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We present an algorithm which enables us to state necessary and sufficient conditions for the solvability of
generalized Hamilton-type equations of the form ¢«(X)w = a on a presymplectic manifold (M,w) where a
is a closed l-form. The algorithm is phrased in the context of global infinite-dimensional symplectic
geometry, and generalizes as well as improves upon the local Dirac-Bergmann theory of constraints. The

relation between our algorithm and the geometric constraint theory of Sniatycki, Tulczyjew, and

Lichnerowicz is discussed.

I. INTRODUCTION

It is generally recognized'™ that classically, a physical
system can be described in terms of a symplectic manifold,
that is, a manifold M together with a nondegenerate closed 2-
form w. Physically, M is the phase space of the system while
o is essentially a generalization of the Poisson bracket.

The manifold M and the symplectic form » are
kinematical in nature; the dynamics of the system is deter-
mined by specifying a real-valued function H on phase space,
the Hamiltonian. One then solves the Hamilton equations

«(X)w=dH, (1.1)
thereby obtaining the dynamical trajectories of the system in
phase space (i.e., the integral curves of the vector field X').
The fact that @ is nondegenerate assures us that Eq. (1.1) has
a unique solution; indeed, the nondegeneracy of @ means
that the linear map b: TM—T*M defined by b(X ):=1(X ))wis
anisomorphism. Thus for any H we can solve (1.1) uniquely:
X=b"(dH ). Once X has been determined, one appeals to the
standard results of differential equation theory in order to
integrate X.

We want to consider in detail the case when o is degen-
erate, in which case (M,w) is said to be a presymplectic mani-
fold. This situation usually arises when the system is con-
strained in some manner, and often when M is infinite-
dimensional. When (M, o) is degenerate, the Hamilton equa-
tions (1.1) may or may not possess solutions (and, in general,
even if solutions exist they will not be unique) depending on
whether or not dH is in the range of b. In the former case, the
equations (1.1) possess nonunique solutions, the nonunique-
ness being characterized by kerw. It is the latter case which is
the most interesting, for then (1.1) as it stands possesses no
globally defined solutions. In order to “solve” the Hamilton
equations, then, one must “modify” M, the equations (1.1),
or both. We have developed an algorithm which enables us
to produce and solve such a “modified” problem in both the
finite- and infinite-dimensional cases. More precisely, we
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find whether or not there exists a submanifold N of M along
which the equations (1.1) hold; if such a submanifold exists,
we give a constructive method for finding it. Moreover, we
show that this submanifold is unigue in the sense that it con-
tains any other submanifold along which (1.1) is satisfied
(Sec. IV).

This work grew out of an attempt to globalize the
Dirac-Bergmann theory of constraints,** first published cir-
ca 1950. In these papers, an algorithm was developed by
Dirac, Bergmann, and his collaborators for dealing with La-
grangian systems which could not be put into canonical form
in the usual manner owing to the fact that the momenta are
not all independent functions of the velocities. This algo-
rithm was nicely summarized by Dirac,” who showed that
such systems could be put into a modified canonical form
with the motion restricted to a “constraint” submanifold.
Requiring the equations of motion to be consistent on this
submanifold led to a sequence of further constraint submani-
folds which either terminated or restricted the system to
such an extent that no solution of the original variational
problem could be found. He showed further that a modified
Poisson bracket could be defined in such a way that certain
constraints could be effectively eliminated, the remaining
variables falling (in principle) into two classes: (i) those
whose time development from given initial conditions is
completely arbitrary, and (ii) those whose evolution is well
defined by canonical equations of motion.

The point of developing this algorithm was not
pedagogical, for several classical systems exist which display
the above-mentioned feature; notably electromagnetism and
gravity. Insofar as it is felt to be necessary to cast these theor-
ies into canonical form for the purpose of quantization, the
Dirac-Bergmann algorithm provides, in principle, a method
for doing this and, at the same time, for identifying the
“physical observables” or “true degrees of freedom.” In fact,
Dirac applied his technique to general relativity® and electro-
magnetism’ and showed that it was effective in isolating an

® 1978 American Institute of Physics 2388

Downloaded 12 Jul 2005 to 128.171.57.189. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



appropriate set of variables with which to describe the
motion.

While our algorithm is related to the Dirac-Bergmann
method, there are several important differences in both the
method and the results.

First, although the Dirac-Bergmann algorithm is clear
in an algebraic sense, it is hard to gain an adequate geometric
picture of what is taking place. Thus, we have chosen to
phrase our discussion in global terms using the language of
infinite-dimensional symplectic geometry. This manifestly
coordinate-invariant language is eminently suited to both
the algebraic and geometric aspects of the problem. To this
end, much work has been done in recent years,*"! but the
bulk of this has been mostly concerned with translating
Dirac’s concepts into the modern mathematical idiom and
with symplectically reinterpreting the results of his algo-
rithm. No one seems to have successfully globalized the algo-
rithm itself. In Sec. II1, we give a brief overview of this “geo-
metric theory of constraints.”

Secondly, as Dirac himself noticed,"? his algorithm is
ambiguous in the following sense (to be elaborated upon lat-
er): One is not certain whether or not the first-class secon-
dary constraints should be included in the Hamiltonian. Put
another way, Dirac is unable to show that the motions gener-
ated by the first-class secondary constraints are physically
irrelevant (gauge) and hence cannot identify those
observables which correspond to “true” degrees of freedom.
Actually, this is not so much a problem with the Dirac—-
Bergmann algorithm per se as it is with its physical interpre-
tation. The physical interpretation, in turn, is obscured by
Dirac’s nongeometric formulation of the constraint algo-
rithm. In Sec. V, we show that our geometric algorithm not
only globalizes (and thus substantiates) Dirac’s results, but
moreover that, strictly speaking, the Hamiltonian should not
in general contain all the first-class secondary constraints.!?
This uncertainty concerning the first-class secondary con-
straints is fairly subtle, and we shall not consider it in depth
in this paper. This question, and the related issue of the phys-
ical intepretation of our geometric algorithm will be dis-
cussed from another, more fundamental point of view in a
companion paper.'*

Lastly, our algorithm is applicable in situations consid-
erably more general than those considered by Dirac. Specifi-
cally, the Dirac-Bergmann algorithm can only be applied
when the degenerate manifold M is actually a “primary con-
straint submanifold” of some symplectic manifold W. The
algorithm we propose does not require the a priori existence
of such a nondegenerate manifold W. Physically, this may be
of considerable importance in the case of an infinite number
of degrees of freedom where w may be degenerate even if
there are no constraints.''¢ The a priori presymplectic case
is also of physical interest from the point of view of the quan-
tization problem. Normally, when one quantizes a con-
strained system, one relies upon Sniatycki’s theorem®!! to
eliminate the second-class constraints from the theory.
However, Sniatycki’s theorem fails in the presymplectic
case,'” leading one to question whether or not such systems
are actually quantizable.
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After Dirac, a number of people approached the con-
straint problem from various viewpoints,'** but no com-
pletely satisfactory analysis of the three above-mentioned
aspects of the theory was forthcoming. (This paper amends
an attempt made by one of us several years ago.?") In fact,
there have been a number of papers'*?® which challenge the
validity of the Dirac~-Bergmann algorithm on theoretical
grounds. As our algorithm generalizes the Dirac-Bergmann
theory, this approach would seem to verify the correctness of
the latter, since our derivation is from a completely different
(viz., geometrically rigorous) point of view. Moreover, it is
not difficult to show that although several of the issues raised
by these authors are of importance for the elucidation of the
theory, their objections are without content (Sec. V).

Section II provides a very brief introduction to sym-
plectic geometry and its application to Hamiltonian systems
in an infinite-dimensional setting.?> A more comprehensive
treatment of these topics is given in the texts by Abraham
and Marsden,' Souriau,? Chernoff and Marsden,'¢ and God-
billon.* For some of the more advanced notions and applica-
tions, one should consult the lecture notes of both Wood-
house® and Weinstein.* The infinite-dimensional techniques
used throughout this paper are clearly and comprehensively
explained in the books by Marsden,'* Chernoff and Mars-
den,'* Lang.” In general, we shall try to keep our notation
and terminology® consistent with that of Refs. 1, 16, 23, and
24.

Section III reviews the basic notions and tools of geo-
metric constraint theory which are necessary for the presen-
tation of the algorithm in Sec. IV and the correspondence
with the Dirac-Bergmann theory detailed in Sec. V. Finally,
we apply the algorithm to electromagnetism in Sec. VI as an
example of the calculational techniques involved in the
theory.

Il. SYMPLECTIC GEOMETRY AND
HAMILTONIAN MECHANICS1-4.15.16.23.26

Let M be a manifold modelied on a Banach space E, and
suppose that @ is a closed 2-form on M. Then (M,w) is said to
be a strong symplectic manifold if the linear map
b:TM—T*M defined by b(X )= X”:=1(X)w is an isomor-
phism. However, it may happen that » will be injective but
not surjective, in which case (M,w) is called a weak symplec-
tic manifold, o being weakly nondegenerate. Generically, b
will be neither injective nor surjective and @ is then degener-
ate. When E is finite-dimensional, there is of course no dis-
tinction between weak and strong symplectic forms. For bre-
vity, strongly symplectic manifolds will often be referred to
simply as symplectic, while weakly nondegenerate and de-
generate forms will be dubbed presymplectic.

The simplest example of a weak symplectic manifold is
the cotangent bundle 7*Q of any Banach manifold Q. In
fact, on T*Q there exists a canonical 1-form 8 defined by

B> =<mavfrv)

where veTT*Q, and m:T*Q—Q, 7:TT*Q—T*Q are the bun-
dle projections. This 1-form defines the weak symplectic
structure as follows: 2= —d86.
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Locally, we can find a chart UC F, where Fis the model
space for Q, such that on U,”

0(x,0)-(a ® m)=<alo)
and

2(x,0)(a & m,b & )=<Lalr>—{blr). (2.1a)

If Fis finite-dimensional, this is the same as saying that there
exist coordinates (¢',p;) on U such that

QU=p idqi
and
N|U=dq' Ndp,. (2.1b)

The weak nondegeneracy of {2 follows from the above for-
mulas after a simple calculation. In fact, when Fis reflexive,
{2 is strongly nondegenerate.'®

However, not every strongly symplectic manifold
(M,w)is a cotangent bundle nor is w always exact [e.g., (S*,@)
where w is a volume on §*. Then w cannot be exact, and $? is
of course not a cotangent bundle] although locally both
statements are true. That a strong symplectic manifold is
locally a cotangent bundle follows from a normal form theo-
rem, called Darboux’s theorem,?” which states that a chart
always exists in which o 1s constant. In such a chart @ must
always have the form (2.1a) or (2.1b). However, this result

.need not hold in the presymplectic case.”® This normal form
theorem shows that strongly symplectic geometries are
“flat”’—this should be compared with the corresponding
theorem in Riemannian geometry.

Another contrast with Riemannian geometry can be
obtained by examining the infinitesimal automorphisms of a
strong symplectic structure (i.e., the Jocally Hamiltonian
vector fields). These are vector fields X such that

Lyw=0. .2)

As w is closed, it is clear that X will be a locally Hamiltonian
vector field iff dt(X ) =0.Since w is strongly nondegenerate,
the map b will have an inverse # and consequently we see

that if a is a closed 1-form then a# will be a locally Hamil-
tonian vector field. As there are many closed forms on any

manifold, there will exist many infinitesimal symplectic au-
tomorphisms. By way of contrast, in Riemannian geometry
the existence of Killing vector fields is the exception rather
than the rule.

Physically, the weak and strong symplectic manifolds
one almost always encounters are cotangent bundles. This
comes about as follows: One describes a physical system by
specifying a manifold Q called configuration space and a
function L, the Lagrangian, on velocity phase space 7Q. One
then casts the theory into canonical form by “‘changing var-
iables” from (g',v) to (¢’ ,p;) and replacing L by the Hamil-
tonian H via H (¢,p)=p ;v’ — L (g,v). Mathematically, this
transition takes the form of a map FL:TQ—T*Q which is
called the Legendre transformation or the fiber derivative’
and is defined by

(| FL (w)>==%—L W+ 2o @.3)
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where z,weTQ. The Hamiltonian is defined via
HoFL (w):={WFL (w))—L (w). 2.4)

[This is provided that (2.4) does in fact define a single-valued
function Hon FL (TQ). For further discussion regarding this
point, see Ref. 43.] Additionally, in the finite-dimensional
case, the canonical momenta are “defined” by

p°FL (w)=8L/dvi(w). 2.5)

One major advantage of changing a theory into Hamiltonian
form is that 7*Q canonically carries a (weak) symplectic
structure whereas 7Q does not.

It is the weak symplectic structure on 7*Q which gives
rise to the elegant simplicity of the Hamiltonian formalism.
For example, the Hamilton equations (1.1), when written in
terms of local Darboux coordinates [i.e., canonical coordi-
nates for which (2.1b) holds] are simply

dg' _ .. OH
——=X[g']=—,
dt 7'] dp;
dp; _ OH
T=X[Pi]=——.-
t dg'

Similarly, one can use {2 (provided {2 is strongly symplec-
tic)* to define the Poisson bracket of two functions f,g as
follows

(fgl:=02(¢,¢) (2.6)

where £ =df*. In a Darboux chart, {f,g} reduces to the
usual expression. The symplectic analog of a canonical
transformation is a diffeomorphism :T*Q—T*Q such that
{xN=10.

There do, however, exist physically interesting systems
whose phase spaces are not cotangent bundles and whose
symplectic forms are not exact. An example of such a system
was given by Souriau,’ who investigated the dynamics of a
freely spinning massive particle in Minkowski spacetime
from a symplectic viewpoint (in this example, M= R*X.5?).
Systems of this type do not possess configuration manifolds
and consequently do not admit Lagrangian formulations (at
least in the usual sense).

With this in mind, it is apparent that from a geometric
viewpoint the Hamiltonian formulation of classical physics
is of primary importance while the Lagrangian formalism is
an alternative construction applicable only in special cases.

Turning now to the presymplectic case, we recall that a
presymplectic manifold is obtained by relaxing the assump-
tion that b be bijective. Presymplectic manifolds arise quite
frequently in physics, in particular when the Legendre trans-
formation (2.3) is degenerate. This means that FL is no long-
er a local diffeomorphism, but merely an into map, the range
of which defines a submanifold M of T*Q. In more familiar
terms, FL will fail to be a local diffeomorphism when the
matrix

(Gerawy)
dv,dv;

is not invertible.

This is the starting point of the Dirac-Bergmann con-
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straint theory, in which M is called the primary constraint
submanifold. The primary constraints are a collection of
functions on T*Q which locally define M as a submanifold of
T*Q. One particular set of primary constraints are those re-
lations (2.5) (or combinations thereof) which do not define
the momenta p, as independent functions of the velocities v'.
Geometrically, M will inherit a presymplectic structure
from 7*Q by pulling £2 back to M via the inclusion
J:M—T*Q. We are thus faced with the problem of determin-
ing the dynamics of a physical system on the presymplectic
phase space (M, j*(2) where the Hamiltonian H is given by
2.4).

The presymplectic phase spaces of the above discussion
are rather special in that they are naturally submanifolds of
weakly nondegenerate manifolds. But this is not always the
case, even in physics, as was shown by Kiinzle* who ob-
tained genuinely presymplectic phase spaces for spinning
particles in curved spacetimes.

Thus, from both a mathematical and physical stand-
point, there is considerable justification in considering pre-
symplectic geometry in its own right. The physical issue that
one is then confronted with is the following: A system is
described by a presymplectic phase space (M,w) and a
Hamiltonian H on M. What does one mean by “consistent
equations of motion” on M, and how does one obtain and
solve such equations? The algorithm we propose will select a
certain submanifold N of M upon which we can define and
solve *“‘consistent equations of motion.” Before we can pro-
ceed to discuss the algorithm however, we must first exam-
ine the properties of such submanifolds.

I1l. GEOMETRIC CONSTRAINT
THEORY3-6.7.9-11.23

We would like to have a classification scheme for sub-
manifolds of presymplectic manifolds which is at the same
time mathematically convenient and physically meaningful.
Dirac’ first developed a local classification of submanifolds
of strongly symplectic manifolds which Sniatycki and
Tulczyjew later globalized as the “geometric theory of con-
straints.”*' This classification is of the utmost importance
insofar as the physical interpretation of the algorithm is con-
cerned.” We briefly review this classification (generalized to
the presymplectic case) following Sn1atyck1 Tulczyjew, and
Lichnerowicz."!

Let NV be a submanifold of the presymplectic manifold
(M,) with inclusion j. The manifold N is called a constraint
submanifold, and the triple (M,w,N )} is called a canonical
system. We define the symplectic complement TN of INin
TM to be

TN =
all XeTN}.

{ZeTMIN such that wlN (X,Z)=0 for

For our purposes this is not the most convenient character-
ization of TN*. We prefer that given by the following.

Proposition 1: TN*=
Proof: Let ZeTN *. Then for any WeTN,
O0=alN (. W, Z)=j* WU Z o> =W | *[UZ )es]).
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{ZeTM|N such that j*[1(Z )] =0}.

As this is true for all WeTW, it follows that j*[«(Z )w] =0.
Conversely, if j*[:(Z )w] =0, then the equality is established
by reversing the above calculation. QED.

If §'is a subspace of a Banach space E, we define § ©
CE*, the annihilator of S, to be the set of all ScE* such that
<v|B>=0for all veS. Similarly, if A is a subspace of E*, we
define A F CE to be the collection of all veE such that
{VA>=0 for all AeA. If E is reflexive, then it is possible to
show® that (A ") " =A. We shall say that e is topologically
closed provided the map b is a closed map, i.e., b maps closed
sets into closed sets. We note that if w is strongly nondegen-
erate, then it is necessarily topologically closed. We can now
prove the following important fact’:

Proposition 2: If M is reflexive and w is topologically
closed, then
(TN "=TN"

Proof: With obvious shorthand notation,

We( TN") " ©o/N(W|TN)=0>WeTN *

thereby proving that (TN ") " =TN . As w is topologically
closed, T'* is closed in T*M. The desired result follows
from the above by taking A=TN". Q.E.D.

The constraint submanifold N is said to be
(i) isotropic if INC TN,
(ii) coisotropic or first-class if TN *C TN,

(iit) weakly symplectic or second class if TNNTN"= {0},
and

(iv) Lagrangian if TN=TN".
Clearly, TNNT. N = kerw kerw,, where kerw,, is the set of all
WeTN such that t(W)a o, =0. If N does not happen to fall
into any of these categories, then N is said to be a mixed
constraint manifold.

Locally, a first-class constraint submanifold can be de-
scribed by the vanishing of a collection of functions 4 such
that for all fed, W[ fIN =0 for all WeTN". If (M,») happens
to be strongly nondegenerate, this is easily seen to be equiv-
alent to Dirac’s requirement that 4 be in involution, i.e.,

{ £glIN=0 for all f,ge4.

The functions fe4 of the preceding paragraph are called
first-class constraint functions. More generally, any function
S (resp. 1-form ¥) on M such that f{N=0 (resp. j*¥=0) is
called a constraint function (resp. constraint form), and any
function g (resp. 1-form o) on M such that W[g]N =0 (resp.
{Wo IN=0) for all WeTN" issaid to be first class. Functions
(resp. forms) which are not first-class are called second class.
A second-class constraint submanifold, then, can be locally
described by second-class constraint functions. In general, a
mixed or isotropic constraint submanifold will require both
first- as well as second-class constraint functions for its local
description.

As an example of a second-class constraint submani-
fold, let CC Q, where Qs configuration space. Then T*Cis a
weakly symplectic submanifold of (7*Q,42 ), hence it is sec-
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ond class. Furthermore, the constraint submanifold
' (C)C T*Q is first class. The former is an example of a
holonomic constraint.

We have discussed some simple properties of submani-
folds of presymplectic manifolds in the above, but we have
not yet indicated their origin. It is to this task that we now
turn our attention.

IV. THE CONSTRAINT ALGORITHM

We begin by taking a presymplectic manifold (M,,w,) to be
the phase space of some physical system. Let H, be the Ha-
miltonian of the system. We inquire as to under what condi-
tions and by what methods we can solve the canonical equa-
tions of motion t(X )w, =dH,. Actually, we can be somewhat
more general*? and write the Hamilton equations as

(Xo, =a,, “.1)

where @, is a closed 1-form, the Hamiltonian form. Locally,
as a, is closed, we can always find a Hamiltonian function
corresponding to a,. As was mentioned in the Introduction,
if , is in the range of b: TM,—T*M,, then Eq. (4.1) is consis-
tent as it stands and can be solved directly for X.*

In the generic case, however, this will not be so. But
there may exist points of M, (such points being assumed to
form a submanifold M, of M,),* for which a|M, is in the
range of b|M,. We are thus led to try and solve Eq. (4.1)
restricted® to M,, i.e.,

(LX), —a,)o,=0, “4.2)
where j,: M,—M, is the inclusion.

Equation (4.2) evidently possesses solutions, but this is
not the whole story. Physically, we must demand that the
motion of the system be constrained to lie in M,, if this con-
cept is to have any meaning. Thus, the locally Hamiltonian
vector field X appearing in (4.2) must be tangent to M,, that
is, X must be of the form X =/ ,.X with XeTM,, or else the
equations of motion will try to evolve the system off A,.

This requirement will not necessarily be satisfied, forc-
ing us to further restrict (4.1) to the submanifold M. of M,
defined by

M,:={meM, such that a,(m)eTM.b}.
We must now ensure that the solution to (4.1) restricted to

M, is in fact tangent to M;; this will in general necessitate yet
further restrictions.

It is now clear how the algorithm must proceed. We
generate a string of submanifolds

M, j'_’Mz jz—’Ml
defined as follows
M, ,:={meM, such that a,(m)eTM}}.

Once the constraint algorithm so defined is set into mo-
tion, only one of three distinct possibilities may occur.*
They are:

Case 1: There exists a K such that M =4¢,

Case 2: Eventually, the algorithm produces a submani-
fold M =~¢ such that dimM, =0, and
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Case 3: There exists a K such that M , =M .| with
dimM 0.

In Case 1, M  =¢ means that the Hamilton equations
(4.1) have no solutions at all in any sense. In principle, this
means that (M,,0,,a,) does not accurately describe the dyna-
mics of any system.

The second possibility results in a constraint submani-
fold which consists of isolated points. The equations (4.1) are
consistent, but the only possible solution is X =0 and there is
no dynamics.

For Case 3, we have a constraint submanifold M and
completely consistent equations at motion on M . of the
form

(X ), —a M =0. (4.3)

It is this submanifold M  (the final constraint submanifold)

which corresponds to the submanifold  discussed in Sec.
IIL.

If the algorithm terminates, then by construction we are
assured that at least one solution X to the canonical equa-
tions exists and furthermore that this solution is tangent to
M. We note that X need not be unique, for we can add to it
any element of kerw,nTM. In addition, it is obvious, again
by construction, that the final constraint submanifold is
unigue in the following sense: if N is any other submanifold
along which the equations (4.1) are satisfied, then NCM ..

The algorithm we have proposed provides a geometri-
cally intuitive and conceptually simple method for defining
and solving consistent equations of motion on a presymplec-
tic manifold. The algorithm is of very general applicability,
requiring only that the phase spaces involved be Banach
manifolds.

For many purposes, the algorithm as presented above is
too “abstract.” More precisely, it is somewhat difficult to use
in practice, the calculation of the constraint submanifolds
occasionally being a rather formidable task. In addition, the
present form of the algorithm is too awkward to be useful for
comparison with the Dirac-Bergmann theory. Consequent-
ly, we will now recast the algorithm into a form which is
more tractable in these regards.

We begin by recharacterizing the constraint submani-
fold M,. We can typify the inconsistency of Eq. (4.1) as fol-
lows: Consider the set TM 7 of vector fields characterized as
in Proposition 1. If Eq. (4.1) is to be solvable, then WeTM |
implies that the left-hand side of (4.1) vanishes and conse-
quently it follows that (W |, vanishes. On the other hand,
if WeTM } implies that (W la,>=0, thena,e( TM ) ". If w,
is topologically closed and if M, is reflexive, then by Proposi-
tion 2 we have that @,€( TM %) . Thus, the points of M, where
(4.1) is inconsistent are exactly those points for which
{Wla,> is nonzero. Subject to the above asumptions, then,
M, can alternatively characterized as follows

M,:={meM, such that {TM jja,>(m)=0}

with obvious shorthand notation. The consistency condi-
tions {TM jla,> =0 are called, after Dirac and Bergmann,
secondary constraints.
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Returning to the problem of solving (4.2), the demand
that the solution X be tangent to M, leads to further consis-
tency conditions (tertiary constraints) as follows: If there
exists an X tangent to M, such that (4.2) holds, then for
WeTM,,

0= [l(W (X Joor = (W et 1o

=—j, oK [ (W), > — W | @, %),

= — X |p* (W), > —<Wla o),
whereX: eTM, with X = jz.i’\. Consequently, consistency of
(4.2) demands that if W is such that /,*[«(W)w,] =0 (i.e.,
WeTM,"), then {Wia,>°j,=0. This, again, may not always
be the case and we must correspondingly restrict the equa-
tion (4.2) to those points of M, where (TM 3a,>=0.

The algorithm then proceeds as before, generating a se-
quence of submanifolds

M, f\_,Mz jz—»Ml
defined as follows

M, :={meM , such that {TM jla,(m)=0]},
where

TM ;= { WeTM, such that k ,"[«(W)w,] =0}

for I>1 with k;=j,9j;0.--0j, and k,:=id|M,. The constraint
functions on M ,_, which define M, are called l-ary con-
straints and are always of the form (TM, |, *a,>=0. Some-
times, for convenience, all /-ary constraints are (for />>2) sim-
ply called secondary.

If the algorithm terminates, we are faced with the same
three possibilities as before. In the second or third case, we
now explicitly show that (4.3) possesses solutions. We note
that, as the algorithm terminates with My, {<TM  Yjz,>=0.

Theorem: The canonical equations

X))o, =a)M
possess solutions tangent to M iff

{TM la,>=0.

Proof: = Let XeTM . be a solution, and suppose that
WeTM % . Then

Wap=<C(Wk ¢ *Xw>°k ¢
= —k g *k g Xu(W ) 1>
= —Xk *[(W)w])> (as XeTMy)

=0
by Proposition 1.
<= Suppose WeTM . Then (W a,>=0, so that
a|Mye(TM i) *. Butby Proposition2, (TM ;) "=TM%.
Thus, a |MxeT M ., thatis, there exists an Xe TM  such that
[((X)w,=a, M. Q.E.D.
Itis of interest to note that the above theorem is actually

independent of the constraint algorithm. In fact, if N is any
submanifold of a presymplectic manifold (M,), then the
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equations (.(X Yo — )N =0 possess solutions tangent to N iff
(TN'a>=0.

We now turn to the uniqueness of the final constraint
manifold M. For suppose there exists some other submani-
fold N along which the equations (4.1) are satisfied, that is,
let X=j*X, XeTN be such that

[(X)w, —a,]IN=0,

where j:N—M is the inclusion. Then if WeTM 1, we have
from the above that (W, >0/ =0, so that NC M,. Let
J::N—M, be the inclusion; then j=/,9f,. For YeTM 3,

0=[(¥ (X Yoo, —e(¥ Y ]oj
= XY o]y <Y o)

Now j*[u(Y)w]=/, %, [¢(¥Y )] =0 as YeTM 3, so
{ Y, »>°j=0, and thus N C M,. Continuing in this fashion, we
see that NC M.

This version of the algorithm, while perhaps not quite
as intuitive as the earlier construction, is still geometrically
natural and much better suited to calculation. However, it is
important to bear in mind that this version can be used only
when the model space for M, is reflexive and w, is topologi-
cally closed; otherwise one might obtain spurious results.

The canonical system (M,,w,,M ) and the equations of
motion (4.3) are the end results of the constraint algorithm.
The further development of the theory (Dirac brackets, the
reduced phase space, quantization) follows from the geomet-
ric constraint formalism of Sniatycki, Tulczyjew and Lich-
nerowicz. But now we must turn to a thorough investigation
of our geometric algorithm vis-a-vis the Dirac-Bergmann
theory.

V. RELATION TO THE DIRAC-BERGMANN
THEORY OF CONSTRAINTSS 714

We now compare the constraint algorithm presented in
the last section with the Dirac-Bergmann theory, and show

that ours does in fact generalize the latter. We also contrast our

our method with similar algorithms presented by
Shanmugadhasan, Kundt, and Hinds and point out that
these algorithms disagree with ours and consequently with
the Dirac-Bergmann theory as well.

We first briefly sketch the Dirac~-Bergmann algorithm,
displaying the correspondence between their techniques and
our more geometric ones.

We start with a Lagrangian L and a reflexive configura-
tion space Q. Changing to canonical form via the fiber de-
rivative FL, we find that the motion of the system is con-
strained to the submanifold M,:=FL (TQ) of the strongly
symplectic manifold 7*Q. Locally, on some neighborhood
U, we can describe U,:=M nU by a set of primary con-
straints {¢*}. Using these, Dirac argues that the Hamilton-
ian on U should be of the form

h=H +u ", ;.1

where H, is any extension to U of the Hamiltonian H, in-
duced on M, by FL and the u 4, are yet to be determined
Lagrange multipliers.*
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Translating into symplectic terms, Dirac then searches
for solutions to

W(X)2 ~dh)U,=0, (5.2)

where 2 is the canonical symplectic form on T#Q. As {2 is
nondegenerate, solutions X certainly exist, but Dirac notes
that the constraints ¢ must be preserved, that is,

X [¢41JU,=0. Geometrically, this means that X must
be tangent to U;. In terms of the Poisson bracket associated
with 2 via (2.6), this requirement translates into a set of
conditions

¢“|U,=0, (5.3)
where

$r={*H}+uzld* 4"} (5.4)

The vanishing of the expressions (5.4) by virtue of (5.3) will,
in general, give some information about the u , and will also
give a number of additional constraints. To see this, consider
all possible linear combinations of (5.3). Some of these linear
combinations will be satisfied trivially, others will fix some
of the Lagrange multipliers # 5, and the remaining ones will
be independent of the u 5.

These latter conditions take the form 5 ¢ 4 where
filetePlU,=0

by (5.4), thus yielding
fite* H)U =0 .

In general, of course, these last equations will not be satisfied

except on a local submanifold U, of U,. These conditions are
therefore secondary constraints.

Denoting the quantities f% {¢“,H,} by £, we see that
the preservation of these secondary constraints requires that
£eU; =0,
where

éa ={§a’ﬁll + uB{§G’¢B}'
As before, the linear combinations of the above conditions

which are independent of the u, i.e., those linear combina-
tions g & £ “ such that

galse 82 U.=0,
will yield tertiary constraints
gals® . HU,=0. (5.6)

One then iterates this procedure, arriving at some final
local constraint submanifold Uy (if the problem is solvable)
and a solution X to the equations of motion of the form

X)2=dH +u ,dy* +u,dE’ 5.7

restricted to U g, where the y # are first-class primary con-
straints (the Lagrange multipliers u,, being arbitrary) and
the £ are second-class primary constraints (the u, being
fixed).*®

Furthermore, it was shown that the first-class primary
constraints are generating functions of motions (i.e., gauge
transformations) which leave the physical state invariant
(this is, of course, related to the fact that the u , are arbi-

(5.5)

2394 J. Math. Phys., Vol. 19, No. 11, November 1978

trary). This led Dirac to conjecture that the first-class secon-
dary constraints may also generate physically irrelevant mo-
tions and hence they should also (for the sake of
completeness) be included in the Hamiltonian.* Dirac there-
fore proposed adjoining the first-class secondary constraints
¢ with arbitrary multipliers A , to / thereby obtaining the
“extended” Hamiltonian

hp=H+u,y"+u,t' +4,4° (5.8)
Thus, Dirac reasoned that the solutions of
W(X)2—dh )U=0

would give the most general evolution of the system.

(5.9)

This, then, is the essence of the Dirac-Bergmann the-
ory. With regard to our construction, the first important fact
is that each Dirac-Bergmann local constraint submanifold
U, is an open submanifold of the M, produced by our algo-
rithm. To see this, consider the / th step of the Dirac—Berg-
mann algorithm, and let £* be (at most) /-ary constraints.
Define, as £2 is strongly nondegenerate, the vector field Y?on

U, by

(Y NWM2=gld{“.
Using (2.6), Egs. (5.5) become
0=g5{¢°8"}IU,

(5.10)

=—«(Y*)d¢ U,

and consequently ¥°€TU,, as the ¢ ® are primary con-
straints. Thus, if j;:M,—T*Q is the inclusion,

(jiok )*[( Y )2 ])=0

by (5.10), so that Y°eTU ;' by Proposition 1.
Consequently,*

YeTU T U= T_U}
Similarly, one can show that every vector field YeT' M
induces a condition of the form (5.6). Conseguently, the

same equations which define the local submanifold U, also
locally generate the constraint submanifold M,.

Therefore, it is clear that the Dirac-Bergmann algo-
rithm is just a local version of our algorithm. Even so, the
algorithm we have presented has one significant advantage
over the Dirac-Bergmann method in that it is of consider-
ably more general applicability. It is apparent how crucially
the Dirac-Bergmann algorithm depends upon the existence
of the primary constraints. Our geometric algorithm, by way
of contrast, requires only M, and its presymplectic structure
for its utilization. The manifold M, never need be a primary
constraint submanifold of some other strongly nondegener-
ate manifold.

But one important difference yet remains. Dirac solved
the equations of motion on 7*Q along M, whereas we have
done so on M, along M ... We now show that we can lift our
equations of motion (4.3) to 7*Q obtaining the equations
(5.7) and thereby proving the formal equivalence of the two
algorithms, and thus substantiating the Dirac~Bergmann
procedure.
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To find the analog of (4.3) on 7*Q, we write
L(X )-Q —Q zﬁo
along M ., where X is some solution of (4.3) and a, is any 1-
form on T*Q such that @, =j,"a,. As X solves (4.3), pulling
(5.11) back to M, gives j,*3,=0 so that B, is a primary con-

straint form. Locally, 3, can be decomposed (nonuniquely)
in the form

o=1,dy" +8.dE’.

Thus, (5.11) becomes locally

(5.11)

WX —a,=1,dy* +g,dE". (5.12)

Now, (4.3) only determines X up to vector fields in
TMnkerw, =kerwNkerw,. Letting Yekeronkero,, we see
that X — Y must satisfy (5.11) as well, and since «(Y ){2 is a
first-class primary constraint form, it can be locally ex-
pressed as f,dy *. Substituting into (5.12), we can write
along M

WX)2=ag+(1, +f,)dx* +g,dE".

From this we see that the second-class piece g ;d£ ‘ of (5.12)
is insensitive to the choice of X. Moreover, the first-class part
[, dy* isuniquely determined only for fixed X. Consequent-
ly, as X is not unique, the functions / , are arbitrary; on the
other hand, the g, are independent of the choice of X and
hence are completely determined. Thus, we have reproduced
Dirac’s result (5.7).

It remains to discuss the “extended” equations of mo-
tion (5.9). We notice that nowhere in (5.13) do secondary
constraints appear, nor is there any a priori reason why they
should, at least from the geometric arguments presented
above.

(5.13)

The ultimate resolution of this problem depends upon
whether or not the first-class secondary constraints generate
gauge transformations.® This, in turn, depends crucially
upon one’s definition of “physical state” and “gauge trans-
formation.” In other words, how “gauge” the first-class sec-
ondary constraints are depends upon the physical interpreta-
tion of the algorithm and consequently is not strictly
amenable to proof.*

For example, in the “orthodox” interpretation of the
algorithm,' all the first-class secondary constraints ¢~ are
assumed to be gauge. In this case, one could append these
constraints to the Hamiltonian as in (5.8) without changing
the physical content of the theory; however, in practice one
may not always want to do this. The reason is that one may
have fixed a gauge (either inadvertently or by design) in the
Hamiltonian; some of the ¢* will then generate physically
irrelevant motions that will not respect the gauge condition.
If one wishes to retain this choice of gauge in the description
of the system, then one cannot attach these constraints to the
Hamiltonian. On the other hand, there may be certain other
¥ “ which will generate gauge transformations which do not
break the gauge; these can be included without reservation in
the Hamiltonian—in fact, they are “already there” in some
sense (for an example, see Sec. VI). Thus, from the stand-
point of the usual interpretation of the algorithm, one in
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general does not need, or perhaps want, to append the first-
class secondary constraints to the Hamiltonian: Some of the
¢~ will break the gauge choice, and those that do not are
already present in the Hamiltonian.

There do exist other “unorthodox” interpretations of
the algorithm in which certain of the first-class secondary
constraints are not gauge. Consequently, these constraints
certainly cannot be included in the Hamiltonian. The re-
maining 3 ° which do generate physically irrelevant motions
may or may not be attached to the Hamiltonian as discussed
above.

For a more detailed presentation of these points and
examples thereof, consult Ref. 14.

In 1965, Hinds* presented an algorithm which, like
ours, was stated in geometric language. Rather than consid-
er this algorithm in detail, we merely point out the major
differences between Hinds’ approach and ours. Basically,
the crux of the matter is that, at the / th step of the algorithm,
Hinds attempts to solve the equation (& ;: =k ,*w, etc.)

(X)w,=a, (5.14)
in contrast to our equation
[¢(X)w ok ,=a,%k,. (5.15)

The conditions for the existence of solutions to an equation
of the type (5.14) are less restrictive than those required for
Eq. (5.15). To see this, note that the sets of vector fields
which generate Hinds algorithm are kerw,, whereas ours are
TM ;, and kerw , C TM ;. The upshot of this is that after the
I=2 step, Hinds’ algorithm and ours diverge: The constraint
submanifolds M, for />>2 are no longer the same in both algo-
rithms. If one attempts to reproduce the Dirac-Bergmann
results using Hinds’s scheme, one obtains

h,=H+ u YU £ A 0+ 404,

where the coefficients A 4 of the second-class secondary con-
straints 8 do not necessarily vanish.

A simple example which illustrates the above is the fol-
lowing: Take 7Q= TR* with coordinates { ¢‘,v’} with
Lagrangian

L (gu)=4m(v)—$k (@

—b(@'q)+ 3e(v* —ag’)’.

A somewhat different scheme was proposed by
Shanmugadhasan® to rectify an alleged oversight in the
Dirac-Bergmann theory. Shanmugadhasan for the most
part works on velocity phase space and deals directly with
the Lagrange equations. He claims that the Dirac-Berg-
mann theory overlooks certain subsidiary conditions arising
from the degeneracy of the Hessian matrix (6°L/dv ' dv”);
this of course is not the case as these subsidiary conditions
are none other than primary constraints (Sec. II). Further-
more, Shanmugadhasan completely ignores the possibility
that secondary constraints might occur in the theory, and of
course it is these which really form the core of the problem.
In fact, Shanmugadhasan’s method cannot cope with the
perfectly consistent (if somewhat strange) Lagrangian given
above.
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Kundt® also quarrels with the Dirac—Bergmann
algorithm and has offered his own interpretation of their
theory” which, curiously enough, requires all the primary
constraints to be first class. Kundt’s theory fails for the
Proca field.

VI. AN EXAMPLE: ELECTROMAGNETISM?:16

The Maxwell theory provides a nice illustration of both
the geometric calculations involved in the algorithm and the
application of modern infinite-dimensional techniques to
symplectic geometry. Throughout this section, we shall
closely follow the notation of Chernoff and Marsden.'* We
shall also sacrifice mathematical rigor (i.e., we shall ignore
certain infinite-dimensional technicalities) in favor of a
clearer exposition.

The 3+ 1 decomposed Maxwell Lagrangian can be
written as

L(A»A ):%IRJ [(6’4 1)2
F2AVA YA+ A~ (XA Ydu, (6.1)

where the vector potential is decomposed 4=(4 ,4), R*
denotes a constant-time Cauchy surface in Minkowski
spacetime, and g is some measure on R’.

We must first decide on a choice for velocity phase
space TQ. The configuration space should be some Hilbert
space of all 4-vectors (4,,4 ). As L contains at most first spa-
tial derivatives of 4, an appropriate choice for Q is

O=H'eH

with the obvious notational shorthand, where H' is the first
Sobolev space on R’. Velocity phase space, that is, the mani-
fold of all (4,4 ) is then

T0=0o(L?e L

as no spatial derivatives of A appear in L. The measure 4 can
then be taken to be the ordinary L? measure on R’. We note
that Q is reflexive, so that the symplectic form £2 on 7*Q is
strongly nondegenerate and hence topologically closed.

(6.2)

To translate into the Hamiltonian language, we must
calculate the fiber derivative FL. By definition, FL|Q=id|Q
SO

FL (4,4)(4,B)=(4,DL (4,4 )-B), (6.3)

where D denotes the Frechét derivative along the fiber. An
easy calculation shows that

DL (A,A )-B=§ g [A-B+ (VA )-Bldu.
If we define the natural pairing {| »:7Q X T*Q—R by

(6.4)

A | Ay =S A7 +A o dp, ©.5)
where (4,m)eT*Q, then (6.3) becomes, using (6.4)

FL(A,A)=(44+VA4). (6.6)
Defining the “canonical field momentum” # by

F=A+VA, (6.7)

it is suggestive that 77, does not appear in (6.6). In fact, if one
defines the projection pr? on the second factor by
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prf(A,vr)z Ty
then it follows that

pr2oFL (4,4 )=0. (6.8)

Thus, 7, =0is a primary constraint. The primary constraint
submanifold M, of T*Q is then

M,=QaeL* (6.9)

We now apply the algorithm. The strong symplectic
form {2 on T*Q is given by (2.1a),

Daember)=r>—br> (6.10)

with a @ 7, b @ reT(T*Q).” If j, is the inclusion of M, into
T*Q, we have w, =j,*f2. Consequently, as 12 is topologically
closed, w, is also. This, combined with the fact that M, is
reflexive, allows us to use the second version of the algorithm
presented in Sec. IV.

The first thing we must do is calculate TM | =kero,.
That is, we search for vectors b @ 7eTM, which annihilate all
other vectors a & 7 in TM,. Using (6.5) and (6.10), we find
that b @ 7eTM 7 iff

ber=(b,0)a0. (6.11a)
In other words,
TM'=H'0. (6.11b)

The Hamiltonian H, induced on M, by FL is, according
to (2.5), (6.1), and (6.6)

Ho(A4,m) = § p [47— (VA )7+ 3V X4 Y)du.
Consequently, if b & 7€TM,,
dH (A7) b & ) =S p [#7+b (VD) +A (V7)

(6.12)

+(VXA) (Y Xb)ldu. (6.13)

To continue with the algorithm, it is necessary to make
sure that the primary constraint (6.8) is preserved. Thus, we
demand that <TM YdH,>=0. Letting b ® 7eTM |, we have
from (6.11a) upon substitution into (6.13)

dH\(4,m)-(b & 7)=Sp b (V- T)dp.
This expression will be zero provided

U-#=0, (6.14)
as b, isarbitrary. We thus pick up a secondary constraint, M,
being the submanifold of M, along which (6.14) is satisfied.

Pursuing the algorithm, we must now find 7M 5. For
aemin TM, and bereTM,,

wi(a ® mb® T)=§ plFd —#bldu
by (6.9). In general, the right-hand side of (6.15) will vanish

iff #=0 and b =Yg for some function g, making use of (6.14)
and an integration by parts. Consequently,

TM = {b®0eTM, such that =g, geH'}.  (6.16)

At this point, the algorithm terminates. To see this, let
b @0 be as in (6.16). Substitution into (6.13) gives

dH (4,7)(b ® 0)=§ . [6,(7-7)
F (T XATXTR)dw.

(6.15)
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The first term vanishes by (6.14) and the second also as
curl(grad) =0. Consequently, {TM }dH,>=0 and M, is the
final constraint submanifold.

Thus the Maxwell canonical system is (M,,@,,M,). We
now investigate the nature of this final constraint submani-
fold M.,. First of all, we claim that TM ;C TM,. Indeed, if
be 7€ TM 3, then 7, =0 so that b ® 7€TM, and moreover,
#=0so that (6.14) is satisfied. Furthermore, TM 2¢T M,.
This is easily understood, as b & (0,7) with \7-#=0is a mem-
ber of TM, but not of TM 5 unless 7=0. Hence, M, is strictly
coisotropic, and the canonical system (M\,w.,M,) is first-
class. In particular, the constraint \/7-7w=0 is first-class.

The basic theorem of Sec.IV assures us that solutions to
Hamilton’s equations

(L(X)a)l —dH1)°j2=0

exist. To find these solutions, write X=a & o, and let
b ® 7eTM, be arbitrary, (4,7)eM,. The equations of motion
can then be written

0\(a @ 0,b © DA, =dH,(A,7)(b & 7).

Using (6.13) and (6.15), the above becomes
§plFd— 3B =§ p[77+(b ) (V-7 +4,(7-D)

+ (7 XA )T X b)) (6.19)

(6.17)

(6.18)

As (4,7)eM,, the second term on the right-hand side of
(6.19) drops out. After a rearrangement of the last term and
an integration by parts, the right-hand side becomes

JplP (@ —A)+(V(V-A)—A4)-5ldu.
Comparing the left-hand side of (6.19) with this, we obtain

d4 -
———=d=7#—-VJA4,,
ar vA4,

ﬁ - — — -—
“;—t; —F=(od)— A, (6.20)
dd | .

:=a, =undetermined.

dt

These are, of course, just Maxwell’s equatigns. Performing a
transverse-longitudinal decomposition of 4,7 we obtain
dA

—— ! _undetermined
dt

dd, >

_‘7— —VA

d4, 6.21)
a0

#,=0,

d#, .
ar . AAr

Consequently, these equations determine 4 ,7# uniquely
from given initial data, but the evolution of 4, and 4, is
arbitrary.

Let us compare the equations of motion (6.21) and the
known gauge freedom of the electromagnetic field with the
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predictions of the algorithm. In particular, (6.17) shows that
the Hamiltonian vector field X is unique only up to elements
of kero,nTM,=kerw,. Consequently, vector fields in kerw,
necessarlly generate gauge transformations; if Vekerw,, then
Vis of the form (Vl,ﬁ) ® 0 and its effect is to generate arbi-
trary changes in the evolution of 4 |. This is clearly consis-
tent with the field equations. Turning now to the first-class
secondary constraint (6.14), we wonder if it is the generator
of physically irrelevant motions. From the geometric point
of view, we are really asking whether or not the vector fields
in kerw, = TM } are gauge vector fields. If W= (0, — Vg) ®0,
then

LW )o,(b & 7)=— § ps?(Vg)du.
Demanding that X — W satisfy (6.17) as well as X has the
effect of replacing the second of equations (6.21) by
dd, - =
g VA ,—V8

and leaving the others invariant. As 4, is arbitrary to begin
with, it is evident that this equation is completely equivalent
to (6.21). The addition of — /g to the right-hand side of this
equation has no physical effect whatsoever. Thus, kerw, con-
sists of gauge vector fields.*

From another standpoint, rather than writing
tX—W)w,=dH,

along M,, we can put
(X))o, =dH,+u(W)w,.

Effectively, we are adding a term g(—v’ 7) to the right-hand
side of (6.13). In terms of the Hamiltonian itself, we are re-
placing —(74,)-# by — [V(A L +&])-#. An integration by
parts finally gives

dH, +(W Yo, =d[H, + § pg(V-#)du].

The function whose differential appears on the right-hand
side of this equation is none other than the pullback to M, to
Dirac’s extended Hamiltonian (5.8). With respect to the dis-
cussion in the last section, the above arguments show that for
ordinary electromagnetism, one can add the first-class sec-
ondary constraints to the Hamiltonian since (i) these con-
straints are gauge, and (ii) no choice of gauge has been fixed
in the Lagrangian (6.1). Notice also that we know (i) to be
true regardless of the physical interpretation of the algo-
rithm; in fact, we have not really physically interpreted the
algorithm at all. As may be expected, this is due to the fact
that the Maxwell theory is so “‘simple.”

In the generic case, result (i) above will noz be indepen-
dent of the physical interpretation of the algorithm. Neither
will (ii) be the case in general. One need not look far or long
for a Lagrangian which has both of these problems, for
consider

L(4,A)=0p[3(8,4")("4,)
—A4,3%¢ —’17;52 ]dy.

Is this Lagrangian to be regarded as electromagnetism in the
Lorentz gauge, or is it an entirely different (masseless, diver-
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gence-free, spin 1) field? This particular Lagrangian is dis-
cussed further in Ref. 14.

One should compare the above calculation with that
given by Dirac.” Although this is not really a “working
physicist” type calculation, these rigorous infinite-dimen-
sional techniques are capable of rapidly producing results—
in fact, they are indispensible when one discusses purely pre-
symplectic systems. In finite dimensions, this geometric for-
malism is every bit as convenient to use as are the standard
techniques.

Vil. CONCLUSION

The algorithm we have presented completely solves,
from a mathematical point of view, the problem of con-
strained symplectic systems (in both the finite- and infinite-
dimensional cases). Even more significantly, it allows us to
solve the Hamilton equations in the hitherto untreated pre-
symplectic case. Combined with the geometric constraint
theory of Sniatycki, Tulczyjew, and Lichnerowicz, it fur-
nishes a powerful physical tool.

In addition to generalizing the Dirac—Bergmann theory
of constraints, the algorithm has the advantage of being a
global, manifestly coordinate-free theory. The algorithm is
presented in a mathematically rigorous fashion which we
feel is geometrically natural, intuitive, and useful from a
practical (calculational) standpoint.

The algorithm provides insight into the old “controver-
sy”” of whether or not first-class secondary constraints really
generate gauge transformations. It can be shown' that the
algorithm cannot actually prove that all such constraints will
beget physically irrelevant motions; nonetheless, equipped
with a suitable physical interpretation, this algorithm fur-
nishes a superior framework for discussing such questions.
Consequently, these techniques may be of great value for the
consideration of theories whose gauge properties at this time
are poorly understood.

Our algorithm can also be adapted** to the
Lagrangian case. Here, the Dirac-Bergmann formalism
cannot be applied at all, and other proposed schemes have
met with only limited success.'*" From the standpoint of
this paper, the Lagrangian case can be regarded as a specific
example of a presymplectic manifold (TQ,FL*42), where {2
is the canonical symplectic structure on 7*Q and hence can
be dealt with by the algorithm presented here. In this way the
formal equivalence of the Hamiltonian and Lagrangian for-
malisms can be established even in the degenerate case.**’

Since this algorithm enables us to treat a priori presym-
plectic systems as well as ordinary constrained symplectic
systems, this work may engender motivation for inquiring as
to how to quantize such presymplectic systems,'” perhaps
from the viewpoint of the geometric Kostant-Souriau quan-
tization program.*
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