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1. TIntroduction

It has long beep recognized that the language of symplectic
geometry is particularly suited to Hamiltonian and Lagrangian mechanics,
The usefulness of this approach carries over even to degenerate and
constrained dynamical systems, provided one generalizes to presymplectic
geometries. Thig ig a necessary generalization, for presymplectic phase
spaces arise naturally in a variety of physical contextsg (cf. [2,5,6]
and references contained therein).

The presymplectic geometry of a classical system, along with the
specification of a Hamiltonian, provides a complete self-contained
description of the dynamics of the system. Nonetheless, it is often
desirable to view the presymplectic phase space under consideration as
being imbedded in a symplectic manifold, This is especidlly true, for
instance, when considering the tran31t10n to quantum mechanics. Here
the difficulty is that‘whlle one knows in principle how to quantize a
symplectic System, it is not a priori clear how to quantize a presymplectic
one. An obvious way to proceed is to imbed the presymplectic manifold in
2 symplectic manifold and quantize the latter. Tt will be shown in §4
that for the quantization to be internally con51stent this imbedding must
be coisotropic.

Thus it is important to determine whether a given presymplectlc
manifold can be coisotropically imbedded in some symplectic manifold.

This problem also appears in contexts other than that of quantization
theory; for example, in connection with Dirac's theory of constrained
dynamical systems [1,9,12]. Within this framework, the Poisson bracket

associated to the symplectic structure on the imbedding space is known
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as the Dirac bracket. This structure, intrfoduced by Dirac in order
to simplify the canonical analysis of constrained systems, has
important applications in field theory (az number of detailed examples
may be found in [9]).

These remarks illustrate the significance of coisotropic
imbeddings in both the classical and quantum physics of presymplectic
systems. The purpose of this péper is to collect several recent
results on coisotropic imbeddings which have a bearing on the existence
and uniqueness of Dirac brackets as well as their application to
quantization theory. In fact, from a mathematical standpoint the
theory of coisotropic imbeddings is just that of Dirac brackets. In
§2, the classical results on Dirac brackets are recalled, including
some global refinements due ;o §niatycki. In §3, the notion of Dirac
bracket is reformulated in the more general setting of coisotropic
imbeddings. A fundamental theoren to the effect that coisotropic
imbeddings of a given presymplectic manifold always exisf and are
"locally" unique ié stated and its ramifications discussed. In the
last section, I briefly outline some joint ﬁgrk with J. Sniatycki [7] on
applications of coisotropic imbeddings to the quantization of

presymplectic dynamical systems.

1T. Dirac Brackets and Constraint Thecry

Let (P,%) be a symplectic manifold, and suppose that M is a
closed submanifold of P. The submanifold ¥ inherits a {generically)
presymplectic structure Q from (P,z); I assume that the characteristic

distribution ker @ has constant dimension.




The pair (P,7) may be taken to represent the phase space of a
classical system, while ¥ may be thought of as the v"constraint set",
that is, the submanifold of P consisting of all states which are
admissible initial data for the equations of motion of the system.

Given (P,;) and a Hamiltonian on P, one constructs M by the standard
methods of constraint theory, cf. {1,2,6,9].

Submanifolds M of P are classified as follows: M is said to be

(1) coisotropic or first class if TML c Tu,
(ii) symplectic or second class if TM I ™ - {0}, and
(i11) mixed in all other cases.
Here, TMi denotééhzhe "orthogonal' complement of TV in TP|M with respect
to £, From the point pf view 0f the submanifold M, this classification
reduces to a characterization of ker Q.

In Dirac's terminology [1,2], a constraint is a smooth function
ont P which vanishes on ¥. A constraint is firsticlass if its Poisson
bracket with every other constraiﬁt is identically zero on M and second
class otherwise. Thus, a coisot;OPic (resp. symplectic) submanifold is
locally characterized by the vanishiné of functionaily independent first
(resp. second) class constraiﬁts, whereas a mixed subﬁanifold reqﬁires

both first as well as second class constraints for its 1local description.

This classification of constraint submanifolds (or, equivalently,
the partitioning of constraints into classes) has deep physical
significanbe [1,2,6]. The existence of first class constraints, for
example, signals the presence of 'gauge' degrees of freedom, that is,
variables whose time-evolution is not uniquely determined by the

equations of motion. The appearance of second class comstraints, on




the other hand, indicates that there are non-dynamic degrees offfreedom
in the theory. :

Dirac [1] pointed out thét, since the degrees of freedom
associated with the second class constraints do not evelve in time,
they are physically irrelevant and so might as well be dropped from

further consideration. Meore importantly, he also discovered that the

presence of second class constraints precludes the possibility of
consistently quantizing the system "as is" (cf. §4). Consequently, in

order to simplify the canonical analysis and cast the theory into a

form suitable for quantization, Dirac proposed eliminating the second
class constraints entirely from the theory (and along with them the

nonvdynamié degrees of freedom). He then constructed a new canonical
formalism in which only first” class constraints appear and which leads

to a consistent quantization. The crucial step in this process 1is the

introduction of a "Dirac bracket".

Dirgc's classical constructions go as follows. Locally describe
the constraint set ¥ in P by means of first and Egpond class constraints
fi and ga, chosen in such a way as to maximizZe the number of first class
constraints [2]. The local submanifold V of’P defined by ga = (0 is then

second class, and the local submanifold V N M is clearly first class in V

A , o i
as it is given by the vanishing of the f . One now removes P from the
formalism altogether and in its place sets up a canonical apparatus on
V; for this, it is only necessary to define a Poisson bracket on V.

This new Poisson bracket {+,*}* is called a Dirac bracket and is given,

in terms of the Poisson bracket {+,+} on P, by




{Fyg)* = {}‘,é} ) {;“,ga}cds{gs,s;},
o,R
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where f and g are smooth functions on V; } and é)are any local extensions
of f and g to P, and CuB is the inverse of the'matrix whose entries are
the Poisson brackets {ga,gs} of the second class constraints.
Geometrically, the traﬁsition from the Poisson bracket to the
Dirac bracket consisté of choosing a symplectic submanifold X of P which
contains ¥ as a coisotropic submanifold. This is neatly summarized by

the diagram

P . second elass
~
~
-
-~
mixed { X
-
-~
//
M- first class

The symplectic structure w on X is that induced by z via the imbedding
X » P; §niatycki [lZJ_has-shown that the w~-Poisson bracket is none
other than the "mysterious" Dirac bracket {-,-}¥.

Since Dirac's constructions are local, it remains to determine
whether a subﬁanifold X of P with the desired properties always exists
globally. Fortunately, §niatycki [12] has settled fhis issue in the

affirmative. On the other hand, it is clear that ¥ and (P,z) cannot

determine the global properties of (X,w) to any significant extent,
s0 that in general many different choices of X are possible. Locally,
this nonuniqueness is reflected in the various possible choices of

constraint functions and their decomposition into the first and

second classes.




Dirac brackets play an important role in field theory, especially
when used in conjunction with group theoretical techniques [4]. For
example, in a large variety of physically interesting systems the first
class "part" of the constraint submanifold M arises as the zero level
set of the momentum mapping associated with the symplectic action of a
gauge group on (P,7). Upon introducing Dirac brackeﬁs, one finds that
this group action restricts to a Hamiltonian actiom on (X,w) with
corresponding momentum mapping J in such a way that, in ¥, ¥ is given
precisely by J—l(O). This realization of the constraint set is quite
useful since, for a given gauge group, the structure of the set J’l(O)
is well-understood {10]. Moreover, in such cases not only do Dirac
brackets allow one to eliminate the second class comstraints from the
theory, they also enable one 50 write the field equations in adjoint

form [4,10].

111. Coisotropic Imbeddings

~In the preceding discussion the basic object of physical
interest -~ the presymplectic phase space (M,R) -- was given a priori
as a submanifold of a symplectic manifold. i; practice this is not
always so; for example, it may happen that (¥,Q2) arises as a
submanifold of yet another presymplectic manifeld (as is typical in
Lagrangian mechapics [5]1), or even that it exists independently of any
other structure. In any case, as pointed out in the Introduction, one
would like to be able to imbed (M,R) as a coisotropic submanifold of

a symplectic manifold.




A cotsotropic imbedding of a presymplectic manifold (M,Q) in a
symplectic manifold (X,w) is a closed imbedding 7 : ¥ - ¥ such that
J(M) is a coisotropic submanifold of (X,w) and i%w = Q. By analogy
with §2, one calls the Poisson bracket associated to w a Dirae bracket.
Given a presymplectic manifold (M,R), there are two fundamental
issues to be resolved: Do coisotropic imbeddings of (M,0) exist and,
if so, to what extent are they unique? The latter question is important
as one'would like to ensure, in a physical context, that the notion of
Dirac bracket is not too arbitrary to be useful. From the discussion in-
§2, it is clear that the best that ome can hope for is to be able to
classify symplectic neighborhoods of coisotropic imbeddings.
| The following Theorém answers both of these questions. Let
E > M be the characteristic bundle of (¥,®), i.e., the bundle whose

fiber over m € M is ker Q(m): let E* denote the dual bundle.

Cotsotropic Imbedding Theorem [3]: 'There exists a symplectic

structure on a neighborhood of the sero-section of E* such thgt the
imbedding of (M,Q) in this neighborhood as the zero-section is
coisotrqpic. Moreover, given any two coisotropic imbeddings

dyor M, » (Xl,ml) dnd dy t (M,Q) ~ (Xz,mz), fﬁere exists a
symplectomorphism Y from a neighborhood of jl(M) in X, onto a

netghborhood of jz(M) in X, such that j2 = Yog,.

The proof of these results (which in fact hold in infinite-dimensions)

may be found in [3].

The last part of this Theorem implies that a neighborhood of a




coisotropic gsubmanifold ¥ in a symplectic manifold (X,w) is completely
determined by (#,Q) up to a symplectomorphism which reduces to the
identity on M. In other words, the coisotropic imbedding (M, -+ (X,w)
is "locally umique". Combining this with the existence result, one has
that every symplectic manifold containing (M,Q) as a coisotropic
submanifold is, near M, sympléétomorphic to a symplectic neighborhood
of the zero-section im E*. This Theorem thus provides a complete local
characterization of coisotropic imbeddings of presymplectic manifolds
into symplectic manifolds.

These results are complémentary to those obtained by Weinstein
[16] regarding isotropic imbeddings. In particular, the isotropic and
coisotropic\cases coincide when @ = 0, in which case ¥ is to be imbedded
as a Lagrangian submanifold. ~ Since in this instance E* = T*M, the
Coisotropic Imbedding Theorem implies Weinsteiﬁ's result that every
symplectic manifold containing M as a Lagrangian submanifold is, near M,
symplectomorphic to a neighborhood of the zerp-section in T*u.

Physically, this Theorem has the consequence that Dirac brackets
alwdys'exist and are locally unique. This.mgans that in a loecal sense
it is possible to canonically associate to e%ery presymplectic dynamical
system a symplectic system. Furthermore, it implies that the classical
symplectic dynamics obtained in this manner is effectively independent
of the choice of Dirac bracket. This, of course, is to be expected
since it is the presymplectic phase space (¥,Q) that is of primary

physical significance rather than the auxiliary ambient space (X,w).




- V. Quantizaticn

One can effectively reduce the problem of quantizing a
presymplectic phase spacé (M,8) to that of gquantizing a constrained
symplectic system by "extending" (¥,2) to a symplectic manifold (X,w).
The quantization of the extended phase space (X,d) produces a space H
of quantum states and associates to some class of smooth functions f
on X quantum operators Of on H (those aspects of geometric quantization
theory needed heré may be found in [13]). Supposing withouf losé.of
generality that ¥ is globally defined in X by the vanishing of
constraints, one then postulates that the physically admissible quantum

states of the system are those which belong to the subspace Hy of H

defined by

b

Hy = {0 € H | 9Ff[o] = 0 for all quantizable comstraints f}

In essence, one enforces the constraints on the quantum rather than the

classical level.

This approach, however, may lead to inconsistencies. Specifically,
in the présence of quantizable second class constréints HD reduces to
zero, i.e., there are no nontrivial eigenstates of the constraint
operators Qf. Indeed, if g is a second class constraint, then there

exists a comstraint f such that {f,g}!M = 1. Then for each wave function

g € HG’

0 = 10 = QUfgP o] = 2 (9,910 = 0 .

Hence the method of "quantization via imbedding" may lead to meaningful




regults only if all constraints are first class. From a global stand-—
point, this means that in order to obtain consistent quantum dynamics
it is necessary to place a restriction on the allowable types of
imbeddings (M,Q) » (X,w): ‘they must be coisotropic. According to the
Coiso;ropic Imbedding Theorem, one may always assume that this is the
case.

As remarked upon earlier, the fact that a neighborhood of the

coisotropic submanifold M in the extended phase space (Y,w) is completely

determined by (M,Q) up to symplectomorphism has the consequence that the
classical symplectic dynamics of the system is.effectively independent
of the choice of coisotropic imbedding (¥,0) -+ (X,w). One would like
to determine the extent to which this classical property .carries over

to the quantal domain. That is, to what extent is the quantum dynamics

of the system independent of the choice of coisotropic imbedding? To
what extent does the coisotropic submanifold ¥ determine the space of
quantum states and the quantization of observables?

As X can be quite arbitrary globally and since the quantization

Frocess depends significantly upon the global topology and geometry of
the imbedding space, it is cléar that -one can&ot expect the qﬁantization
of the system to be independent of the choice of {(X,w) in general.
Nevertheless, it is possible to eliminate a substantial portion ofrthis

dependence by restricting consideration to certain simple types of

coistropic imbeddings. For instance, one may always choose the imbedding

i M ~ X in such a way that ¥ is a tubular neighborhood of the zero-section

, of some vector bundle over ¥ (e.g., E¥). Then the existence and uniqueness




of the prequantization and metaplectic structures -- which a priordi
depend upon the cohomology of X -~ can be characterized solely in
terms of the topology éf M, since such an X is hémotopic to M. Recent
work of Vaisman [15] shows that this is alsoc the case regarding the
existence of (certain types of) polarizations of (X,w).

It remains to determine to what extent a similar result holds
concerning the quantum representation space H. Since the structure
of H is very sensitive to the choice of polarization, so also is the
extent to which H can be recomstructed from the knowledée of fhe
values of the wave functions on the submanifold ¥,

Let F be a real polarization of (X,w) and denote by X/F‘the.
space of all integral manifolds of F and by 7 the canonical projection
X + X/F. The polarization F is strdngly. admissible provided X/F is a

manifold and 7 is a submersion.

Since the following result does not require strong admissibility,

it can be used to study "wild" pelarizations.

Theorem 1: Each wave fumction ¢ € H is untquely determined by
its restriction to M iff the Bohr-Sommerfeld varié%y S 1is contained

in T r@n).

Whether or not S ¢ v-l(n(M)) is to some extent determined by the
nature of the intersection of F with Th}. I assume that £ = dim (F n HML)

is constant on ¥.

Theorem 2: Let M be compact and let F be a strongly
adnissible polarization of (X,w) such that F n Th} = {0}. Then

each wave function o € H 4ig uniquely determined by its restriction to M.




By an appropriate redefinition of the extended phase space, one may
eliminate the compactness assumption.

When £ # 0 it is ﬁot usually true that each wave function is
uni@uély determined by its restriction to M. If, however, this is

the case, then one obtains a topological restriction on the polarization.

Theorem 3: Let F be a complete strongly admiesible polarization
of (X,w) such that © : X+ X/F 48 a locally trivial fibration. If
each wave funetion o € H 1is uniquely determined by its restriction to
M, then the integral manifolds of F ~are diffeomorphic to ZPkﬂX.En-k

with & = .

Now turn to the quantization of observables f € ¢ (X). For a
fixed polarization F, the oper;tor Qf will in general depend upon the
global properties of both f and X. Howevef, the Ceoisotropic Imbedding
Theorem implies that if the construction of Of employs oniy arbitrarily
small neighborhoods of ¥ in X then Qf will be insensitive to both the

large-scale behavior of f and the choice of imbedding ¥ + X.

Theorem 4: Suppose that M is compacgzand let F be a strongly
adniseible polarization of (X,w) with % = 0. Let f € C (X) be such
that Qf exists and let ¢ ft denocte the flow of f. If there exists
an &> 0 such that, for each t € [0,g), Ft = F N chft(F) is a
distribution on X satisfying F, D TM = {0} then, for each o € H,
Qflo]l can be determined by operations in an arbitrarily small neighbor-

hood of M in X.




As a corollary, one has that if F is transverse to EML and f
preserves F in the sense that T¢TF(F) = F, then Qf exists and is
independent of the choice of coisotropic imbeddiﬁg (M,2) ~ (X,w).

The.prodfsAof Theorems 1-4 may be found in [7]; the reader is

referred to [7] and [14] for further discussion.
X %k k ok %

The present work is but a first step in understanding the
quantization of a presymplectic dynamical system. Here, emphasis has

been placed on the method of "quantization via coisotropic imbedding',
. C q :

!
I
-
'
a_
0
y
X
X

since this technique is perhaps the most natural and straightforward,
Furthermore, according to the Coisotropic Imbedding Theorem, this
quantization can in principle alway; be carried out without placing
additionai assumptions on (M,Q). In addition to the quantizétion via
imbedding technique, there are several.other ways of-quantizing a
presymplectic manifold (M,Q): quantize the reduced phase space
M/(ker Q), quantize subsequent to imposing a maximal gauge conditionm,
and quantize (M,Q) directly. These various methods:and their inter-
relations have been studied by Gunther [8]; Simms [11}, éniatycki

[14] and Woodhouse [17].
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