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The Kostant-Souriau method of geometric quantization is applied to homogeneous and isotropic
cosmological models with positive intrinsic curvature and a massless Klein-Gordon scalar field. These
models are studied because classically they collapse to a singularity. It is rigorously shown that the
quantized models collapse as well (so that there is no “quantum bounce”). This work demonstrates the
practical usefulness of geometric quantization for the study of physical systems.

I. INTRODUCTION

Ever since the first attempts were made to
formulate spacetime physics in a manner compat-
ible with the quantum principle, interest has fo-
cused on two possible effects: (1) that strong
gravitational fields could create particles, and
(2) that gravitationally induced spacetime collapse
could be prevented. In recent years, there has
been considerable progress in the study of the
first of these two effects.’> Most of this headway
has been achieved via covariant quantization tech-
niques which use the Feynman path integral to
determine the transition probability from one
state to another. It is not known how to calculate
the necessary path integrals exactly, but appar-
ently particle production can be effectively ex-
plored via semiclassical approximations and
loop-by-loop Feynman diagram calculations.

Interest in the second possible effect has been
heightened by the work of Parker and Fulling 32
who show—at least in the semiclassical approxi-
mation—that quantum effects do indeed ward off
collapse. However, this issue has yet to be ade-
quately resolved within the full quantum theory.
Here, the path-integral approach is not very ef-
fective, and so a different method of analysis is
needed. The most widely used scheme has been
that of “freezing out” all but a finite number of
degrees of freedom (so that the spacetimes are
homogeneous), canonically quantizing the result-
ing system, and then studying its quantum dynam-
ics.*® This type of analysis has met with only
limited success and has given inconclusive an-
swers to the question of whether or not gravita-
tional collapse can be prevented.

The use of homogeneous cosmologies is mathe-
matically attractive in studies of the quantization
of gravity, since their phase spaces are finite-

dimensional. By considering them instead of more
general spacetime models, one can temporarily
set aside the problems inherent to systems with
an infinite number of degrees of freedom, and
concentrate instead on problems associated with
the choice of gauge (i.e., time), the constraints,
and the nonlinearities of Einstein’s theory. These
problems are severe within the traditional canon-
ical quantization program: (a)If we make no
choice of gauge, we have a classically vanishing
Hamiltonian. It can only generate quantum evo-
lution via some Klein-Gordon perspective, with
the attendant problems of finding positive-frequen-
cy wave functions and defining an inner product
for the quantum Hilbert space. (b) If we do choose
a gauge, then the Hamiltonian tends to be time-
dependent, noncommuting for different times,

and square root in form. The Schrddinger equa-
tion is then nearly impossible to solve. (c) Dif-
ferent choices of gauge give us various (usually
inequivalent) quantizations. (d) Factor-ordering
ambiguities also lead to different quantum sys-
tems. (e) There are serious questions regarding
the physical interpretation of the resulting quan-
tum dynamics.

Problems (c) and (e) above are in some sense
physically fundamental and so are effectively in-
dependent of the particular type of analysis em-
ployed. The other difficulties (a), (b), and (d) are
to a certain extent artifacts of the canonical quan-
tization method, being derived from a subtle short-
coming of this procedure—its essentially local
character. The rules of canonical quantization®
have been designed for a physical system which
is described classically by a Euclidean phase
space. For many systems this limitation is un-
important; but a general system (such as one of
the homogeneous spacetime models) need not have
such simple geometrical and topological proper-
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ties. So one should not expect canonical quantiza-
tion to make sense in all generality, and one
should not be surprised to encounter difficulties
in applying canonical quantization to a nontrivial
physical system.

The geometric Kostant-Souriau procedure”® for
obtaining a quantum description of a given phys-
ical system is essentially nothing more than a
mathematically rigorous global generalization of
the canonical quantization prescription. Indeed,
“geometric quantization” strongly reflects the
global structure of the classical phase space,
which no longer need be Euclidean. Does the
Kostant-Souriau procedure therefore overcome
the other difficulties encountered by canonical
quantization in analyzing homogeneous space-
times? To a certain extent, yes. For example,
there are no factor-ordering ambiguities in geo-
metric quantization: To each quantizable clas-
sical observable there corresponds a unique
well-defined quantum operator (cf. Sec. II). Fur-
thermore, the Kostant-Souriau technique explicitly
constructs a genuine Hilbert space in all cases,
thus ensuring a proper probabilistic interpreta-
tion of the quantum state vectors. Previous stud-
ies with the homogeneous spacetime models® in-
dicate that at least in the simpler cases, problem
(b) is avoided as well—geometric quantization has
no trouble handling the time-dependent, square-
root Hamiltonians typical of these cosmologies.
Moreover, by exploiting the full power of the Kos-
tant-Souriau theory, it is easily possible to avoid
the difficulties due to the noncommutativity of the
Hamiltonian at different times.

While geometric quantization avoids many of the
above-mentioned problems, it is no panacea. In
particular, for certain physical systems it pro-
duces more than one quantum description, and
there are systems for which the Kostant-Souriau
calculations can be formidable. This first prob-
lem is expected: It is clear!® that there cannot
exist an “ideal” quantization procedure which pro-
duces a unique consistent quantum theory for
every physical system given only its classical
description. So the Kostant-Souriau procedure
shares this “defect” with every method of quan-
tization. A virtue of geometric quantization in
this regard is that its multiple quantizations are
to a large extent well-parametrized cohomolog-
ically. As for the second problem, only experience
will tell whether or not geometric quantization is
a practical procedure for a large number of sys-
tems.

In this paper, we discuss one class of systems
for which (as we shall see) geometric quantization
is certainly most useful—homogeneous and iso-
tropic spacetimes containing a Klein-Gordon scal-

ar field as well as a gravitational field satisfying
the Einstein-Klein-Gordon field equations. Such
spacetimes are interesting for a number of rea-
sons: (1) They are compatible with the current
observations and assumptions of cosmology; (2)
they are well understood classically'!; (3) some
of the classical models collapse; (4) they are the
simplest spacetimes which possess nontrivial
dynamics (unlike the homogeneous and isotropic
cosmologies which contain a fluid rather than a
scalar field); and (5) certain of these systems
have been canonically quantized.'*

We have discussed elsewhere® the application
of the Kostant-Souriau procedure to some of
these “RW¢” (Robertson-Walker with a scalar
field ¢) spacetime models. There, we focused
on the ability of geometric quantization to handle
systems which could not be treated by canonical
techniques. But the models examined in Ref. 9
are inappropriate for studying quantum effects
on collapse, since they do not collapse even
classically. In this paper, we quantize the RW¢
models which do exhibit classical collapse, and
we show (see Sec. VI) that the quantized versions
of these models collapse as well,

Of course, our study does not settle the question
of quantum collapse: We consider only an ex-
tremely limited class of spacetimes. We do not
know whether or not the ansatz of freezing de-
grees of freedom, prior to quantization, is phys-
ically misleading.!? And there remain a few prob-
lems regarding the physical interpretation of the
quantum dynamics of these cosmologies (cf. Sec.
VI). However, the Kostant-Souriau analysis does
support the contention that at least in some (highly
symmetric) spacetime models, quantum effects
do not prevent collapse.

II. THE GEOMETRIC QUANTIZATION PROCEDURE

The two basic components of a quantum descrip-
tion of a physical system are (1) a Hilbert space
3 of quantum states and (2) a representation € of
physical observables as self-adjoint operators on
3. Geometric quantization™® is a procedure for
constructing both 3C and g directly in terms of the
underlying symplectic geometry of the classical
system. Note that geometric quantization does
not change the way in which quantum dynamics is
analyzed (via the Schriodinger equation) or the
way in which measurements are theoretically
made in quantum mechanics.

In applying geometric quantization to a given
physical system, one must build three structures:
(1) a prequantization line bundle, (2) a polariza-
tion, and (3) a metalinear frame bundle. Roughly,
the line bundle gives one a preliminary Hilbert



space and a corresponding representation of the
classical observables, the polarization serves to
define a complete set of commuting observables,
and the metalinear frame bundle provides one
with a measure with which to define the quantum
Hilbert-space inner product. We will describe
each of these three structures in some detail (in-
cluding criteria for existence and uniqueness),
and then show how the geometric quantization pro-
cedure utilizes them to obtain the quantum Hilbert
space JC and the observable representation .
First, however, since it is the basis of geometric
quantization, let us recall the classical descrip-
tion of physical systems in the language of sym-
plectic geometry.

A symplectic manifold (M, w) is a 2n-dimension-
al manifold M together with a distinguished closed
nondegenerate two-form w. The manifold M re-
presents the phase space of a physical system (for
which a global configuration space may or may not
exist), while w generalizes the Poisson brackets.
The classical observables are realized as the set
C=(M) of smooth real-valued functions on M. For
any Fe C~(M), the corresponding canonical (or
Hamiltonian) vector field & is defined by the equa-
tion

i(tp)w=~dF , (2.1)

where ¢ denotes the left interior product. Such a
vector field generates a symplectic automorphism
(i.e., a canonical transformation) of (M,w). For
F=H, the physical Hamiltonian, £, generates the
classical evolution on M,

The first of the geometric quantization struc-
tures, the prequantization line bundle, consists
of a complex line bundle 7: L - M over phase
space with a connection V and a compatible Her-
mitian inner product (, ) such that

curvature v=-h"lw (2.2)

(» =Planck’s constant). For a given symplectic
manifold (M, w), a prequantization line bundle
(L,v, (,))exists iff the cohomology class

[p'w] of h'w is integral, i.e., iff [n™'w] lies in
the image of H2(M, z) in H?*(M,R). If nonempty,
the set of all prequantizations of (M, w) is para-
metrized by the direct sum of a certain quotient
group of the group H'(M, S!) with the group of uni-
tary characters of 7{(M). Note that in the simple
case in which M is simply connected and w is ex-
act (i.e., [#'w]=0), the prequantization line bundle
is unique and trivial,

Since the covariant derivative V plays an impor-
tant role in the quantum representation of the clas-
sical observables, it is useful to give a local ex-
pression for it. So let U< M be open and contract-
ible, and let Ay be a local trivializing section of
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7°}(U) with the normalization
(g g)=1. , (2.3)

Then, if X is any smooth section of L, there ex-
ists a smooth (complex-valued) function f; on U
such that A|U=f,A,. On U, it is always possible
to choose a connection one-form y, such that

w|U=dr, (2.4)
and _

VA= =il Y @Ay . (2.5)
It follows that for any vector field X on M

(VN U= &(F) = in [ Krg] folg . (2.6)

The prequantization line bundle provides us with
a preliminary Hilbert-space representation of the
classical observables. The prequantization Hilbert
space is the completion of the space I'j(L) of
smooth compactly supported sections of L with re-
spect to the inner product

Ay X "fo\’ X)w",
M

where w” is the canonical volume on M. Then if
Fc C=(M) is a classical observable, its represen-
tation as an operator ®F on I' (L) is defined by

(2.7)’

If the canonical vector field £, of F' is complete,
then ®F is essentially self-adjoint on I'j(L).

Unfortunately (and this is why the prequantization
Hilbert space and its associated representation of
observables cannot be used as the complete quan-
tization of a physical system), the prequantization
Hilbert space is “too large.”® To see this spec-
ifically, let M be the cotangent bundle of the con-
figuration space C. Then w is exact, L is the
trivial bundle T*C xC, and the prequantization
Hilbert space may be identified with L*(T*C, w").
But quantum mechanics tells us that we should
take “L*(C)” to be the quantum Hilbert space, not
L3(T*C,w"); otherwise we will violate the uncer-
tainty principle.!* The process of “polarizing”
the classical phase space—the second step in the
geometric quantization procedure—accomplishes
the desired reduction of the prequantization rep-
resentation.

A (real) polarization of a symplectic manifold
(M, w) is an involutive n-dimensional distribution
F such that w restricted to directions in § vani-
shes: w(X,Y)=0 for all X,Y<c$. The polariza-
tion § induces a foliation of M; we assume that
the leaf space M/ has a manifold structure such
that the canonical projection t:M —M/g is a sub-
mersion. Fixing a polarization corresponds to
choosing a quantum representation (position, mo-

®F[\]=(~inv, +F)\.
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mentum, or some mixture), while the leaf space
M/ is interpreted as a generalized configuration
space.

The cotangent bundle T*C of any manifold C has
a distinguished polarization &, viz., the one
spanned by vectors tangent to the fibers of the
projection 7*C - C. Inthis case, the polarization
generalizes the position or Schridinger represen-
tation and the leaf space T*C/& clearly can be
identified with the configuration space C. Roughly,
the quantum Hilbert space should be thought of as
consisting of those sections A of L which are co-
variantly constant along the leaves of the polar-
ization, with the inner product given by integrat-
ing (A, x) over C.

In reducing the prequantization representation
via polarization, we lose the measure w" and its
induced inner product. Since the leaf space M/&
does not in general carry a canonically defined
measure, we need yet an additional structure in
order to define the quantum Hilbert space—the
metalinear frame bundle and its concomitant bun-
dle of half-forms.

Let 8F denote the linear frame bundle of &,
i.e., the collection of all ordered bases of §. It
is a GL(n, R)-principal bundle over M. Let
ML, R) be the real (z xn)-metalinear group and
let p:" ML(z,R) -~ GL(%, R) be the 2:1 “covering”
homomorphism. We denote by ¢ the unique square
root of the map deto p of ML(xz, R) such that
,z;(l) 1, where 1 is the identity in ML(n,R).

A metalinear frame bundle of § is an ML(n,R)-
principal bundle ®gF over M such that the diagram

®F X ML (z, R)—®gF
TXPp T
®F X GL(n,R)—®F

commutes, where the horizontal arrows denote
the group actions, and 7 is the 2:1 projection

®F ~®F. A metalinear frame bundle of F exists
iff a certain class in H%(M, Z,) characteristic of
®F vanishes; if nonempty, the set of all inequiva-
lent metalinear frame bundles of a fixed polariza-
tion F is parametrized by the cohomology group
HY(M,z,).

The bundle VA"S of half-forms of & is the fiber
bundle over M associated to 8F with typical fiber
C on which MLz, R) acts by multiplication by
¢(G),G € ML(1,R). A half-form v, that is, a sec-
tion of VA"F, can be uniquely identified with a
complex~valued function v* on 8F satisfying the
condition

v*(-G)=¢(GHIv*(),

where b e ®F and g:e MLz, R).
We now give a convenient local expression for

sections of VA"F. Let UC M be a contractible
open set, and choose a trivialization £:U—~®F
such that each of the vector fields &/ Eomprising
£(m)=[m; g(m),...,£E"(m)] is canonical. Since U
is contractible, ¢ may be lifted to a metalinear
frame field £:U~ ~®F. We define v; to be the sec-
tlon of v A"F |U such that the associated map

v{* :BF |U~ C satisfies

5 o§=1. (2.8)

Every section v of VA"§ may therefore be repre-
sented on U in the form

V]U=(V*o§)vg. (2.9)

This expression enables us to define the “Lie
derivative” of a half-form along canonical vector
fields X which “preserve the polarization” in the
sense that [X,F]C &. Associated with each such
vector field X on M is a vector field v, on &F ob-
tained by lifting from ®F the vertical vector field
which generates the flow

{gh,. ., = {e+ (e, X], .., £ 42 [E, XT)

on ®F. The Lie derivative of a half-form v is
then defined by the formula

(20U = [X(v*08) +vx(v*)oE]y;.

This expression may be simplified if we introduce
the matrix A (X) with components a} given by

[x, &]= Z altl; (2.10)
then we find

(Cxv) |U=[(X+ 5trA (X)) v*of) ]v; . (2.11)

A half-form v is covariantly constant along & if
£xv = 0'for all canonical Xe &.

We now construct the quantum Hilbert space.
Let I' (L®VA"F) be the space of smooth compactly
supported (modulo &) sections of L®+ A" which
are covariantly constant along & (via V and £).
The quantum Hilbert space 3C; is the completion
of To(L® VA"F) with respect to the inner product
(| ) which we define as follows: Let
fyy .. styyvy,...,0,} be abasis of T, M such that

_IZE{uU e ’un}\eamsF ’
and

w(u," Uj) = 5,',': w(’l)i, ‘Uj) =0,
It follows that d ={Tf(v,),..., Tf(v,)} is a basis for
Tpm(M/F). If p=1®v and o=y ® u are any two
elements of I' (L®V A"F), we pair 3 and o to ob-

tain a density (¥, 0) on the leaf space M/ by de-
fining

@, 0)d) = (m), x (m)Ww*®) u*(@) . (2.12)
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" Here b is a lift of b to &, % and (,) is the Hermitian
inner product on L. Then we set

<¢|o>sfm<w,o>.

With this definition of the quantum Hilbert space
3Cy, we complete the geometric quantization pro-
gram by specifying the quantum representation of
the classical observables. For F e C*(M) such
that the canonical vector field £, is complete and
preserves §, the quantum operator QF is defined
by15

(2.13)

LF\@v]=CF\]®v—im® L, v (2.14)

for \Qve f‘o(L® VA"F). The operator F is es-
sentially self-adjoint on I'y(L®VA'§), If £, is not
complete, then we still define 2F to be the quan-
tum operator (2.14) corresponding to F, but the
essential self-adjointness of F need not follow,
and must be checked on a case-by-case basis.
Formula (2.14) may be considerably simplified
by using the local expressions derived earlier.
Specifically, let UC M be open and contractible
and let £ be a local metalinear frame field on U
projecting onto a linear frame field ¢ consisting
of canonical vector fields spanning § |U. Without
loss of generality, we may presume that the gen-
eral wave function may be written in the form
A ®v, where v | U=y satisfies condition (2.8).
Equations (2.7), (2.11), and (2.14) then yield

QF2V]|U={[~inV, +F - biltrA(E N @ v |U.
(2.15)

Geometric quantization has several surprising
features, especially in comparison with the canon-
ical theory. First, it is clear that the Kostant-
Souriau method always produces a “genuine” Hil-
bert space as opposed to the indefinite inner prod-
uct spaces which occasionally result from canon-
ical quantization.®® Second, Eq. (2.14) serves to
define the quantum operator  F unambiguously;
there can be no factor-ordering problems in geo-
metric quantization. This is reflected by the fact
that, in geometric quantization, it is generally not
true that

&[n(F,G,...)]=n(QF,G,...),

where 7 is any functional of the classical observ-
ables F,G,... (the “bracket goes to commutator”
rule is of course still valid)., Third, from (2.15)
one sees that the quantum operators correspond-
ing to observables whose canonical vector fields
preserve the polarization are (at most) first-order
differential operators.!'® Finally, it should be
noted that the freedom in the choice of polarization
can be used to great advantage in simplifying cal-

culations, cf. Ref. 9. This concludes our brief
(and unfortunately rather brutal) summary of
those aspects of the Kostant-Souriau theory which
will be needed in our discussions below.

III. THE CLASSICAL RW¢ MODELS

Before we can quantize the RW¢ spacetime
models using the method of Kostant and Souriau,
we must obtain a classical Hamiltonian formu-
lation of them in the language of symplectic geo-
metry. We do that here. Our first description
is in unreduced form (i.e., the time is arbitrary
and constraints are present). Then, since we have
chosen in this paper to quantize only the fully re-
duced system, we briefly outline how one makes
a choice of time and solves the constraints, and
apply this reduction procedure to the RW¢ space-
times.

An RW¢ model is a spatially homogeneous and
isotropic spacetime, described by a metric g,
which contains a scalar field ¢ such that ¢ and
¢ jointly satisfy the Einstein-Klein-Gordon equa-
tions

G.=30,00,0-1g,,0,00% +im%, ¢
' (3.1)
and
0%¢ - m2¢6 =0, (3.2)

Here we choose units such that 167G/c*=1, and
denote by m the mass of the scalar field.

The symmetry conditions (homogeneity and iso-
tropy) permit one to write the metric in the gen-
eral form

g==N2(t)dt®dt

R2(t)

* [1+3R(%+y2+22)]

(dx®dx +dy®dy +dz®dz) .

(3.3)

This expression contains two time-dependent field
variables N(t) (the “lapse”) and R(¢) (the “radius”),
as well as the constant 2=+1, 0, or -1. The
choice of £determines the sign of the (constant)
intrinsic curvature of the ¢ = constant spatial sur-
faces. In addition, one finds (after integrating the
classical evolution equations) that # determines
the future of the spacetime: A k=+1 model col-
lapses into a singularity while the £2=0 and 2=~1
versions expand forever.

The RW¢ models satisfy the MacCallum cri-
teria'” which permit one to-substitute the sym-
metries into the spacetime action without affect-
ing the dynamics. So we may analyze the RW¢
models using the simplifed action
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S(g,¢)=S(N:R:¢) .
S s
- [1+%k(x2+y2+22)]3/2

X(=7fR*+6kR + % $* = 1m?¢?)d 3x}dt ,

which is obtained by noting that ¢ (x,#) = ¢(¢) and
employing expression (3.3) for g(x,#). Apparently
N, R, and ¢ are the configuration-space parame-
ters. Varying them, and carrying through the Di-
rac-Bergmann analysis,'® we find that N(¢) is cy-
clic and remains undetermined, while R(¢) and
¢(¢) are dynamical variables with corresponding
momenta 7.() and 7,(#). The effective phase
space M for the RW¢ models (regardless of the
choice of the parameters 2 and m) is therefore
T*R? with coordinates {R, ¢, 7, 7,;R >0}; N(¢) is
an auxiliary arbitrary function. The associated
symplectic form is

@=dngAdR +dm  ,ndD

everywhere on M, and the Hamiltonian is

H=-NK

_ 1

==N 4R Tl = %‘5 T2+ 6kR — §m2¢>2R3).

(3.4)

K is a super-Hamiltonian and, as such, it is con-
strained to vanish. The system contains no other
constraints.

This is the complete Hamiltonian formulation
of the unreduced system. One could attempt to
quantize the RW¢ models in this form, but we
will work instead in the reduced formalism (pri-
marily because the calculations are considerably
simpler).

A proper reduction!®*® consists of a choice of
time followed by an elimination of the constraint
K =0 [from (3.4)] in a manner compatible with the
time choice. “Choosing the time” means speci-
fying a relation between the arbitrary variable ¢
and one of the dynamical fields (R, mg, ¢, T4, Or
some functional thereof). This may be done either
directly (e.g., t=R) or by first specifying N(?)
explicitly and then solving one of the evolution
equations for the dynamical variable of interest
(call it “q,”). Regardless of how one obtains ¢,
the outcome is that ¢; is eliminated from the ranks
of the dynamical variables, and N(?) is no longer
arbitrary.

To solve the constraint “in a manner compatible
with the choice of time” means to solve K =0 for
the variable p, canonically conjugate to ¢;. One
does this in order to obtain a reduced formalism
which is in symplectic form. The reduced phase

space M is the level surface K~{0} in #7 with ¢,
quotiented out; it is a two-dimensional manifold
which in general differs from R2, The symplectic
form @ on M induces a closed two-form w on M
which, by construction, is nondegenerate.

The Hamiltonian for the reduced system is p,
regarded as a function on &, That is, if one
solves K =0 for p, =H, then H is the effective

‘Hamiltonian. It is a genuine Hamiltonian (as op-

posed to a super-Hamiltonian) and it generates
the classical evolution of the RW¢ universe (as a
path in M parametrized by ?).

As an example of the reduction procedure, we
consider the time choice f=¢ which will actually
be used in the subsequent quantization analysis.
This choice, together with the evolution equation

d¢/dt=—Nﬂ¢/R3 ,
fixes
N=—R3/7T¢.

Since 74 is conjugate to ¢, we solve K =0 for 7,
obtaining

Ty=R(%& 7 +12kR? —m2¢2R4)1’9. (3.5)

The reduced phase space is now M = R%, with
(global) coordinates R and ;. The symplectic
form is

w=dngy AdR (3.6)

and the effective Hamiltonian is H=m4 from (3.5).
This completes the reduction.

At this point, one can proceed to find the clas-
sical evolution of the RW¢ models. Leaving out
the details,!’ we find (as noted above) that the
k=+1 models collapse while the £ =0, —1 models
do not.  Therefore, we concentrate in this paper
on the quantization of the 2 =+1 models. We use
the “matter-time” ¢=¢ in these models for two
reasons: (1) unlike, e.g., the “intrinsic” time
t=R, ¢-time covers the entire classical evolution
of the 2=+1 RW¢ models; and (2) with ¢-time,
we may quantize the observable R? and monitor
the asymptotic temporal behavior of its expecta-
tion value as a test for collapse. Classically,
one finds that the radius R may be expressed
parametrically as a function of ¢ as follows:

R max

e (@]

(3.7)

IV. QUANTIZATION OF THE MASSLESS MATTER-TIME
MODEL

We now apply the geometric quantization pro-
cedure outlined in Sec. II to the 2=+1 RW¢ model
cosmologies with massless Klein-Gordon scalar
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field. As seen in Sec. III, if we choose the “mat-
ter-time” {=¢ and reduce, we obtain for our
phase space the open half-plane R? corresponding
to the classically allowed values (0, ©) and

(=, ©) of the canonically conjugate variables

R and mz. The symplectic form on this space is
w =dryAdR [Eq. (3.6)], and the reduced Hamil-
tonian [Eq. (3.5)] may be written in the form

H=BR(m 2 +a?R%), (4.1)
where 8=(2v3)! and « =12. Note that H is both
positive-definite and time-independent.

It is convenient to introduce on R?% the polar
coordinates

y= (‘"Rz + azRZ)uﬁ
and

1 ‘T +1aR
0——21' ln(_——ﬂR—iaR) .

The ranges of # and 0 are (0, ») and (0, 7), re-
spectively; the values » =0 and =0, 7 represent
classically singular states. The symplectic form
is now

w=—drndg, (4.2)
while the Hamiltonian (4.1) becomes
_B .
=—#%sinf. (4.3)
a
The canonical vector field of H is
=2Bsinb 2 ] i 4.4
£y =2Bsin ae-ﬁRcos 5 (4.4)
Since R? is contractible both H2(R%,R) and
H'(R?, S') vanish, so that the prequantization line
bundle L is unique and trivial. Let A be the trivi-

alizing section of L= R, X C which is normalized
to unity:

N =1, (4.5)
The symplectic form is exact, i.e., w=dy with
7 |
Y—W d9,

and consequently the covariant derivative [cf.
Eq. (2.5)] is given by

72 d
A=
v Siha O®A. (4.6)

The choice of polarization § of RZ is dictated
by the desire that the Hamiltonian H be directly
quantizable®® in the representation 3¢;; thus &
must be such that [£4,$]C F. A suitable choice
is the radial polarization § spanned by the
canonical vector field (1/7)8 /87, since

1026 50
[EH175?]- P cosf 57 ° (4-7)

Turning now to the construction of the half-
forms, we find that H%(R%,z,) and H'(R%,Z,) both
vanish so that the metalinear frame bundle @5
of § is unique and trivial. The section £ of ®@¢
defined by

&(m) =(m 120 ) (4.8)

'Y o7,
trivializes ®F and induces the trivializing section
£(m)=(m,7) (4.9)

of 85 ~R? XML(L,R); clearly, 7o £ =£. The sec-
tion £ of @F in turn induces via (2.8) a preferred
trivializing section v; of the bundle of half-forms
VAalg=RZxC, B

To form the quantum representation space 3,
we must identify those sections ¢ of L ® V A'g
which are covariantly constant along §. From
(4.6) and (4.8) we have VA =0 so that 2 is co-
variantly constant. The matrix A({) is trivially
zero and so using (2.8) and (2.11), we find £,v3 =0.
Consequently, the most general section 3 of
L®VA'$ which is covariantly constant along
% has the form ¥ =/A® v, where the complex-
valued function f depends only upon 6.

The leaf space R /F is the interval (0, ) pa-
rametrized by 6, and the projection f: R% —(0, m)
is given by f(7, 6) = 6. Consider the basis
{(1/»)8 /or, a8 /06} of TRZ, and let ¥ =AQvg and
0 =g\ ®vg be two elements of I'(L ®VAF). Then,
according to (2.12), (4.5), and (2.8),

@, a>[Tf(aa%)] -fz.

The inner product (2.13) is thus
1 [ ’
Wloy == [ rzlas] (4.10)
0

and the association A ® vy —f defines an iso-
morphism of 3¢z with L¥0, ).

V. QUANTUM DYNAMICS

Regardless of the quantization procedure em-
ployed, the quantum dynamics of a physical sys-
tem is determined by Schrédinger’s equation.
Thus, it is necessary to quantize the Hamiltonian
(4.3). Since ¢4 preserves ¥, formula (2.15) is
applicable. If A®v;ec I'(L ®VA'F), then (2.6),
(4.8), and (4.4) give

Veu(f) = [Ex(f) = (B/a)7? sin6f ] A. (5.1)

From (2.10) and (4.7) we calculate A(£,) =2Bcosé,
so that by (4.3), (4.4), (5.1), and (2.15),
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QH[fAQvi] =-z'h’[2ﬁsin9% +,Bcos€f])x®u§.

Identifying 3¢z and L*(0, 7), we may thus view the
quantum Hamiltonian as the first-order differ-
ential operator

QH=—ih‘B(2 sin@% +cos(9) (5.2)
on L*0, ).

Since the vector field £, is not complete on R?%,
we cannot a priori conclude that 9H is essen-
tially self-adjoint on C;(0, 7) (cf. Sec. II). None-
theless, this turns out to be the case, and in fact
QH is a self-adjoint differential operator on the
Sobolev space

sy, (0, m ={fe L*(0, M) [H(f) € L0, m} C L*(0, 7).

The time-independent Schrédinger equation is

QHY]=Ey. ,
For  =fA®vg, this eigenvalue equation becomes
., df _iE
2 sinf a0 +cosbf= —ﬁ—B-f,

which has the distributional solutions
fx(6) = Cpsin~*2¢(tan $6) "5/ 8 (5.3)

where the Cy are constants. The wave functions
(5.3) are energy normalized:

(fe-A®vg|fzr®vp

0 (t/zhs)(E'- E)
) do

1 m
= . in~'0 -
= Cy ngo‘ sin (’can2
=—E—Eca‘lc 417 5(E' - E)

=8(E’ - E)

provided we set

1 12
a
Ce= E(ﬂh‘ﬁ) :
The spectrum of 9K is (=, «), and the eigendis-
tributions {f;|E R} form a complete set. Thus,

the general solution of the time-dependent
Schrddinger equation is

zp(t) _ [j.wo g(E)fE( G)e(iE/h )(“‘o)dE] AR Vg ,

(5.4)

where g(E) is a Fourier amplitude.

We point out that there can be no ambiguity in
the interpretation of the Hamiltonian operator
(5.2) or the resulting Schrédinger equation. This
is, we feel, a practical advantage of the Kostant-

Souriau theory vis-@-vis the canonical frame-
work, in which the quantum Hamiltonian is rea-
lized as the square root of a second-order differ-
ential operator. In the latter formalism, it is not
clear how the quantum-mechanical system is to
evolve®*!: via the Schrédinger equation taken

“as is” (with the proper functional analytic defini-
tion of the square root), according to a Klein-
Gordon-type equation, or perhaps even a version
of the Dirac equation.

VI. GRAVITATIONAL COLLAPSE

We now show that the quantized RW¢ (k=+1,
massless) spacetime models all collapse to a
singularity (as they do classically). We prove
this by calculating the time evolution of the ex-
pectation value of the radius (squared) of the
model cosmologies, and verifying that for large
times, this quantity necessarily decays to zero.
That is, for any quantum state ¥(¢) we will dem-
onstrate that

Lim (y(t)| LR?| ()= 0, (6.1)
>

where (¢) takes the general form (5.4).

Actually, it is more convenient to work in the
Heisenberg picture rather than the Schrddinger
picture. Thus, in lieu of calculating (6.1), we
compute the equivalent quantity

(W(to) | QRO ity (6.2)

where J(¢,) represents the state of the universe
at the “initial time” ¢#,. The time-evolving Heisen-
berg operator &R3(t) is defined via

QR:(t)=U"Nt —t,)QR2U (t ~ 1), (6.3)

where U(¢ -¢,) is the time-development operator
generated by Q4.

We must first calculate  R? explicitly. In polar
coordinates

‘R =—lr siné,
a
so that
,
9

=2 ool singl- 5
£Rz—a s1n9(sm6 57 coseay).

Since

19 4 . 19
[ng,;g]—Esmecosorar, | (6.4)

£q2 preserves the radial polarization and hence
R? may be directly quantized® via (2.15). Let
fA® vze T (L® VA'F) be a quantum wave function.
From (2.6) and (4.6) we get
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sin®9 (_of »®
V;Rz(ﬂ)?‘r(zg%;*‘%)’\- (6.5)

It follows from (6.4) and (2.10) that A(&z2)=(4/a)

sinfcosf. Combining this with (2.15) and (6.5),
we obtain the desired result

2ik _of
2 1= s A .
2R [ﬂ@yi]" > s1n9(s1n089+ cos@f))&@vs .

Consequently, 2R? may be viewed as the ordinary
differential operator

a_ 210 . ( d
2R*=~ o sinf s1n9d9+cos9 (6.6)

on L%0,).
The Heisenberg equation of motion for the op-
erator 2R%(¢) is

in S [QRY())= [RR*(), 2H), (6.7)

subject to the initial condition QR*(¢,)= 2R2. To
calculate the right-hand side of (6.7), we use

[QR2(t),2H]=U"(t -t,)[R?, QH]U(t - ¢,) . (6.8)
From (5.2) and (6.6),

2ﬁ2ﬁ .3 i 2
o | sin 0+ ih_cos&.“Z,R) ,  (6.9)

{eRr?,2H]=-

so that by (6.3) and (6.8) it remains to calculate
the time-development of the operators sin®6 and
cosf. Let us use the convenient notation

A@)=U"(t ~t,)sin®6U (t ~¢,)
and
B(#)sUY(t —t,) cosOU(t —1,) -

Then, solving the Heisenberg operator equations
for A(t) and B(¢) we obtain

A)= [1 _(1 _tanz(%e)e%-to))z] 3/2 (6.10)

1+ tan?(3 9)e ¢ -to)
and

_ cott3)e™4-10 _ 1
B(t)= cotZ(%e)e-m(a-to) 1

Consequently, (6.9)—(6.11) give for (6.8)

LAPYY 2(y)= 278
21 RE ()] - 28B()QR* (1) === A1) .

(6.11)

This linear inhomogeneous equation has the fac-
tor-ordered solution
=28 (t=to)

sin%(z 6)[1+ cot?(% g)e~E#-#0)]

QR¥t)=

4
x<%R2 —%tan%@cosz(% )]

x{[1+tan%(30e* ¢ [ — [1+ tan?(3 9)]"}) .

(6.12)

We now show that

Lim ((2,) | QR(t) | ¥(2,)) = 0 (6.13)
t—>o

for any initial state ¥(¢,) € L?0,7), thus proving
that all physically well-defined states of the (=1,
m=0) RW¢ universe eventually collapse. Let

{[ n),nc 2} denote the complete orthornormal basis

|ny= (%)llze'z""" (6.14)

of L*0, ) with respect to the inner product (4.10).
A Fourier analysis of the initial state

bt)=3.C,m

na=c

permits us to rewrite the expectation value (6.2)
as

o ©

(Wito) | R O 9lto)= 3 3 C,T (k|2 (D)) .

R== p=

To prove (6.13), it therefore suffices to show that
lim(k | @R*(t) |n)=0
t—>

for all » and k.
We first consider the diagonal matrix elements.
From (4.10) and (6.14), we find

<nL2R"’(t)|n>=% fte'z""sQRz(t)eZ‘""de. (6.15)
0

Since {R%(t) is a symmetric operator the matrix
element (6.15) must be real. Consequently, the
quantity with coefficient 4%/« in the expression
(6.12) for 2R2(¢) can be ignored since it contributes
only to the imaginary part of (6.15), which must
vanish overall. Thus, according to (6.12) and
(6.6), the integral (6.15) becomes

_.th_e-zB(t-to)f' e-zina( sin(z ) sind _\
o 1+ cot?(z g)e o)

am

X (sing—e+ cosf)>e2i"”d9 .
From this expression, we see that the cosf term
in R? contributes only to the imaginary part of
the matrix element and hence may be excluded;
we need consider only the sin6d/df term. Per-
forming the indicated differentiation and simplify-
ing, we obtain finally

1671 opp(se T sin?(3 6)
<nIQ'R2(t)[n>=_aTe 2B (¢ to)j; tanz(%9)+:-48“-‘°)de'

(6.16)

The integral in (6.16) may be put into the stand-
ard form (A1) discussed in the Appendix by mak-
ing the substitution y = —2 In(tanz 6), whence we
obtain
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o -‘3/9;:
/:O (e-ﬁ(t-to)+ e-y)(1+ e-y)z
Conditions (A2) and (A3) on the parameters

I-L:%y 6=—4B(t-t0), V=1’ Y'—:Oy p=2

are satisfied, so this integral converges. By (A4),

it equals
e® B3, 3),F (1,3,3;1 —®(t0) |

which we can transform into

2 2 )2F1 ’ 2 ,
by using (A7). Thus we obtain

1 = g B (t=t0))

2 ,
(n|QR*(t)|n)= Z—" e, F(1,3,8;1 - ™ 410),
(6.17)

where B(3,%)=17/8.

Since |1 —e™##*%)| <1 for #>¢,, we may series
expand the hypergeometrlc function in (6.17) via
(A5), obtaining

|

sin2(3 6)

(leR t)ln)— —ﬁ ‘”(t'to)f'e-ziho
o

[1+ cot?(3 8)e B (t-t0) |

(nIS’Z,Rz(t)|n)=2—a@e'”“"°) Z:Pk(l — g Bty ,
&=0

(6.18)
where

Pk= (%)h/k(3)k ’

cf. the Appendix. As ¢{- =, the summation on the
right-hand side of (6.18) tends to

3n.,
=0

which is just the series expansion of 2Fl(l,%, 3;1).
Condition (A6) is satisfied so that this sum con-
verges. Therefore,

11m(n|QR ®)] )—-——[hme-ZB(t :m] Z‘Pk

t>o

We now compute the off-diagonal matrix ele-
ments. Since (k| 2R?(¢)|n)={n|2R?(#)| k), it suf-
fices to consider only the case n >k. Equations
(4.10), (6.14), (6.12), and (6.6) give

d
{sm 9ﬁ+ sinfcosé

9 .28 29 45(:-:09 -
+2tan2cos 2[<l+tan 2e

-1
—(1+ tanzg) }} e%n9 49

. . ing g2 (k)8
_ Z’h-e-zﬂ(t-to)f sinfe
ar o

x {2in sinf+ cosd — cos?(3

sin®(3 6)[1+ cot?(3 0)e B #-t0)]

6)+ [1+ tan®(3 6)e* 8¢t 1} g9,

Making the substitution y = =2 In(tan}6), defining p =x -k, and using the identity

e =[(1+2ie™ 2= ™) /(1+ ™),

we can rewrite this as

(E|2R?(t)|n)= 4B sier (7 —q—:y———(l+e"')'(2"“”(l+2ie"’/2—e"‘)”
l (t)|n ~ar ¢ o (e B W)

. e-s'/z
X [2m-—

1+e® 1+e”

+(1+ e"”e"s“"o))"] dy . (6.19)

Since p is a positive integer, we may binomially expand

1+ Zie-ylz - e-y)zﬁ

twice to obtain

izﬁ » % -3 (2i)"("1)le'“*1/2)y‘
< =\ .

Substituting this into (6.19) and simplifying, we get
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(k| QB0 | my= =2 g-asce-to) i ﬁ; (ZP> (21’ ']'> (20)/(-1)
l

x [sz‘

4o
./.-u

e-(+il243/2)y

(e-ﬂ(t-to)_‘_ )1 —e)PE dy

e-(1+l/2+2)y

(e-w(t-t0)+ e"”)(l _— e-y)zp«.z

dy

e~ (151l 2+1)y ]

-45(:-:(,)[ d
+e EGS
o (e BEEY W] — g )2 Y

The three integrals in the above expression may be calculated using the Appendix; it is straightfoward
to check that the convergence conditions (A2) and (A3) are satisfied in each case. Therefore the matrix

element becomes

<kl"2R2(t)ln>=—%e‘”""o’ i f (21)) (Zp -
=0 1=0 . l

J

> (20)(-1)

X [2in e tOB(1+5j+3,2p =1 =3j+3),F,(1,1+3j+3,2p+ 3;1 —e®(t~0))

—eBUM0B(113j+2,2p =1 =3j+1) F (1,1+35+2,2+ 3;1 — gB¢~t0))

+eBUHOB(14+ 55+ 1,20 =1 =5j+2),F,(2,1+5j+1,2p+3;1 —g®B(t0)],

An application of (A7) to the three hypergeometric functions yields finally

. 4RI ( 2D\ (207 \ (orvii_1y
[} = ==L 2 -1
(k| RR%(t)|m)= -~ io; Si<] ) ( z ) (2i)'(-1)

X e B0 [2inB(1+5j+5,2p =1 =55+3)F,(1,20 =1 =3j+3,2p+3;1 = e #(#-10))

=B(l+3j+2,2p =1=3j+1),F,(1,2p =1 =3j+1,2p+3;1 =g #0)

+eBU OB+ 41,9 ~1-5j+2) F,(2,% ~1=3+2,2p+ 3;1 = ™8 G+0)],

We now investigate the asymptotic temporal be-

havior of this matrix element. Typically, the
time dependence of the various terms in
(k|2R?(t)|n) is of the form

¢80 F (a,b,c; 1 — e~ B(t=t0))

for some positive integer s. Since |1 —e™#¢"f0)|
<1 for t>t,, we may expand the hypergeometric
function as in (A5), thereby obtaining

2F1(a,b,c;1 _e—és(t-to)) = i (_a_)r(i)z(l _e-aﬂ(t-to))r .

= (c)r!

In all cases ¢>a+ b so that
(a),(b), =38 (t=t0) r) < (L)&zz
,_,,, (; )rl ) E (c)r!

is finite. Consequently, as {— =, the terms in
(k|2R*(¢)|n) approach

I

e~sB(t=to) -~ (a),(b),
= (c)r!’

so finally

lim (2| QR2(¢) |n) =0.

teo

The asymptotic decay in time of the off-diagonal
matrix elements, combined with that of the diagonal
ones, suffices to prove that (6.13) is satisfied for
any square-integrable initial state y(¢,). This is
our previously mentioned result: The quantum
models collapse. It is interesting to compare the
explicit rate of this collapse with that of the clas-
sical k=+1 models in ¢-time. As {—=, the
dominant terms in (¥(t,) | 2R2(t) | 4(t,)) decay at the
rate of e 28"t} or ¢™{*-%)/% if we replace B by
its numerical value. But from (3.7), the clas-
sical radius R%*(¢) evolves as
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. R?
cosh[(6 - 69)/V3]

so that for large ¢, cosh[(¢ — ¢o)/V3 ]~ e @ 003,
Thus the quantum collapse rate matches that of
the classical models exactly.

One might question whether or not the result
(6.13) really implies that the quantized (k= +1,

m =0) models collapse. Since we have made the
choice of time f=¢, this result only says that as
¢ classically grows very large, (2R%*(¢)) goes to
zero. Why—quantum mechanically—should ¢
grow? More precisely, why should the quantum
state »(¢) evolve to “¢ =="? Is this just an arti-
fact of our classical treatment of ¢ ? Might not
quantum effects, e.g., a “bounce,” prevent this?

To resolve this issue, we recall that the Ham-
iltonian operator (5.2) is self-adjoint. It follows
that probability is conserved, i.e., the norm of
any state ¥(¢) is independent of ¢. Therefore,
there is no “leakage” of the states even as ¢ — =,
and so any given quantum RW¢ model necessarily
evolves to the ¢ — « limit. The point of our anal-
ysis is to show that as this limit is approached, the
expectation value of the radius of the given model
decays to zero.

One might still object to the inequivalent treat-
ment of ¢ and R in this quantum model of the RW¢
system. However, ¢ and R cannot both be treated
as dynamical variables in any reduced Hamiltonian
formulation. Therefore they cannot both be quan-
tized, unless one retains the unreduced classical
formalism. We shall address the problem of
directly quantizing the unreduced system in a future
work.

Others have looked at the RW¢ and similar
cosmologies and have attempted to delineate
alternative criteria for determining whether or
not collapse occurs in the quantum system. For
example, one may try to thwart collapse by im-
posing the boundary condition that the quantum
wave function vanish at the classical singularity.??
In the matter-time RW¢ models, however, it is
clear from the form (5.3) of the energy eigen-
functions that this boundary condition is inap-
propriate. Regardless, it is not entirely clear
that such a boundary condition—assuming that
it can be imposed —actually signifies the absence
of collapse. Presumably, as Blyth and Isham!!
point out, one should also consider the behavior
of the quantity P,—the probability that if a meas-
urement of R is made then it will lie in the inter-
val [0, €]—as €—~0. Unfortunately, it is not clear
which values of dP./de represent collapse and
which do not. The approach to the problem em-
ployed in this paper—calculating the asymptotic
temporal behavior of the expectation value of R2—

seems to be at least as convincing as any other.
Furthermore, as far as we know, ours is the
first rigorous fully quantum-mechanical deter-
mination (using any criteria) of whether or not
collapse occurs.

VII. CONCLUSION

The two main goals of the work described in
this paper were (1) to find out whether or not a
fully quantized simple model cosmology (spe-
cifically, the =1, m =0 RW¢ model) would be
prevented from collapsing into a singularity by
quantum effects, and (2) to determine how useful
the Kostant-Souriau geometric quantization pro-
cedure is in studying homogeneous cosmologies.
Our results conclusively answer both questions:
The quantized models do collapse, and geometric
quantization is a very effective tool for studying
it.

Starting from each of these two conclusions,
there are a number of directions in which further
research would be useful. Regarding the problem
of gravitational collapse, we list the following.

(1) RW¢ models in unveduced form. To avoid
any spurious effects due to the choice of time,
one should quantize the unreduced system described
in the first part of Sec. IIL

(2) Massive RW¢$ models. Parker and Fulling,®
using perturbation techniques, claim that this
model (RW¢ with 2 =+1 and m #0) exhibits quan-
tum bounce. This result should be checked using
the (nonperturbative) method of geometric quan-
tization.

(3) Other homogeneous cosmologies. The RW¢
models are among the simplest of the homogeneous
cosmologies. One can permit anisotropy and add
other fields (e.g., electromagnetism) without losing
the simplicity of a finite number of degrees of
freedom.?® Those more complicated homogeneous
cosmologies which exhibit collapse classically
(e.g., those with S® spatial topology) should be
studied in quantum form.

(4) Inhomogeneous cosmologies. The only way
to decide conclusively whether or not the freezing
of degrees of freedom is physically realistic is
to quantize models with an infinite number of
degrees of freedom.

The first three of these projects are not parti-
cularly difficult conceptually and are currently
being carried out by the authors. The last re-
quires a considerable amount of new insight.

Let us turn now to the research which is less
concerned with the phenomenon of collapse and
focuses rather on the usefulness of the geometric
quantization procedure.

(1) Move complicated models (with ov without
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collapse). There have been very few applications
of geometric quantization to physical systems with
more than one or two degrees of freedom. The
homogeneous cosmologies are a fertile source of
such systems. Many of these cosmologies do not
collapse classically, but should nonetheless be
interesting as test systems for the Kostant-Souriau
procedure.

(2) Choice of time. When are the quantizations
of a given cosmology with two different choices
of time unitarily equivalent? Study via geometric
quantization might help us to answer this question.

(3) Quantizations using diffevent bundles. When
the classical symplectic geometry of a given
physical system is nontrivial, there may be more
than one possible choice of prequantization line
bundle and half-form bundle. Are the quantizations
based on these choices generally inequivalent?
Since many homogeneous cosmologies have such
nontrivial classical descriptions, this question
may be studied using*them.24

4) Choice of polarization. In all physical sys-
tems, different choices of polarization are avail-
able. Again, the equivalence of the resulting quan-
tizations should be studied.

(5) Systems with singularities in the classical
phase space. Many homogeneous cosmologies
exhibit linear instabilities and therefore have
singular phase spaces.?® The geometric quantiza-
tion of such systems should be attempted and com-
pared with perturbation calculations.?

Previous work by the authors® pertains to some
of these issues. In particular, noncollapsing
(=0 or —1) RW¢ models with and without mass
have been studied with various choices of time and
polarization. In the massless case, the classical
system is “simple” and so the appropriate bundles
are unique, but there are (at least) two polariza-
tions of interest. The resulting quantizations are
equivalent, and are also consistent with a canonical

. quantization of the system (thereby demonstrating
that as a geometrical generalization of canonical
quantization, the Kostant-Souriau method gives
identical results for simple systems). The
massive case is more complicated and has not
(to our knowledge) been successfully quantized
by canonical techniques. The Kostant-Souriau
treatment is successful, however. Indeed, it
produces two quantizations (choice of two meta-
linear frame bundles), which one shows are in-
equivalent (different spectra).

An interesting possibility suggested by this
earlier work is the possibility that a different

choice of time may be compensated by a different
choice of polarization. This phenomenon is cur-
rently under study.

Much work obviously remains to be done. Geo-
metric quantization is a new and apparently very
useful procedure which should be exploited much
more than it has been so far in physics.
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APPENDIX

The integral

+ e-u:v
.[ (e®+e?)(e” +e™) dy (A1)

converges provided the parameters u, 6, v, v,
and p satisfy the conditions

|Imé| <m, |Imy|<m (a2)

and
0<Reu<Re(v+p). (A3)
It has the following representation®": »
e[”u-p)-ﬂﬂB(U«, vV+p-— U-) 2F1(V9 byv+p;l— e”?) ’

(A4)
where B is the beta function and ,F; is Gauss’s hyper-
geometric function.

Several properties of ,F,(a,b,c; z) are worth
noting. It may be expanded in series as follows:

2F1(a’b,c;z)='§ (ng%l:_)m—f;—’ (a5)

where (a),=al@+1)X+++ X(a@ +n - 1). This series
converges if |z| <1 and also if z=1 provided®

c>a+b. (A6)

Furthermore,?®
1 a
. F, a,b,c,l-—; =x%,F,(a,c-b,c;1-x).

Aan)
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