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No.

In this paper we continue our study of Groenewold-Van Hove obstructions to quantiza-
tion. We show that there exists such an obstruction to quantizing the cylinder T*S!. More

precisely, we prove that there is no quantization of the Poisson algebra of T*S! which is
irreducible on a naturally defined e(2) x R Lie subalgebra. Furthermore, we determine the

maximal “polynomial” Lie subalgebras that can be consistently quantized, and completely

characterize the quantizations thereof. This example provides support for one of the con-

jectures in [1], but disproves part of another. Passing to coverings, we also derive a no-go
result for R? which is comparatively stronger than those originally found by Groenewold [2]

and Van Hove [3].

1. Introduction

Let M be a symplectic manifold and P(M) its associated Poisson algebra. In [1]

we conjectured that:

Let BC P(M) be a “basic set” of observables, such that the Lie algebra it gener-
ates is finite-dimensional. Then there is no nontrivial strong quantization of (P(M), B).

To understand this, we recall the basic definitions; motivation for these can be

found in [1].

DEFINITION 1. A basic set of observables B is a linear subspace of P(M) such

that:
—~ B is finite-dimensional,
- the Hamiltonian vector fields Xy, f € B, are complete,

*Supported in part by NSF grant DMS 96-23083.

[107)
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- {Xs | f € B} span the tangent spaces to M everywhere,
-1leB,
— B is a minimal space satisfying these requirements.

A basic set typically consists of the components of the momentum map for a
transitive Hamiltonian action of a finite-dimensional Lie group on M.

DEFINITION 2. Let B be a basic set, and let O be a Lie subalgebra of P(M)
containing B. Then a quantization of (O, B) is a linear map Q from O to the algebra
of symmetric operators which preserve some fixed domain D in some Hilbert space,
such that for all f, g€ O,

- Q{9 = 5[, Q).

- Q(]‘) = I;

- if Xy is complete, then Q(f) is essentially self-adjoint on D,

- Q(B) = {Q(f) | f € B} is an irreducible set,

— D contains a dense set of separately analytic vectors for some basis of Q(B).

A quantization @ is strong if in addition D contains a dense set of separately ana-
Iytic vectors for some Lie generating basis of Q(No(B)), where No(B) denotes the
normalizer in O of the Lie subalgebra generated by B. Finally, since a quantization
Q factors through a representation of O/ker Q, we say that Q is trivial whenever
codimker @ < 1.

All examples which have been analyzed to date validate the conjecture above; in
particular, R?" with the basic set

B =span{l,¢',p; | i =1,...,n}

[2, 3], and S? with
B = Span{17 51732753}7

where the S; are the components of the spin vector [4]. In both cases the basic
sets are already Lie algebras. On the other hand, there does exist a nontrivial strong
quantization of T2 with any of the basic sets

By, = span{1, sin k6, cos k@, sin k¢, cos k¢ }

for k a positive integer [5]. But the Lie algebras generated by the B are infinite-di-
mensional. In a sense, B; is the toral analogue of the basic set for R?.

Given this dichotomy, a natural example with which to test the conjecture is the
cylinder T*S!, since it is topologically “halfway” between R? and T2. Endow the
cylinder with the canonical Poisson bracket

where ¢ is the angular momentum conjugate to 6. While the symplectic self-action of
T*S! is not Hamiltonian (thinking of 7*S! as T x R, where T is the circle group),
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the cylinder can nonetheless be realized as a coadjoint orbit of the special Euclidean
group SE(2).! The corresponding momentum map T*S! — e(2)* has components
{¢,sinf,cos§}. Together with the constant function 1, these components span the
basic set

B = span{1, ¢,sin 8, cos 6}.

Algebraically, B is the cylindrical analogue of those for R? and T72.

In this paper we show that the conjecture holds for the cylinder: there is no
quantization of P(7T*S')—strong or otherwise—which is irreducible when restricted
to B. However, there do exist quantizations of certain “polynomial” Lie subalgebras
of P(T*S'); these are discussed and characterized in Section 3. Finally, we “lift” our
results to R?, thereby producing a no-go result which is the strongest yet obtained
for R2.

2. The obstruction

Our first task is to determine all possible quantizations of the basic set B &
€(2) x R. According to the definition a quantization of B in this instance amounts
to a Lie algebra representation Q by essentially self-adjoint operators on a common
invariant dense domain in a Hilbert space which is both irreducible and integrable.
Thus it suffices to compute the derived representations corresponding to the unitary
irreducible representations (“UIRs”) of the universal covering group of SE(2) x R.

Now, the universal covering group of SE(2) is the semi-direct product Rix R? with
the composition law

tz,y) -, 2',y) =@+t 2’ cost + y sint + z,y cost — z'sint + y).

Fortunately, it is straightforward to determine the UIRs of this group. From the
theory of induced representations of semi-direct products [7] (see also [8, §5.8]), we
compute that these representations are of two types:

(i) (UG, z,y))(6) = e@cosdtysin®)eivty,g 4 1) on L2(S!), and

(i) U(t,z,y)z = ¢**z on C.
Here A, v,p are real parameters satisfying A > 0 and 0 < v < 1. The corresponding
derived representations are?

iy Q@) = —id% + vI, Q(sind) = Asinf, Q(cosf) = Acosf on C=(S1,C) C
L?(SY), and

(ii) Q) = p, Q(sind) =0, Q(cosf) =0 on C.
Thus the required representations of e(2) xR are given by (i)’ and (ii)’ supplemented

by the condition Q(1) = I. The parameter A can be identified with the reciprocal of
Planck’s reduced constant,® which we take to be one.

1This fact is important in geometric optics, cf. [6, §17].

2We denote multiplication operators as functions.

3See [8, §4.6] for a discussion. There is an error here, however; A should be identified with A=, and
not k2.
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Rather than consider the entire Poisson algebra P(T*S'), we will focus on the
Poisson subalgebra P of polynomials in elements of B, i.e., sum of multiples of terms
of the form

£"sin™ @ cos™ 6
with r,m,n nonnegative integers. We remark in passing that P is dense in C>(T*S"),
where the latter is given the topology of uniform convergence on compacta of a function
and its derivatives. Let P” be the subspace thereof consisting of polynomials which are
at most degree r in £, and P, those which are homogeneous of degree r in £. A short
calculation shows that the (Lie) normalizer of B in both P and P(T*S?') is just itself,
so that any quantization of (P, B) or (P(T*S'),B) is automatically strong.

Now suppose there existed a quantization Q of (P,B) on some common invariant
dense domain D in an infinite-dimensional Hilbert space H. Arguing as in the proof
of [1, Proposition 2], we may assume that D = C*°(S*,C) in H = L?(S'), so that Q
restricted to B is given by (i)’. To begin, we generate some “von Neumann rules.”

PROPOSITION 1. Q(£%) = Q(£)? + bQ(¢) + cl, where b,c € R are arbitrary.

Proof: First observe that L?(S') has an orthonormal basis {|n) | n € Z} of eigen-
vectors of Q(f), where |n) = \/%ei"". Thus Q(¢) has spectrum {n + v | n € Z}, and the
multiplicity of each eigenvalue is 1. Hence, if a normal operator commutes with Q(¢)
on C*(S1,C), then it must be a function of Q(¢).

Also observe that .
Q(cosf)|n) = §(1n +1)+n—1)) (1)

and ,
Q(sinf)|n) = Z(in +1) - n - 1)). (2)

Now set A = Q(£2) — Q(£)%. Then [A, Q(£)] = 0, so that A is a function of Q(£), say
A = £(Q(¢)), and we want to compute &. Since

£(QW)In) = &(n + v)in) €

and {|n)} span L2(S?), it suffices to determine the sequence {{(n +v) | n € Z}.
Let us quantize the Poisson bracket identity

{{€%,sin6},sinf} + {{£*,cos6},cos6} =2 4)

to get
[[Q(¢?), Q(sinB)], Q(sinf)] + [[Q(¢?), Q(cos )], Q(cosB)] = -2,

whilst explicit calculation produces
[[Q(6)?, Q(sin B)], Q(sing)] + [[2(¢)*, Q(cos B)], Q(cosb)] = 2.

Subtracting,
[[A, Q(sin 8)], Q(sin B)] + [[A, Q(cos§)], Q(cos )] = 0.
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Denote the left-hand side of this equation by K. Now evaluate the matrix element
{n|K|n) by substituting A = £(Q(¥)). After a short computation using (1)—(3), we obtain
the recursion relation

2(n) - + 1) - €' - 1) =0,
where n’ = n + v. This has the solutions &(n’) = bn' + ¢, where b,c are real as A is
symmetric. Thus

A = £(Q(0) = bOt) + cf,
which yields the desired result. O
Next, we quantize the relations
£sinf = —3{f*,cosf} and fcosd = 1{¢? sind}

thereby obtaining

Q(¢sinf) = Q(sinf)Q(¥) — % Q(cos b)) + %Q(sin 0) )
and o
Q(£cos ) = Qcos8)Q(¢) + % Q(sind) + g Q(cos b). 6)

Then, quantizing the relation {fcosd,{¢sinf} = ¢, we conclude that b = 0 in the
above. Finally, using (5), (6) and Proposition 1, we quantize

¢%sin@ = 1{fcos,¢?} and ¢*cos® = —1{¢sind,?
2 2

o Q(£*sinf) = Q(sin ) Q(L)* — iQ(cos H)Q(¢) + 1 Q(sin f) @)
and
Q(#2 cos 8) = Q(cos H)Q(£)? + iQ(sinH) Q(¢) + 3 Q(cos ). (®
Our main result is the following no-go theorem:
THEOREM 2. There is no nontrivial quantization of (P,B).

Proof: We merely use (i) and the von Neumann rules (7) and (8) to quantize
the bracket relation

2{{¢*sin8,£?cos6},cos 0} = 126 sin 6.
After simplifying, the left-hand side reduces to
12Q(sin 8)Q(£)? — 12iQ(cos #)Q(£) + 5Q(sin §),
whereas the right-hand side is
12Q(sin 8)Q(£)* — 12iQ(cos ) Q(¢) + 3Q(sin §),

and the required contradiction is evident. O
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This theorem holds for representations of type (i)). But it is easy to see that
there are no trivial quantizations of (P, B) either, corresponding to representations
of type (ii)y. Indeed, quantizing cos?8 = 1{{¢2 sind},sind} we obtain Q(cos®6) = 0.
Likewise, Q(sin’#) = 0. But this is impossible:

I = Q1) = Q(cos? 8 + sin’§) = Q(cos? §) + Q(sin ) = 0.
Assembling the above results, we therefore have
COROLLARY 3. There exists no quantization of (P(T*S"),B).

Thus (P(T*S'), B) does indeed satisfy the conjecture of Section 1.

3. Quantizable subalgebras of observables

In view of the impossibility of quantizing (P, B), one can ask for the maximal Lie
subalgebras in P to which we can extend an irreducible representation of B.

Such subalgebras certainly exist: For instance, there is a two-parameter family of
quantizations of the pair (P!, B). They are the “position representations” on C*°(S*,C)
C L?(S') given by

H

Q1O +50) = =i1@) 5+ | (1-3) FO +vi@ 400 ©

where v labels the UIRs of the universal cover of SE(2) and 7 is real. (In this expression
f, g are trigonometric polynomials. However, these quantizations can be extended to the
case when f, g are arbitrary smooth functions on S.) Since P* is maximal (this is proven
below), Corollary 3 implies that none of these quantizations can be extended beyond
Pl in P.

We now classify the maximal Lie subalgebras of P containing B. First, we have

PROPOSITION 4. P! is a proper maximal Lie subalgebra of P.

We need a few preliminaries. Notice that we may equally well view P as consisting
of sums of multiples of terms of types

M sinmf, £ cosnf, and £ sinmbcosnd.
For each integer k define endomorphisms Cj and S of each P, by
Ci(p) = {€cosk8,p} and Si(p) = {{sinkd,p}.

LEMMA 1. Each P, is irreducible under the endomorphisms {Cx, Sk | k € Z}.

Proof: Let S be an invariant subspace of P,. Then its complexification S¢ C (Pr)c
is invariant under the ladder endomorphisms Ly = Cy + 1Sk, k € Z. Set ey, := reimo;
then

Li(el,) = i(m — kr)eq, x- (10)

We will show that S¢ = (P.)c, whence S = P,.
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We assert that S¢ contains a monomial. Indeed, given p € S¢ we may write
p= Z AmEp,.
m

Let M be any integer such that ajr # 0. Since S¢ is invariant, it follows from (10)
that if p is not already a monomial, then p’ = Lo(p) — iMp is nonvanishing and
belongs to Sc. But p’ has one fewer term than p. Applying this procedure (which we
refer to as the “elimination trick”) to p’ and continuing in this fashion, we eventually
produce a monomial e} € Sc.

Then, by successively applying the ladder endomorphisms L, to ej for various
values of %, it is readily verified that we can obtain any other monomial e}, € Sc. ¥

Proof of Proposition 4: Let p ¢ P, and let R be the Lie algebra generated by
p along with P!. The degree of p in £ is » > 1. By bracketing p with cosf a
total of r —2 times, we obtain an element of R which is quadratic in £. Subtracting
off the affine terms in /—which belong to P'—we obtain an element of RN P;.
Since both ¢sinké and fcoské belong to P!, Lemma 1 implies that P, C R. Since
N cosf} € RN P,yy, Lemma 1 and induction yield P41y € R for all n > 1,
whence P C R. a

However, P! is not the only maximal Lie subalgebra of P containing B. For each
real number «, let W, be the Lie subalgebra of Pc generated by

1
{178(:31:1’6(1”631\[4—1 + 2(!62N+1 \ N S Z},

where as before e, := £"¢'™%. By construction W, is totally real (i.e, W, = W), so
it must be the complexification of a real subalgebra V,. That each V, is proper and
maximal is established during the proof of Proposition 5 below.

First, we state a structural result concerning W,, which follows from a consider-
ation of Poisson brackets of elements of the form given above.

LEMMA 2. For each v and N of opposite parity, there exists an element of W,
of the form
ey +raely ! + Ldt,

where “L.d.t.” stands for lower degree terms in £
With this observation, we can now prove

PROPOSITION 5. P! and V,,a € R, are the only proper maximal Lie subaligebras
of P containing B.

Proof: Since all algebras under consideration here are real, we can manipulate
their complexifications and then take real parts. It therefore suffices to prove that
P} and W, are the only proper maximal totally real Lie subalgebras of Pc containing

Be =span {1,e%,, €5}

The proof will proceed in several steps.
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Step 1: Let S C P be a proper maximal Lie subalgebra containing B. If S¢c C P}
strictly, then S¢ can’t be maximal by Proposition 4. Thus either S¢c = P¢ or S¢ € PZ.

Suppose S¢ € PE, and consider any element of S¢ which does not belong to P. It
must have degree at least 2 in £. By repeatedly bracketing it with €%, € B¢, we obtain
an element of Sc N P2 of the form

Zame?n + Ld.t.

with a,, # 0 for at least one value of m. Since L, preserves S¢ we may, by virtue of
the elimination trick from the proof of Lemma 1, suppose that the coefficient of ¢2 in
this expression is a trigonometric monomial. Thus we have

pi= G?M + Ld.t. € S¢

for some fixed integer M. Since Sc is totally real, p € Sc as well.
Now compute
{p,el,} = +2ie},., + 1.d.t. € Sc.

By bracketing this expression with p, we find that py; := e, +1.d.t. € Sc. Bracketing p44
with €%, we find that e}, + l.d.t. belongs to Sc. Further bracketing this last expression
with p+,, we find that p.3 := e, + Ld.t. € Sc. Bracketing p.s with €%, we find that
el + Ld.t. belongs to Sc. Continuing in this manner, we conclude that

e3ns1 +1dt. € Sp (11)

and
eéN + 1d.t. € S¢ (12)

for all integers N. Furthermore, by bracketing (12) with €%, we have that
eg]\r+1 S SC (13)
for all integers .

Step 2: We examine (11) and (12) more closely; we claim that these can be improved
as follows: There exists a real number « such that

3%1\«41 + 2(16%N+1 € S¢ (14)

and
eéN + aegN e S¢ (15)

for each integer N, respectively.

First, we note the following useful result, which we refer to as the “bootstrap trick.”
Suppose that €3, € Sg for some K # 0. By bracketing 3, with (12) we see that
edxian € Sc for all integers N. When combined with (13), this implies PY C Sg,
and then (12) yields e}y € Sc for all N, ie., (P1)c C Sc. But altogether this implies
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PC1 C Sc, and Proposition 4 then forces S¢ = Pé, contrary to assumption. Thus for no
N # 0 can €9, belong to Sc.

If every ejy € Sc, then (15) holds with a = 0. So suppose that e}; ¢ Sc for some
L # 0. Without loss of generality, we may assume that L > 0.* Then by virtue of (12),
and taking into account (13), there must exist a polynomial

for =eap + Z ar,keégk € Sc, (16)
K#0

where ap i # 0 for at least one value of K. Eliminating the top term in f;,, we
obtain:

f3r o= Lo(f3g) —i2Lf3y = 2i > ar k(K — L)edx € Sc.
K#0

If ar,x # 0 for some K # L, we may again use the elimination trick to remove
every term in fJ; except the one corresponding to this value of K, thereby obtaining
€95 € Sc. The bootstrap trick then leads to a contradiction unless oy x = 0 for all
K # L, in which case (16) reduces to

far, = ey + apeyy € S, 17)

where o := ap p # 0. We remark that ¢y is uniquely determined by L. (Otherwise,
upon subtracting two such f1,, we would obtain eY; € S¢, which would again lead
to a contradiction.)

Now consider the quadratic term e, ;. It cannot belong to Sg, since otherwise

{€2;.1,€%} = —2ie}; would also. From (11), then,

2 2 1
firo = €1 + ) Briesgyy +Ldt € Se,
K

where we made use of (12). Now
{Boprres} = —2i(ehs + 53 BrreS) € Se
K

and comparison with (17) along with the bootstrap trick gives 37 x = 2ar6k,r. Thus
f22L+1 = espi1 + 2apey; ., +Ldt.

But then
2 0V = 2:(ol 0
{f3141,€0} = 2i(ezp42 + aredryn) € Sc.
If e};,, € Sc then, to avoid a contradiction via the bootstrap trick, we must have
ar = 0, which is impossible. Thus e}; ., ¢ Sg, in which case comparison with (17)
yields ap41 = af.

4Since Sc is totally real, if e}, & S¢ then its conjugate !, ¢ Sc either.



116 M. J. GOTAY and H. B. GRUNDLING

A similar argument using €3, , in place of €3, yields e};_, ¢ Sc along with
ar—1 = ar, provided L # 1. Iterating, we obtain e}y + aredy € Sc for all positive
integers N. Analogously, starting with the conjugate e',; of e}, (recall that Sc is
totally real), we obtain e}y + a_redy € Sc for all negative integers N. Comparing
the bracket

{firi1,€2ar 1} = =2i(4L + 1) (e 5y + are’,;) € Sc

with (17) and applying the bootstrap trick, we get a_; = «ar. Thus (15) holds for
all integers N with a := «ay. Finally, comparing the conjugate of f;, with f1,; gives
ar = a_y = ap, SO « is real.

It is now a simple matter to prove (14). From the arguments above coupled with
(13), we may write

2 _ 2 1 0
font1 = €any1 + 206y + E TN, K€K € Sc
K

for all integers N and some coeflicients 7y x. But now the elimination trick gives

iy (2K — 2N — D7y kelx € Se,
K

which leads to a contradiction unless 7v x = 0 for all K.

Step 3: We first observe that according to (14)
Wa c S(C (18)

for some o € R. We will show that Sz C W,.

Let g € Sc be of degree = in ¢, and suppose that ¢ ¢ W,. By Lemma 2, we know
that e}, + raely ' + -+ € W, for all N with opposite parity to r, and so by (18) we may
eliminate all such combinations in g, thereby obtaining a polynomial § which belongs to
Sc but not W,. Now either we can eliminate all terms of degree r in this manner, in
which case § has degree 7 < r—1, or else there is a term in ¢ of the form e}, where N
and r have the same parity. In the latter instance, we may isolate this term using the
elimination trick, and then bracket with €%, r times to obtain €%,_, € Sc. Since N and
r have the same parity, N — r is even. If N — r # 0, then the bootstrap trick produces
a contradiction. If N = r, then bracket instead with e to obtain e, € S¢ with N +r
even and nonzero.

We iterate this procedure, either encountering a contradiction at some point or
finally ending up with a zeroth-degree polynomial ¢ € Sc of the form ), ynedy.
Since ¢’ & Wy, var # 0 for some M # 0. But the elimination trick can now be used
to produce €9,, € Sc, which also yields a contradiction. Thus in all eventualities, the
assumption that ¢ ¢ W, produces a contradiction. It follows that S¢ = W,. O

In fact, other than P! and subalgebras thereof, this proof shows that the V,, are the
only proper Lie subalgebras of P containing B.
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In contrast to P, we now show that there is no nontrivial quantization of V,, which
represents B irreducibly. While the method of proof is the same as that of the no-go
theorem for P in Section 2, we must make sure that all constructions take place in V.
Upon replacing the identity (4) by

{{€® + 3af? sinf},sin 0} + {{€* + 3al? cosb},cos 0} = 6£ + 6a, (19)

the proof of Proposition 1 can be immediately adapted to give

PROPOSITION 6. Q(£3 + 30£?) = Q(¢)® + 3aQ(€)? + ' Q) + c'I, where V,c € R
are arbitrary.

This can be specialized further: Quantizing the bracket relations

(62 + 204)sin® = —1{6® + 3af? cos 6}

and
(¢ + 2af)cos§ = L{£® + 3al? sind}
we obtain®
Q((# + 2at)sinf) = Q(sin§)Q(¢)* + (2aQ(sinf) — iQ(cos §)) Q(£)
41 ;b' Osin 6) — i O(cos ) (20)
and

Q((£* + 20f) cos 8) = Qcos0)Q(L)* + (2 Q(cos b) + iQ(sin§)) Q(¥)
+ %ﬂg(cos 8) + i Q(sin b). (21)

Using these to quantize
&+ 308 = L{(£* + 204) cos b, (£ + 2al)sin 6} — 2a°4,

we get

QU +3082) = Q(O)° + 3aQ(0)* + 1—;—')—9(@) + 1 ;b

which is compatible with Proposition 6 iff ' = § and ¢ = . Thus,

al,

QB +3a82) = QO +3aQ(0)? + 1Q(4) + Lal.

(As an aside, observe that fixing & = § here leads to an inconsistency with our
calculations in Section 2, where b = 0. Indeed, comparing the expressions (7)+2ax(5)
with (20) for Q((£2 + 2af)sin6), and (8) + 2a x (6) with (21) for Q((£* + 2af)cosf),

5These calculations were done using the Mathematica package NCAlgebra [9].
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we see that they differ in the zeroth-degree terms in Q(f). We could equally well
have used this discrepancy as a basis for the previous no-go result.)
Finally, using these von Neumann rules, we quantize

(¢* + 4al® + 400 sin 6 = L{(¢* + 2al) cos b, £ + 3al?}

and (£* + 4al® + 40”) cos § = —L{(¢* + 2al)sin 0, £ + 3af?}
to get
Q((£* + 4af® + 4a°%)sin 6)
= Q(sin0)Q(¢)*
+ (4:Q(sin 8) — 2Q(cos §)) Q(£)°
+ ([4a? + 2]Q(sin §) — 6iaQ(cos 6)) Q(¢)?
+ (40:Q(sin 0) — i[4a® + 1]Q(cos 6)) Q(¢)
+ (3 + o)) Q(sin9) — iaQ(cos 0) (22)
and

Q((£* + 4at® + 40*1*) cos 8)
= Q(cos H)Q(¢)*
+ (42 Q(cos8) + 2iQ(sin 6)) Q(¢)?
+ ([4a® + 2]Q(cos 8) + 6iaQ(sin 8)) Q(£)?
+ (4Q(cos §) + i[4a” + 1]Q(sin 6)) Q(¥)
+ ( + %) Q(cos 0) + iaQ(sin ). (23)
We are now ready for
THEOREM 7. There is no nontrivial quantization of (V,, B).

Proof: We consider representations of B of type (i), and use the von Neumann rules
(20)—(23) to quantize the bracket relation

{{(&® + 2at)cosb, (¢* + 4al® + 40*¢*)sin B}, cos 0}
+ {{(¢* + 4al® + 402 6%) cos 0, (£° + 2al)sinf},cos B}
= —30(¢* + 4al® + 4a*0?)sin 0 — 240°%(£ + 2af)sin 6.
After another computer calculation, the left-hand side reduces to
—-30Q(sin9)Q(£)* + (60iQ(cos #) — 120 Q(sin #)) Q(¢)*

+ (180ic:Q(cos 0) — [84 + 1440]Q(sin H)) Q(¢)*
+ (i[54 + 1440°]Q(cos 0) — [168c + 48a®]Q(sin ) O(¢)
+ i[54a + 240°]Q(cos 0) — [3 + 66a%] Q(sinb),
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which is quite different from —30 x (22) — 24a? x (20):

~30Q(sin §)Q(£)* + (60iQ(cos §) — 120aQ(sin #)) Q(£)®

+

+ (180iaQ(cos §) — [60 + 1440°]Q(sin #)) Q(¢)*

+ (i[30 + 1440°]Q(cos 0) — [120a + 48] Q(sin #)) Q(¢)

+ i[30c + 240®]1Q(cos 0) — [22 + 420°] O(sin 6). O

On the other hand, there do exist trivial, but nonetheless nonzero, representations
of type (i)', provided a # 0. To see this, quantize (19) to obtain Q(f) = —al.
Moreover, since {e3y + 3aedy — 2a3€d,, €0} = 3i(edy ., + 2aely,,), quantization
yields O(e?y,; + 2aely,,) =0 for all N. It follows from the definition of W, that
the only observables in V, which have nonzero quantizations are of the form bf + c,
with Q(bf + ¢) = (c — ab)I. This is reminiscent of the situation for S2, cf. [4].

Thus the largest quantizable Lie subalgebra of P containing B is Pl. At the
beginning of this section, we exhibited certain quantizations @, , of (P* B). In fact,
as we now show, these are the only ones.

THEOREM 8. If Q is a nontrivial quantization of (P',B), then Q = Q,, for some
vef0,1) and n€ R

Proof: We may suppose that Q restricted to B is given by (i)’ for some v. In
what follows it is convenient to use complex notation.
Because of the linearity of ©, to establish (9) it suffices to prove that

Q(eil\fﬂ) = eiNl? (24)
and P N
iNOY _ iNO [ % > —

Qte*?) = e ( Oy + {2N7]+ 5 +V]I>. (25)

We begin by quantizing the bracket relation {¢,e'V°} = iNe'™? to get [Q(¥),
QeN?)] = NQ(eN?). Writing Q(e*¥)|n) = Y-, DN, |k), we evaluate the matrix ele-
ment

(m|[2(0), &™) |n) = N (m[Q(e™)|n)

to obtain mDY  —nDY = NDJ

s 1-€55

(m—n—N)DY =0.
Thus DY =0 unless m = n + N, and hence
Qe™)ln) = Dyfln + N), (26)

where we have abbreviated DY,y =: DY. Note in particular that D) = 1 and
DE' =1, for all n, cf. (i)'. A similar analysis of the relation {£,0eN0} = iNgetNO
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yields '
Q(te’N?)\n) = d¥|n + N, (27)

where in particular d = n + v by virtue of (i)'.
Next quantize {¢'V? e} = 0 using (i)’ to obtain [Q(e*"?),e*] = 0. Applying this
to a ket |n), (26) gives
(DY —-DN)n+ N +1)=0

for all integers n, from which we conclude that DY depends only upon N, and so will
be denoted DV henceforth. Thus

Q(eiNO) = DNeiNG_ (28)

Now we quantize A A
{£62N9,61M0} = ,I:Mez(N+M)0

to obtain
[Q(eeiNB)’ Q(eiMG)] = MQ(ei(N+M)8).

Applying this to a ket |n), (28) and (27) give
(@Y. —d¥)DMn + M + N) = MD¥+*M|n + M + N),

from which we conclude that

(dN o — ) DM = MDN+M, (29)

Setting M = 1 this reduces to d¥,; — dY = DN+, which in turn implies that
d =df + nDNFL. (30)
On the other hand, when we take M = —N, (29) reduces to
(A — Y)Y = —N.

Substituting (30) into this, we find that D¥+1D-N =1 for all integers N. Since D*! =
1, this implies that each DV = 1. Thus (24) is proved.
Following the established pattern, upon quantizing the relation

{eeiNG’eeiMO} = Z(M _ N)eei(M-‘I-N)G
and using (30), we eventually produce
MdY ~ NdY = (M — N)ay v, (31)

Taking M = —N, this becomes
dy +dy™N =2v. (32)

Taking M = +1, (31) reduces to
dy — NdY = (1 - N)dj+!
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and
dyt + NdY = (1 + N)d) 1.

Relabeling N — N + 1 in this last equation, and then eliminating d) ! between these
two equations using (32) gives the relation

dy = Ndi + (1~ N)v. (33)
Furthermore, we observe that by the definition of a quantization
Q(ee—iNé) C Q(eeiNé)*,

which in particular forces
dy —dgN = N. (34)

Adding (32) and (34), we get R(d)’) = § +». From (33) and its conjugate, we obtain
$(dl) = NS(d}) =: Nn. Substituting back into (27) and recalling (30), we end up
with

Q(Eeme)ln> = (n +iNn+ —J} + 1/) |n + N),
which is equivalent to (25). ‘ O

Thus within the subalgebra of polynomials, the quantizations @, , of (P!, B) are
the best one can do.

4. Discussion

Although for topological and algebraic reasons the quantization of 7*S! might be
expected to share some of the features of both those of R? and T2, we see that
in all essential respects it behaves like the plane. For both R? and T*S* there is
an obstruction, and a maximal Lie subalgebra of polynomial observables that can be
consistently quantized consists of those polynomials which are affine in the momen-
tum. Most likely, the underlying reason is that in these examples the given basic sets
are the generators of transitive (finite-dimensional) Lie group actions (the Heisenberg
group H(2) for R?, and the special Euclidean group SE(2) for T*S*), whereas this
is not true for the basic sets B; on the torus.

There are some differences, however, which reflect the non-simple connectivity of
T*S!. For instance, on R?, there are exactly three maximal polynomial Lie subalge-
bras containing the basic set span{l,q,p}, whereas according to Proposition 5 there
is an infinity of such containing B for the cylinder. Moreover, on R? all three of
these maximal subalgebras can be consistently quantized [1]. But on T*S%, in view of
Theorem 7 and the discussion at the beginning of Section 3, only one of these can be
nontrivially quantized (viz. P'), leading to the position representations (9) on L?(S%).
Thus there is no analogue of the metaplectic representation for T*S*. Since 8 is an
angular variable, there is also no cylindrical counterpart of the momentum represen-
tation. Another key difference will be discussed below. Thus the possible polynomial
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quantizations of T*S! are more limited than those of R?; this is surprising, given
that 72 admits a full quantization.

Although an obstruction exists for the cylinder, as predicted by the conjecture in
Section 1, this example serves to disprove part of another conjecture in [1] concerning
the maximal Lie subalgebras of observables that can be consistently quantized. In the
present context, this conjecture can be stated:

Let B be a basic set, which is itself a Lie subalgebra of P(M). Then every integrable
irreducible representation of B can be extended to a quantization of (N(B),B), where
N(B) is the Lie normalizer of B in P(M). Furthermore, no nontrivial quantization of
(N(B), B) can be extended beyond N(B).

For the cylinder, N(8) = B. But from Section 3, we see that the representation (i)’
can be extended to a quantization of (O, B), where O is the Lie subalgebra of observ-
ables which are affine in the (angular) momentum ¢. On R?, the basic set span{l, ¢, p}
is not self-normal, and it is this difference which is largely responsible for the absence
of a “metaplectic-type” representation on T*S?!.

The existence of consistent quantizations of (O, B) can be understood from the
standpoint of geometric quantization theory; since O is the normalizer of the vertical
polarization {f(8)} on T*S* [10]. In fact, the parameter v € [0, 1) in the quantizations
Q,,, labels the inequivalent connections on the prequantization line bundle L = T*S! x
C. (On the other hand, the parameter 7 in (9)—which also appears in the “quantum
kinematics” of Doebner et al. [11]—seems to have no geometric significance.) While O
thus finds a natural interpretation in the context of polarizations, it is not at all clear
how (or even if) these quantizations could be predicted by considerations involving B
alone. An important open problem is therefore to repair this conjecture.

It is interesting to observe that if we regard 6 as a real variable, then B = span{1, sin#,
cos @, ¢} forms a basic set on R? (with coordinates 4, ¢); indeed, R? is a Hamiltonian
homogeneous space for the universal cover of SE(2).° Thus, if we wish, we may regard
B as an “exotic” basic set on the plane. A moment’s reflection shows that the results of
Section 2 carry through to this context (with one minor exception, noted below). Thus
we obtain an exotic no-go result for R?:

THEOREM 9. There exists no quantization of (P(R*),B).

Comparatively, this result is stronger than Groenewold’s original no-go theorem [2].
Indeed, the latter only states that there does not exist a quantization of the (standard)
polynomial subalgebra of R? which extends the metaplectic representation. This cannot
be strengthened to a statement analogous to Theorem 9 without introducing ad hoc
assumptions a la [3]. (A fuller discussion of this point can be found in {1, §4.1].) So in
fact Theorem 9 is the optimal no-go result extant for R?.

SSpecifically, the action of R X R? on R? is

(t,z,y) - (6,8) = (0 + t, £ + xsin(6 + t) — ycos(d + t)).
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We make three remarks. First, in P(R?), B = span{1,sinf,cosé, ¢} is not self-nor-
mal; in particular, § € N(B). It would be interesting to discover the ramifications of this,
especially as regards the conjecture above. Second, this basic set separates points only
locally on R?, not globally, unlike the Heisenberg basic set on R? or even B on T*S!.
Third, as described in Section 3, there do exist quantizations of (P!,B) on L?(S!).
Curiously, they do not seem to arise from geometric quantization theory (i.e., via a
choice of polarization on R?, since S* cannot be the leaf space of any foliation of the
plane).

Finally, one topic for future exploration would be to consider the higher-dimen-
sional analogues of the cylinder, viz. T*S™ with group SE(n).
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