/ A"V be the bundles of half-forms
relative to vV and v, respectively. Set
VAV, =V A" VIJ = ().
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Proposition (4.1 ) There exists a canonical isomorphism
VA"V, =m*/ NV

Proof le BeJ _1(,u) and consider vzev/ A" VB As
A(M) =1 for all MeK, (3.2) lmphes that v} (bM)
=vj (b) Since by Theorem (3.8) 1r*FV B /K it fol-
lows that for beBB the equation

V(R =vE () (4.1)

defines an element v, of (7%v/ A ) s> Where the brackets
denote K-equivalence classes. Conversely, given v,
e(mtv A ﬁ_17),3, (4.1) defines an element vzey' A"V,
since, according to (3.2), any half-form is completely deter-
mined by its restriction to Eﬂ. The association (4.1) is thus
the desired complex line bundle isomorphism. |

The action of G on FV gives rise to a left action of G on
v/ A" ¥V which commutes with the right action of ML (#,R)
by multiplication by A. Since all our constructions are G-
equivariant, Proposition (4.1) yields G\V A"V,
~1/ A*V. Combining this with the results of Sec. III D, we
have the following corollary.

Corollary (4.2): GN(Le V' A" V), :Z,t &V AV.

Our next task is to relate the fwo induced actions of ¢ on
I'(Lev A"V),, which we must be careful to distinguish.
The first is that provided by the naturality of the extended
phase space quantization (cf. Sec. III B) and is used to quan-
tize the momentum map. The second is needed to construct
compatible quantization structures on the reduced phase
space (cf. Secs. III D and II E and the preceding discus-
sion). These two actions agreeon I' (v A" V.. ) but differ on
I'(L,). We derive expressions for the generators of both

actions.
The first action on I'(L v/ A" V), is generated by the

quantum constraint operators 2J,. According to (3.9)
these are given by

2, (%] ={[ — iV, +J;

—Lifitr Ap(Ereg) |YA} B V5, (4.2)
for each local section W of the form (3.8). Tracing through
the derivation of this formula (cf. Ref. 21, §6.1), we find that
the last term on the right-hand side of (4.2) arises from the
action of z on v/ A" ¥V, while the first two terms are due to
the action of z on L,, by connection-preserving vector fields

§%e0 = s (4.3)
where ¢, _, is the fundamental vector field on L defined by
the function J /h. On the other hand, the second action of ¢
on L, is generated by just the horizontal vector fields § F.,.
It is easy to see that removing the last term from (4.3) elimi-
nates the second term from (4.2). Since both actions agree
ony A" V,,itfollows from (4.2) that the generators 9 g of
the second action are related to the 2J, by

DI V) =T (V] +J. ¥
forall Wel'(L® Vv A" V).

(4.4)

B. Smooth equivalence

We are finally ready to compare the extended and re-
duced phase space quantizations. They are correlated by the
following theorem.
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Smooth Equivalence Theorem: If the quantizations of
the extended phase space (7 *Q,0,G,J,u) and the reduced
phase space (T*Qﬁﬂ ) are compatible, then there exists a
canonical isomorphism %, =#°, .

Proof: Let We#,. Equation (4.4) implies that
G (V1T w) =0, so\l‘|J '(u) is G-invariant. By Corol-
lary (4.2), ¥ projects to a smooth section W of L ® \/ ATV
Since \ is polarized, Proposition (3.2) shows that ¥ is also.
Thus \Peﬁé’

For the converse, suppose \Peé? Corollary (4.2),
Proposition (3.2), and Eq. (4.4) imply that ¥ pullsback toa
unique G-invariant section ¥,, of (L@ v A" V), which is
covariantly constant along Vn TJ ~'(u) and satisﬂes

I [V, 1= sy, (4.5)

Since every leaf of V is simply connected and intersects
J ~'(u), parallel transport along ¥ produces a globally de-
fined polarized section ¥ of L & v/ A" ¥ which agrees with
¥, onJ ~'(u). Now consider the polarized sections

for each £eg. Every W, is uniquely determined by its restric-
tion to J ~'(u). But ¥, |J ~' () = O by virtue of (4.5), so
W,=0 and hence Y7,

This establishes the existence of the required isomor-
phism. ]

Remarks: (1) We emphasize that this isomorphism is
entirely canonical since our constructions of the reduced
quantization data are.

(2) When 2 = 0 both of the g-actions on J# coincide.
We may then restate the conclusion of this Theorem as fol-
lows: There exists a canonical isomorphism between the
space of gauge-invariant smooth polarized sections of
Le+v A"V and the space of smooth polarized sections of
L,®v A™V. This special case is due to Sniatycki.'®

We now derive a local expression for the isomorphism
H, =, . which will be useful later. Let

(ql’ 2q") = (¢71, jﬁ’gl -8")
be achart on 7y, ~'( U) C Q induced by a local trivialization

1(U) U><G and let (¢',p;), i = 1,...,n, and (¢’ ,p;),
i= 1, .-»1, be the corresponding canonical charts on T*Q
and T *Q, respectively. Set f= (3 /dp,,...,d /dp, ) and define
vyel (V A"V) by (3.7). It is convenient to construct an-
other half-form v; on T *Q as follows (cf. Sec. III E). Using
the given bi-invariant metric g on G, fix a positively oriented
orthonormal frame § = (£,,...,£, ) for ¢ and set

9 3
bz(——,...,'—_, [ARRD) r)‘
= \ag " a7 S
Then

b=(i 9 9 _3_)(1 0)
= aql ey aqﬁ b4 agl recy agr 0 C ’

for some matrix C with det C = (detg) /2% Applying
Proposition (3.6) we find that under the isomorphism FV
~75(FQ) the frame (d4/d3',...,4/d3",3/3g",...0/3¢")
maps onto f while b maps onto a frame in B which we also
denote by b. Define vy by v} °b = 1; from the above and
(3.2) it follows that
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5 = (detg)'* vy (4.6)
Then each Wes7 may be locally written as either
¥ =1d(g)hev (4.7)
or )
¥ =(q) (detg)/*Aev;. (4.8)

Now suppose Ve, so that W satisfies (3.11). Then
using (4.7), (4.6), (4.2), (3.6), (2.3), and the fact that the
components of £, are constant in this chart, we compute

azlﬂag“)i@vé,

¥ = k(g)exp ( 4.9)
where k is arbitrary.
On the other hand, both b and f prOJect to Z

= (3/P1y.d /3P, )EFV. Deﬁmngv-el"(\//\ "Vyby (3.7),
it follows from (4.1) that v; projects to ;. Similarly, from
Sec. III D we find that A projects to the section /1 of L
defined by /1 or, = l oA. Since locally every \I/ed‘i’ takes
the form

V=9, 7%, (4.10)

we have upon comparing (4.9) and (4.10) that the isomor-
phism #°,—J%, is given by

k(q)eXP( Zua )Hk(a).

a=1

Compatible quantizations thus have canonically iso-
morphic spaces of physically admissible wave functions. But
compatibility should ensure more than this: it should also
intertwine the quantizations of G-invariant observables.
More precisely, let feC = (T*Q) be G-invariant in which
case it reduces to f €C = (T*Q) as indicated in Sec. II B.
Then the quantum operators 2f on ¥ and 2f, on x,
should be such that

(4.11)

2f _ o,
Ky % (4.12)
Lozt
%ﬂ_ %ﬂ

commutes, where the vertical arrows are the isomorphisms
provided by the Smooth Equivalence Theorem. This is actu-
ally so, at least if f'is polarization preserving.

Theorem (4.3): Let ' be a G-invariant polarization-pre-
serving observable. Then diagram (4.12) commutes.

Proof: First note that because fpreserves ¥, /, preserves
Vby Proposition (3.2). Consequently f is quantizable.

Let ¢’ and ¢’ be the flows of fand f on T*Qand T*Q,
respectively, w1th

T, og = ¢L om, .

Since both f and/—’# are polarization preserving, these flows
induce one-parameter groups of bundle automorphisms of
Le+yv A"Vand Z,, ® v/ A"V, which we denote by the same
symbols (cf. Sec. III A). Since fis invariant, a straightfor-
ward calculation using the techniques of Sec. III E along
with the fact that F#'(§, (¢)) = £o (4’ (9)) shows that ¢
preserves B . Thus ¢* is equivariant and it follows from Cor-
ollary (4. 2) that
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¢t
(Lo A"V),——=(LeV A"P),
- (4.13)

_ 4 _
LoV AV L,V NV

commutes, where the vertical arrows are projections.

Now consider the corresponding one-parameter groups
of linear isomorphisms ¢‘ of % and :ZL of %, From the
definition of 2J, applied to ¢'¥ we have
DJ[¢'V] =¢' 2J, V] as¢’ is equivariant. In particular,
if Ye#’,, then so is ¢'V. Thus (4.13) and the Smooth
Equivalence Theorem imply that the induced diagram

(4.14)

X =
H " H,
commutes.

The quantum operators 2 fand @]}1 are defined by

. d
DfIV] =ith— (¢'V
fIV] =i ar (¢ )lz=o

and

FALIEFTCA T
[cf. (3.3)]. If Yei, then ¢'Ve#, and consequently
2f1¥1e#,. Thus diagram (4.12) is well defined and its
commutativity now follows immediately from the above
definitions and (4.14). n
Roughly, this result states that one may quantize invar-
iant observables in either formalism with equivalent results.
However, the Theorem does not apply when fis not polariza-
tion preserving. In such cases diagram (4.12) may not exist
and, when it does, it will generally not commute.

C. Unitary equivalence

We now discuss the one facet of the equivalence problem
that we have overlooked thus far—the Hilbert space struc-
ture. The Theorems of Sec. IV B pertain only to smooth
quantizations, i.e., the linear spaces 7, and o ", of C=
wave functions. Do our results still apply when the quantum
inner products are introduced? More precisely, does the lin-
ear isomorphism 7, =F ", of the Smooth Equivalence
Theorem extend to a unitary isomorphism of the corre-
sponding quantum Hilbert spaces?

For constrained cotangent systems, the spaces #° and
F, ", of polarized states carry canonically defined inner prod-
ucts.!>?! Using the setup of the previous section, we may
describe these as follows. The inner product of two wave
functions ¥,Pe#” of the form (4.7) with supports in

175‘(_17) is

1rQ I(
where the star denotes complex conjugation. Similarly, for
V,9e7, of the form (4.10) with supports in U,

f WG)e*(§)d g .

1//(q)¢*(q)\/det d"q, (4.15)

(¥,9)5 (4.16)
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We complete these spaces with respect to these inner prod-
ucts thereby obtaining the quantum Hilbert spaces 4 and 4 s
respectively.

Although this procedure is in itself straightforward, a
difficulty arises when considering the space

Ay ={WeA| 27, [¥] = (u.g ) ¥}

of physically admissible states. It may happen that 4, will
consist only of distributional wave functions. For instance, if
Gis noncompact some of the eigenvalues (u,£ ) will lie in the
continuous spectra of the corresponding constraint opera-
‘tors 2J,. In such cases the inner product on 4 will not
induce one on 4, so that, in general, 4, and 4, can only be
compared as llnear spaces. However, one may use the
Smooth Equivalence Theorem and the inner product on A
toinduce oneon /4, insuch a way that £, and 4 . will then be
unitarily related. We will see an example of this phenomenon
in Sec. V A.
This problem cannot occur if G is compact, in which
case 4, is a genuine subspace of 4.
Umtary Equivalence Theorem: If G is compact then 4,
and é are unitarily equivalent.
Proof Let W,®e/, . Substituting (4.9) into (4.15) we
obtain the induced inner product

(v, ), =J _ k(@)h*(g) ydetg d"q,
w5 (D)

where A4 is to ® as k is to V. Writing d"q = d"g d g, this
reduces to

(¥,®), = vol(G) J;k(q)h*(ﬁ)d'_'ﬁ, (4.17)
U

where
vol(G) =f vdetgd'g
G

is finite since G is compact.

The isomorphism 7, —37, of the Smooth Equiv-
alence Theorem clearly extends to 4, thereby enabling us to
project ¥ and ® on 7" *Q to wave functlons Wand ®on T*Q.
Using the explicit form (4.11) of this projection in (4.16)

yields
(T,8)g = f K@h*@d"T.

It follows from (4.17) that \IHDGA The mapping %:
4y —% defined locally by

Z#a

a=1

(4.18)

)/1 ® vy YWol(G) k(A &%
(4.19)

is therefore a vector space isomorphism, and a comparison of
(4.17) with (4.18) shows that it is unitary. [ ]

Similarly, Theorem (4.3) carries over to the Hilbert
space case when G is compact. Namely, if fis a G-invariant
polarization-preserving observable, then the unitary isomor-
phism % intertwines the quantum operators corresponding
to fand its reduction}_’# :

Qf,=2""2N% .
To summarize, if G is compact, then a smooth equiv-
alence of the extended and reduced phase space quantiza-

k(q)exp(
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tions naturally extends to a unitary equivalence which inter-
twines the quantizations of invariant observables. When G is
noncompact no such natural unitary equivalence exists a
priori, but the Smooth Equivalence Theorem may be used to
induce one.

V. EXAMPLES

We present several examples which illustrate our tech-
niques and theorems. In most cases we will explicitly verify
our results by direct computation.

A. Center of mass reduction in the A~body problem

Our presentation follows that in §10.4 of Abraham and
Marsden'’; see also Robinson.?*

Consider N masses m,,...,m moving in R*. Upon re-
moving collisions we have

Q = (Rk )N - AN 1)
where

v AY
1<ij<N

AN =
and
Af={g=(g",..g")e® )¢ =¢'}.
The translation group R* acts freely and properly on Q ac-
cording to

P(gq) =(¢'+g..q" +8) -
To construct the orbit space introduce the diffeomor-
phism

C: 0—{(R*)V~
given by
(q'q")

»—»(ml(g‘ - qN ),--':mN— 1 (2

I _ AN-1}xRF

N-—-1 g ) zlmg)
(5.1)

where R* =R* —{0}. The corresponding R*-action
Cod oC™ !is just translation in the last factor by Mg, where
M = ZY_,m, is the total mass of the system, so that

'Q—z(Rk N1 _ AN
Thus Q = Q@ XR* is trivial as a principal R*-bundle.

This result is useful for understanding the structure of @
which, in general, is quite complicated. More meaningful
physically, however, is the representation of Q as the
N(k — 1)-dimensional submanifold C ~'(Q x {0}) of @ ob-
tained by fixing the center of mass of the system at the origin.
Thus we view

0= [qu

The extended phase space is 7*Q = Q X (R¥)¥ with
symplectic form » = d6, where © =3, p,-dq'. The co-
tangent action is 7 *®(g,(q,p)) = (<I>K (q),p) with momen-
tum map

N
Jap) = p

i=1

N .
z mq' =(_)] . (5.2)

i=1

(5.3)
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Now R* is Abelian so every ueg* ~RF is invariant; for sim-
plicity we consider only 12 = 0. Taking (5.2) and (2.4) into
account, we can identify T*Q with 75 '(Q) nJ ~'(0), i.e,,

— N . N
Tr*g= {(q,p)eT*Q Yy mg =0, 3 p; =9] .
i=1 i=1
(5.4)

Although there may be various prequantizations of
(T*Q,w) depending upon the topology of O, we can always
take L=T*QXC with trivializing section
A(q,p) = (g,p,1). Since R¥ is simply connected, the action
T *& lifts horizontally to all of L; L, therefore exists. Using
(5.4) to explicitly identify L, with L |7 *Q, it follows that
L,=T*Q XC.

Since T *Q s parallelizable one possibility for FV is sim-
ply T*Q X ML(NK,R). The induced action of R* on FV is
trivial on the fibers and consequently lifts to FV. Thus the
corresponding metalinear frame bundle FV for

N
lZi:O]

= a d
V= = —
Span[l_h 821 + ... +UN aEN

is also a product.

We now quantize the extended phase space. Setting
f=(d/dp,,....0 /dpy ), we have from Sec. IIT A that every
polarized WeI'(L ® v/ A™* V) can be written

¥=y(@)lev;. (5.5)

From (4.2), (5.3), and (5.5) the quantum constraint opera-
tors are

2J[¥] = —i#{V, + ... + V) ¥(@) M ey,

where V, is the ordinary gradient with respect to g‘ . Thus the
physically admissible quantum states are those that satisfy

(V4 .+ Vy)(q) =0.
It follows that 7, can be identified with the set of all
¢¥eC ~ (Q,C) of the form, say,

V=9 — ¢ ..¢" "' —¢"). (5.6)

Similarly, quantizing the reduced phase space gives
?ozC“’(QC). We have from (5.1) that every
¥eC = (Q,C) is of the form

P=9m (g —¢")mn_(¢" " —¢g")). (5T
A comparison of (5.6) with (5.7) yields the isomorphism
I —I¢, predicted by the Smooth Equivalence Theorem.

From (4.15) and (4.16) it follows that the Hilbert
spacess 4 and 4, are LZ*(R*) —AY) and
L*{(R*)¥—1 — AV~ 1), respectively. Now 0 isin the con-
tinuous spectrum of £J and from (5.6) it is clear that none
of the translationally invariant wave functions are square
integrable. Thus 4, and 4, can only be compared as linear
spaces.

Remark: For nonzero ucR*, reduction fixes the center
of mass as moving with velocity /M.

B. Angular momentum

We study the system consisting of a single particle mov-
ing in R" =R" — {(_)} with constant angular momentum,
This example is interesting for two reasons. First, when
n> 2, the action
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®(4,9) = Ag (5.8)

of SO(n) on R” is not free so that the fundamental assump-
tion underlying all our results is violated. Nonetheless, as we
shall see, the conclusions of our theorems still hold. Second,
the case n = 2 illustrates how the obstructions to lifting the
group action to the various quantization structures give rise
to “quantization conditions.”

Since the case n =2 is exceptional, we first consider
only n>2.

The action (5.8) is always proper and effective. The
orbits are concentric spheres and thus

R"/SO(n) =R™* . (5.9)

Viewing ¢ and p as column vectors, the cotangent action
on T*R" = R" X R" becomes

T*®(4,(g,p)) = (4g,4p) (5.10)

and, upon identifying so(n)* and so(n) with A2(R"), the
angular momentum map can be written

J(g,e) =qAp.
The coadjoint action of SO(n) on A2(R") is

Ad%(gNAp) =A"'ghA " 'p,
from which it follows that
SO(n),, =SO(2) XSO(n —2),

for 1 #0. Consequently O is the only invariant element of
so(n)*forn>2.

Remark: With reference to the discussion in Sec. III B,
it is not surprising that this system cannot be consistently
quantized when £ #0. Indeed, (3.11) would correspond to
simultaneously specifying all the components of the angular
momentum—a well-known quantum mechanical impossibi-
lity.

Now Ois not a regular value of J, but it is weakly regular.
Actually J has rank n — 1 onJ ~'(0), so that J ~'(0) is an
(n + 1)-dimensional submanifold of R” X R”. From (5.11)
we have

J71(0) ={(g,59)|g#0, seR}, (5.12)
which shows thatJ ~'(0) is a real line bundle over R” . This
bundle has a global nonvanishing section g —(g,9) s0 thatin
fact

J~1(0) =R"XR. (5.13)

_ ToreduceJ ~'(0), first note that the action of SO(#) on
R* XR induced by (5.13), (5.12), and (5.10) is just
(g,5)—(Ag,s). Then (5.13) and (5.9) imply that

J710)/S0(n) =R* XR,

with projection 74(g,s¢) = (|lg||,sllgl}). Now fix geR" with
lgll = 1. The map ip: R* X R—J ~'(0) CR” XR", defined
by

(5.11)

io(rs) = (rd,sq) , (5.14)
is a section of 7. Then from (3.5)
i*o =¥ (z dp; /\dq")
i=1
= 3 d(r§') Nd(s§")
i=1
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= (¢-q) dr\ds
=drAds,

which is the canonical symplectic structure on
T*R* = R* XR. Wehave therefore shown that the reduced
phasespace (J ~'(0)/SO(n),@,)isjust (T *(R" /SO(n)),®),
i.e., the conclusions of the Kummer-Marsden-Satzer
Theorem hold despite the fact that ® is not free (see also Ref.
20).

Turn now to prequantization. Since R” is simply con-
nected for n > 2, the prequantization line bundle is unique
and trivial. But 7,(SO(n)) = Z, for n > 2, so we must check
the holonomy of L,,. Let (g,p)eJ ~ 1(0) and consider the or-
bit SO(n)-(¢,p). As SO(n)-(¢,p) =S"~' is simply con-
nected for n > 2, it follows from Proposition (3.4) that T*®
lifts horizontally to L,. Thus L, exists and, since the reduced
phase space is contractible, L, is also trivial.

For the metalinear structure, the facts that R” is orien-
table and simply connected for n > 2 imply that FV exists
and is unique. Since FV is trivial so is V. By the remarks
following Proposition (3.7) and Theorem (3.8), T *Qis met-
alinear. Again, since R* X R is contractible, FV is trivial.

Quantizing this system, we have from Sec. III A that the
extended wave functions are

¥ =y(g)lev; (5.15)

and from Sec. IV C that 4 = L%(R"). Using (4.2) and
(5.11) we compute

27,[¥] = ,ﬁ(z g,,( "

=1

d
(5.16)

for £e A%(R"). Thus the rotationally invariant states look
like
\P=1//(||g||)/l®vz (5.17)

and, in hyperspherical coordinates, the induced inner prod-
uct on 4, is

(¥, P), =vol(s" ) .F Y(r)g*(r)r—'dr (5.18)
0

[compare (4.17)]. Hence 4, = L*(R*,r" ).
Similarly, the space 4, = L 2(R™*) consists of states

U =9(r)l,®@v; 4 - (5.19)

Since the group action is not free, we have no set technique as
in Sec. IV for constructing an isomorphism 4,—4,. None-
theless, it is clear from (5.17)-(5.19) that

(MA@ Vs —>VoI(S" 1) r'" = V2 Y(r)Ae® V3
(5.20)

defines a unitary isomorphism % of L2(R*,»*~') with
L?*(R™"). Thus we have unitary equivalence.

Now consider, for instance, the radial momentum

= (g-p)/|lgl|- It is SO(n)-invariant and the reduced ob-

servable is i§p, = s. Since p, preserves V both p, and s are

quantizable. From (3.9) and (3.4)-(3.6) we compute

2p,[¥] = (Iﬁ[—— (¢V) +21==

(@ )Aevy,
lal Sl Y@) Ao

2|| |
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for ¥ given by (5.15). On 4, =L*(R™*,/”
spherical coordinates, 2p, takes the form

Dp,[9(r)] = — i# (i+ n— 1) o) .
dr 2r

L2(R*),

Ds1d(r)] = —iﬁifp(r).

Itis routine to verify that the unitary map (5.20) intertwines
2p, and Ps according to

zﬁ(d ”‘1)=@-1(—iﬁi)@.
dr 2r dr

Theorem (4.3) therefore holds when n > 2, at least for the
radial momentum observable.

When n = 2 the action ® is free and we may apply all
our previous results. Other than this, the main difference
between the cases n =2 and n> 2 is that, since SO(2) is
Abelian, every ueso(2)* =R is invariant.

Consider the standard connection

a=(1/|lgl*) (gAdg), (5.21)

on R? =S0(2) XR™*. Since a is flat, Kummer—-Marsden—
Satzer reduction implies that the reduced phase space is
(R* XR,@) as before. Composing ip: Rt X R—J ~!(0) giv-
en by (5.14) with the SO(2)-equivariant diffeomorphism
8,0~ '(0)—J ~'(u) given by (2.5) defines a global section

i, (r,s) = (rg,sq + pa(rg)) (5.22)
of m, =708, '. Hence
J ~l(r) =SO(2) XR* XR

is trivial as a principal SO(2)-bundle.

Now, H?(R*X R?,Z) = 0so that again the prequantiza-
tion line bundle is unique and trivial. Letting [c(z)] be the
generator of 7,(SO(2)) = Zand using (3.12) and (3.13), we
find that the holonomy of L, is exp((2i/#)u). Proposition
(3.4) then gives rise to a quantization condition: L is reduc-
ible iff 4 = m# for some integer m. When u = mfi L
trivial as before.

We must also be careful with the metalinear structures.
Since H '(R*XR%Z,) = Z, there are fwo metalinear frame
bundles for V. On the other hand, there is exactly one (neces-
sarily trivial) metalinear structure on the reduced phase
space. This indicates that one of the metalinear frame bun-
dles on R*X R? will not project to R* X R and hence will
lead to a spurious quantization.

To construct these metalinear structures, introduce po-
lar coordinates (7,68) on R? and set

U, ={(r®|0<b<27}, U_={(r0)|-r<b<nm}
and
W, ={(ro)0<0<7}, W_={(r,0)|—r<6<0}.

Since FV is trivial, the transmon functions M
W, XR*->ML(2, IR) for the two FV are

M =1 M_
corresponding to the 1dent1ty of H (RXR? &), and
M =1 M_

corresponding to its generator, where

— 1) in hyper-

Likewise, on 4, =

(5.23)

=, (5.24)
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e=lo _3)

The metalinear frame bundle defined by (5.23) is trivial
and the SO(2)-action on FV lifts to this FV just as when
n>2. It is this metalinear structure which projects to the
reduced phase space. For the second metalinear frame bun-
dle, it is clear from (5.24) that both F¥ and the natural
homomorphism yso(2y: Z—Z, are nontrivial. It follows
from Proposition (3.7) that the SO(2)-action does not lift to
this F¥ which therefore does not project to R* XR.

Letb = (3 /dp,,d /dp, ) beaglobal frame field for and

fix a lift é of b to the trivial metalinear frame bundle. From
(4.7) every polarized section ¥ of L ® 1/ A 2V can be written

¥ =4(ro)iev;. (5.25)

Using (5.16) with &£=1, the quantum constraint
2J[¥] = mAY for u = m#i becomes

- iﬁ—é’%;ﬁ(r,ﬁ) = m#(r,0) . (5.26)
Thus the physically admissible states take the form
¥(r,8) = k(r)e'™® consistent with (4.9).

The reduced phase space quantization proceeds exactly
as before. The reduced wave functions are given by (5.19)
and the isomorphism (4.11) becomes k(7)e™°—k(r).

When p = 0 these results correlate exactly with those
obtained earlier for 7 > 2. The only difference is that here we
have used the half-form v; rather than v; which, according
to (3.2), satisfies vy = Vr Vp- Writing ¥ glven by (5.25) in
the form (5.15) we have that ¢/(r,0) = \/nl/(r,e) With this
change of notation, (5.20) isjust (4.19) and all our previous
results immediately carry over to the case n = 2.

Remarks: (1) Itis interesting to see what happens when
we quantize the extended phase space using the nontrivial
metalinear structure. Let b be lifts of b to this FV over
U, XR? then from (5. 24),

b,, on W, XR?

= [i (5.27)
b,e, on W_ xR

Defining local sections v, of v/ A?V over U, XR? by

v¥(b,)=1, it follows from (5.27) and (3.2) that

v_= +v,onW__ XR? respectively. The quantum wave

functions are now
Y|[(U, xBR) =9, (n®)Aev, ,

13

where
V_(n8) = £ ¢, (16) (5.28)
on W . Such a ¥ satisfies the quantum constraint (5.26) iff
b, (n0) =k, (e
and (5.28) then implies that k_(r) = +k, (r) on W,

which forces k + (1=0. Thus, when the nontrivial metalin-
ear structure is used, &%, = {0} and we have a spurious
quantization.

(2) Earlier we showed that the extended and reduced
phase space quantizations of the radial momentum p, were
unitarily related. Of course, this is not really surprising and
was in fact guaranteed by our theorems when n = 2. It is
therefore very curious that the same is not true for a rotation-
ally invariant Hamiltonian except when n = 3.
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Set 4 = 0 and let the Hamiltonian be

h(gp) =1 llgll* + VCligl) -
The reduced Hamiltonian on R* X R is

ho(r,s) = 1S+ V().
Neither of these is polarization preserving but may nonethe-
less be quantized using Blattner-Kostant-Sternberg kernels

(cf. Chap. 6 of Ref. 21).
On L2(R") we compute

2h ¥ ={[- #F2)A+ V(N1 ev;
In hyperspherical coordinates this reduces to
#(d> n—-1d
R
[¥] 2 \d~* + r dr
+ V(r)] ¢(r)] Aevy,
for We4,,. Similarly,

# d? y 7
_?;;2--{- V(r)] ¢(r)] Ao® V3,5

on L*(R™). Using (5.20) it follows that
U~ Dh)U =2h—#(n—1) (n—3)/87.

Consequently, these two quantizations do not intertwine
Dhyand 2h unless n = 3. It would be nice to understand
the underlying geometric reason for this.

When n = 2 and ¢ = m#, (5.22) and (5.21) imply that
the amended Hamiltonian %, = i* h is

1_1p =hy + p2/2r.

Since now ¥ = k(r)e"™°A @ v;, the above expressions for the
quantum Hamiltonians must be modified by replacing V(r)
by ¥V(r) + m*# /2. But 2h and 2, are still not unitarily
related.

(3) We have punctured R” in order to avoid patholo-
gies. If the origin is not excluded @ is no longer even effec-
tive, R” /SO(n) is not a manifold and J ~!(0) will be singu-
lar. Our entire formalism then fails to apply. For a discussion
of this case, see Refs. 25 and 26.

Dho[¥] = {

C. Kaluza-Kliein electrodynamics

The Kaluza-Klein theory of a relativistic charged parti-
cle provides another nice illustration of our formalism. We
present only a brief account here; for more details on this and
related topics see Refs. 16, 18, 19, 21, and 27.

Let Q represent four-dimensional space-time. The con-
figuration space for our charged particle is a left principal 7-
bundle 7, : Q—Q, T being the multiplicative group of com-
plex numbers of modulus one. We identify the Lie algebra of
T with R by associating to each eeR the one-parameter
group

z > expli(ey/fi)et )z, (5.29)

where ¢, is a parameter which we interpret as the “elemen-
tary” charge.

Suppose Q carries a T-invariant metric g of signature
(+ + + — — ). Define a connection form «a on Q by

= g ( IQ ’U) s
for all veTQ, where 1, is the fundamental vector field on Q

a(v)
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corresponding to 1eR. By Lemma (2.6) there exists a closed
two-form F on Q such that
g F=da.

We construe F as the electromagnetic field. Since F is the
curvature of a circle bundle, the de Rham class (ey/h) [F 15
must be integral. This condition may be viewed as a restric-
tion on the allowable interactions of a particle of charge e,
with the electromagnetic field F in the Kaluza—Klein for-
malism. Finally we define the space-time metric g via

horg=7%¢g.

The group action is by construction free and proper and
every e<R is invariant. We fix the charge of our particle by
imposing the charge constraint J=e on T*Q. Kummer—

Marsden-Satzer reduction then identifies the reduced phase
space (J ~'(e)/T,m,) with (T*Q,Q,); here

Q, =@ +ersF

is just the charged symplectic structure on T *Q.

Let the prequantization line bundle be L = T*Q X C.
Mimicking the calculation in the previous example while
taking the precise form of (5.29) into account, we find that
the holonomy of L, is exp(27i(e/ey)). In the Kaluza—Klein
framework, then, the lifting criteria become superselection
rules: L, is reducible iff the particle’s charge e is an integral
multiple of the elementary charge e,. When e = ne,, the in-
duced line bundle L, is also trivial. As an aside, notice how
the integrality condition on (e,/h) [F ] and the superselec-
tion rule e = ne, combine to guarantee the integrality of
(1/h)[Q, 1745 = (e/h)[F 15 as required for the quantiza-
bility of the reduced phase space.

Now assume that Q, and hence Q, is orientable. Using
Proposition (3.6) and the metric g, we reduce the structure
group GL(5,R) of FV to SO(3,2). Now SO(3,2) is isomor-
phic to the intersection of o~ (SO (3,2)) with the component
of the identity in ML (5,R). Thus the transition functions for
FV, valued in SO(3,2), can be lifted to o' (SO(3,2))
CML(5,R) thereby defining a metalinear frame bundle Fy.
The characteristic homomorphism of FV so defined is obvi-
ously trivial. This and the orientability of Q imply that the
associated bundle v/ A’V of half-forms is trivial.

Proposition (3.7) and Theorem (3.8) guarantee that
FV projects to a metalinear frame bundle F¥ on 7 *Q, which
is exactly that constructed in a similar fashion to F¥ by re-
ducing the structure group GL (4,R) of F¥ t0SO(3,1) using
the space-time metric g. The half-form bundle v/ A *¥is like-
wise trivial.

Set ¥ = Y4 ® v,, where v, is defined as follows. Fix a
positively oriented orthonormal frame b for FQ, where b is
tangent to the fibers of 75, and denote also by b the corre-
sponding frame in FV (cf. Sec. III E). Then let v, be such
that v (b) = 1. It follows from Sec. IV C and the triviality
ofboth Land v A°V that 4 = L *(Q, ydet g). Similarly, we
have ¥ = ¢4, @ v, for Y4, = L2(Q,/detg).

In a chart (¢,z) on Q, where the ¢ are space-time coordi-
nates and z is the T-coordinate, the quantum constraint

DJ V] = ne,¥
becomes
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- iﬁi ¥(g,2) = negyp(q.2) .
o0z

Thus the Kaluza—Klein quantum state space for a particle
with charge e = ne, consists of wave functions

V=k(q)e" ey, .

Since T is compact, the Unitary Equivalence Theorem as-
serts that the correspondence

k(q)e(i/ﬁ)neozli ®v, — k(q)je ®;§

defines a unitary isomorphism of L?(Q,+detg) with
L*(Q,Jdetg).

Our theorems therefore guarantee that the quantiza-
tions of a relativistic charged particle with e = ne, in both
the Kaluza—Klein formalism and the conventional space-
time-based approach are unitarily equivalent. Since all ordi-
nary polarization-preserving observables—viz., the posi-
tion, linear and angular momenta—are Z7-invariant,
Theorem (4.3) shows that they may be equally well quan-
tized in either formalism.

VI. DISCUSSION

We have proven theorems to the effect that one can
quantize either the extended or reduced phase space of a
constrained cotangent system with unitarily equivalent re-
sults. The examples in the previous section demonstrate the
utility of our formalism. Here we briefly overview our con-
structions and conclusions with an eye to possible general-
izations and improvements.

We begin by reexamining the conditions under which
our formalism operates. These are (1) G must admit a bi-
invariant metric and the action of G on Q must be free and
proper, (2) u€g® must be invariant, and (3) the geometric
quantization structures must be G-invariant.

Regarding (1), the only really severe restriction is that
the action be free. In fact, virtually all our results are predi-
cated upon this assumption although, as the n>2 angular
momentum example shows, our theorems may be valid with-
out it. One might try to weaken this hypothesis as in Mont-
gomery,?° but it is not clear to what extent this is workable.

As noted earlier, condition (2) serves a dual purpose. It
guarantees classically that the reduction of a cotangent bun-
dle is again a cotangent bundle and quantum mechanically
that one obtains a representation of i on 5. The possibility
that the reduced phase space is not a cotangent bundle is not
a problem in principle, although one then of course loses
much of the structure that so simplified our formalism. On
the quantum level the noninvariance of 4 would not neces-
sarily be a disaster either, since one can always find another
extended phase space in which the constraint set is imbedded
coisotropically.” One can then consistently quantize this
new constrained system, but the price is that one will lose
both the group-theoretical and cotangent bundle structures
in the process.

Our last condition (3) on the invariance of the quantiza-
tion structures is vital. As the examples show, one either
cannot quantize or obtains spurious quantizations if the G-
action does not lift appropriately to both the prequantization
line and metalinear frame bundles. It would be interesting to
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know if every such structure on the reduced phase space
arises by projection from an invariant one on the extended
phase space and, conversely, whether every invariant such
structureon 7" *Qis the pullback of acompatibleone on T *Q.

To what extent can our results be expected to carry over
to more general settings? The simplest modification to our
framework is to allow for other types of polarizations. This
should not cause too much difficulty provided P is G-invar-
iant, has simply connected leaves and intersects J ~'(u) suf-
ficiently regularly. Two distinguished possibilities are polar-
izations P which satisfy either

PnTJ ' (u) ={0}

or

P w)CTI () .

One could also consider nonreal polarizations.

Of critical importance, however, is that the polarization
be chosen in such a way that every quantum wave function is
uniquely determined by its restriction to the constraint set.
In essence, this means that the extended phase space quanti-
zation must be totally insensitive to what happens “off
J ~!(u). This requirement seems reasonable, since in princi-
ple only those classical states contained in the constraint set
are physically permissible and/or relevant. For further dis-
cussion of these matters, see Ref. 7. In any case, this condi-
tion played a key role in the proof of the Smooth Equivalence
Theorem. Without it there is no effective way to properly
correlate the extended and reduced phase space quantiza-
tions which will then, in general, be wildly incompatible. An
interesting—and physically meaningful—illustration of the
consequences of violating this condition is given by Ashtekar
and Horowitz.> An even more bizarre example is studied in
Gotay.?®

The next step is to consider arbitrary constrained sys-
tems with or even without symmetry. The problem is now
much more difficult since we cannot explicitly construct
anything and no longer necessarily have at our disposal well-
behaved polarizations. What is known in this general case is
summarized in Refs. 7, 8, and 10-12.
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