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III—GAUGE SYMMETRIES AND INITIAL VALUE

CONSTRAINTS

This part studies gauge symmetries and the relation between various constraint
sets and zero sets of instantaneous momentum and energy-momentum maps.
In particular, the zero set E−1

τ (0) of the energy-momentum map for the gauge
group G will be shown in Chapter 10 to coincide with the final constraint set
Cτ . Similarly, the momentum map for a certain foliation Ġτ , which is derived
from the gauge group G and is defined in Chapter 11, will be identified with
the primary constraint set Pτ . Both these results require that the system under
consideration be first class in an appropriate sense. We prepare for these results
by defining the gauge group and discussing its properties in Chapter 8 and by
proving the Vanishing Theorem in Chapter 9.

8 The Gauge Group

Here we define the gauge group of a given classical field theory, analyze its
properties, and then show how to construct it. In the final section we discuss the
correspondence between the notions of “gauge transformation” in the covariant
and instantaneous formalisms.

8A Covariance, Localizability, and Gauge Groups

Suppose we have a group G, as in §4D, which acts on Y by bundle automor-
phisms, so that we have a homomorphism G → Aut(Y ). (We will often blur the
distinction between G and its image in Aut(Y ).) Our fundamental assumption
A1 is that the Lagrangian density L is equivariant with respect to the induced
actions of G on J1Y and Λn+1X. If this is the case, we say that the Lagrangian
field theory under consideration is G-covariant.

Covariance under the action of a group G leads to the following important
consequence. Recall that Sol denotes the set of all spacetime solutions of the
Euler–Lagrange equations.

Proposition 8A.1. Suppose that a Lagrangian field theory is G-covariant.
Then the induced action of G on Y stabilizes Sol ⊂ Y.
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In other words, if L is G-equivariant and φ ∈ Y is a solution of the Euler–
Lagrange equations, then so is η ·φ for all η ∈ G. Here, and throughout the rest
of Part III, we suppose that all fields are variational.

Proof. Let φ ∈ Y be a solution of the Euler–Lagrange equations so that, by
Theorem 3B.1

(j1φ)∗(V dΘL) = 0 (8A.1)

for all V ∈ X(J1Y ). For η ∈ G, (4A.5)yields

j1(η · φ)∗(V dΘL) = (ηJ1Y ◦ j1φ ◦ η−1
X )∗(V dΘL)

= (η−1
X )∗(j1φ)∗ηJ1Y

∗(V dΘL).

Since ηJ1(Y ) is a diffeomorphism, each vector field V on J1(Y ) can be written
in the form V = TηJ1(Y ) ·W for some W . Substituting this into the preceding
equation and using the fact that G-equivariance of L implies ΘL is G-invariant
(cf. Proposition 4D.1), we obtain

j1(η · φ)∗(V dΘL) = (η−1
X )∗(j1φ)∗(W ηJ1Y

∗dΘL)

= (η−1
X )∗(j1φ)∗(W dΘL) = 0

by (8A.1). The result now follows from Theorem 3B.1 �

If a field theory is G-covariant, then, according to this proposition, G acts by
symmetries in the sense that it maps solutions of the Euler–Lagrange equations
to solutions. A very important property of a gauge group, which distinguishes
it from a mere symmetry group, is that the former is “localizable.”

We say that a group G of automorphisms of a bundle Y → X is localizable

provided that for each pair of disjoint hypersurfaces Σ1 and Σ2 in X and each
Lie algebra element ξ ∈ g, there is a Lie algebra element χ ∈ g such that
χY |π−1

XY (Σ1) = ξY |π−1
XY (Σ1) and χY |π−1

XY (Σ2) = 0.
Now consider a Lagrangian field theory and a subgroup G of Aut(Y ). We

say that G is a gauge group for the theory provided G is localizable and the
theory is G-covariant. We will justify this terminology and discuss our standard
examples in the next section.

A constrained theory may have no gauge symmetries at all (that is, G is the
zero group); the Proca field on a fixed background spacetime is such a theory.
(See Gotay and Nester [1980]). But the Proca field acquires the gauge group
Diff(X) when parametrized. More generally, every parametrized theory has
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nontrivial gauge symmetry. At the other extreme, there are systems which are
totally gauge in the sense that they have no true dynamical degrees of freedom;
for instance, parametrized electromagnetism on a (1+1)-dimensional spacetime
(cf. Example 6E.b).

8B Principal Bundle Construction of the Gauge Group

The gauge groups of many field theories arise via the following principal bundle
construction (cf. Fischer [1982]). One can often associate a principal bundle B
to the configuration bundle Y in such a way that automorphisms of B induce
automorphisms of Y ; the association may, but need not be, via the standard
notion of an associated bundle.

Let πXB : B → X be a principal bundle with Lie group G. (Thus, G acts
effectively on B on the right, leaving B fiberwise invariant.) Suppose that G ⊂
Aut(B) is a group of automorphisms of B, i.e., fiber-preserving diffeomorphisms
of B which commute with the G-action. In general we have a homomorphism
Aut(B) → Diff(X) which maps η ∈ Aut(B) to the induced diffeomorphism ηX

of X. We assume that Y is “associated” to B in the sense that G acts on Y by
bundle automorphisms that cover the induced action on X. In most examples,
the choices of B and G are usually apparent.

Examples

We refer the reader to §4D for a discussion of G-covariance in each case.

a Particle Mechanics. In parametrized particle dynamics, B is the identity
bundle R → R (so that G = {Id}), G = Aut(B) = Diff(R) and Y is the
associated bundle B ×G Q = R×Q with typical fiber Q.

Obviously the group Diff(R) of time reparametrizations is localizable. Thus
Diff(R) is a gauge group.

b Electromagnetism. For electromagnetism as a 1-form field theory on a
fixed background X, G is the additive group R and B = X ×R. Then we have
G = AutId(B) = F(X), where AutId(B) is the group of automorphisms covering
the identity on X. In this case Y is the generalized associated bundle

J1(X × R)/R ≈ Λ1X
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and the induced action of G on Y coincides with (4C.17).
The group G = F(X) is manifestly localizable, and so it is a gauge group.
To illustrate how special gauge groups are, as compared to symmetry groups,

we consider other possible choices of G in the context of this example. For
instance, take G to be the additive group of closed 1-forms on X, acting on Y

by (α,A) 7→ A + α. Then G is a symmetry group of L, but it need not be
localizable. To ensure localizability, we need to restrict to the additive group of
exact 1-forms on X, i.e., G ≈ F(X). Now suppose we take G to be the isometry
group of the fixed background spacetime X, acting on Λ1X by push-forward.
Then electromagnetism is G-covariant, but G is not a gauge group as again it is
not localizable. On the other hand, G = Diff(X) is localizable but the Maxwell
Lagrangian density (3B.12), is not Diff(X)-covariant unless gravity is included,
either parametrically or dynamically. Similar remarks obviously apply to any
theory on a background spacetime.

When the spacetime metric is not fixed, we keep B = X × R as in the
background case. However, since in this context the metric on X is supposed
to transform under spacetime diffeomorphisms, we now take

G̃ = Aut(B) = Diff(X) n F(X)

to be the full automorphism group of B. Then G̃ is localizable and acts on the
“parametrized” configuration bundle Ỹ = Λ1X ×X S3,1

2 (X) as in Example b of
§4C.

c A Topological Field Theory. Again we take G to be the additive group
R and B = X × R. Then G = Aut(B) = Diff(X) n F(X) where, as before,
Y = J1(X×R)/R ≈ Λ1X and the induced action of G on Y is given by (4C.17)
(4C.18).

Although the Chern–Simons theory is not Diff(X) n F(X)-covariant, a
glance back at the proof of Proposition 8A.1 shows that it remains valid provided
merely that ΩL = −dΘL is invariant, which it is in this instance.

d Bosonic Strings. This is similar to parametrized electromagnetism, cf.
Example b above. Keeping the conformal invariance of the bosonic string in
mind, we let G be the multiplicative group R+ and set B = X × R+. Then

G = Aut(X × R+) = Diff(X) n F(X,R+)
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acts on the configuration bundle Y for bosonic strings as in Example d of §4C.

Remark 8B.1. When a field theory is parametrized, the above examples show
that the appropriate principal bundle B is just that corresponding to the “in-
ternal” degrees of freedom. It follows that the appropriate group G = Aut(B)
has Diff(X) built in automatically. (We refer the reader to Interlude I for a
discussion of parametrized vs. background theories.)

When the fields being studied propagate on a fixed background spacetime
X, we may proceed in two ways. In one approach, we restrict G to be just
AutId(B)—those automorphisms of B which restrict to the identity onX. Hence
G corresponds to the “internal” gauge group. This approach leads to the ap-
propriate relationship between the energy-momentum map and the constraints
for these fields (see Chapters 10 and 11). In the second approach, we let G be
all of Aut(B) so that Diff(X) is now “included” and the background metric is
treated parametrically. This approach, according to §7D, leads to the desired
relationship between the energy-momentum map and the Hamiltonian. Exam-
ple b shows that only when the metric on X is dynamic do we get both desired
relations.

Thus, on a group-theoretical level the parametrization of a theory can be
accomplished merely by replacing AutId(B) by Aut(B). �

8C Gauge Transformations

In §6E we defined a gauge transformation in the instantaneous formalism to
be a diffeomorphism of the final constraint set Cτ which stabilizes the fibers of
the subbundle TCτ ∩ TC⊥

τ of TCτ (or, what essentially amounts to the same
thing, a flow on Cτ whose generating vector field belongs to the distribution
X(Cτ ) ∩ X(Cτ )⊥). In this section we relate this notion of gauge transformation
to its covariant counterpart, defined in §8A, and discuss what it means for the
gauge group to be “full.”

Consider a subgroup G of Aut(Y ). The first order of business is to determine
how G “acts” in the instantaneous framework. Strictly speaking, of course, G

need not act at all in this context, as it does not necessarily stabilize Cauchy
surfaces. Nonetheless, using the instantaneous energy-momentum map Eτ :
Pτ → g∗ defined in §7D, we show that g naturally defines a Lie subalgebra gCτ

of X(Cτ ) which, for our purposes, serves as an (infinitesimal) action.
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Proposition 8C.1. Consider a G-covariant field theory. For every ξ ∈ g, there
exist solutions ξCτ ∈ X(Cτ ) of the equation

(ξCτ ωτ − d〈Eτ , ξ〉) |Cτ = 0. (8C.1)

The proof of this Proposition is deferred until §10A, as it relies upon cer-
tain results to be established there. Below we prove a modified version with g

replaced by gτ , the stabilizer algebra of the Cauchy surface Στ .
Proposition 8.2 says that, for each ξ ∈ g, 〈Eτ,ξ〉 has Hamiltonian vector fields

along Cτ which are tangent to Cτ . Given ξ, (8C.1) only defines ξCτ
modulo

elements of kerωτ ∩ X(Cτ ). Denote by gCτ
the involutive distribution generated

by the set {ξCτ
| ξ ∈ g}. We may think of gCτ

⊂ X(Cτ ) as playing the role of an
“action” of g on Cτ . A main result is:

Theorem 8C.2. Assume that all fields are variational. For each gauge group
G,

gCτ
⊂ X(Cτ ) ∩ X(Cτ )⊥.

Again, the proof will be postponed until §10A. The standing hypothesis that
all fields are variational is crucial; see Example b following for an illustration of
what can happen when this is not the case.

Recall from §6E that the distribution X(Cτ ) ∩ X(Cτ )⊥ is the gauge algebra
of the theory. Thus this Theorem constitutes the fundamental link between the
covariant and instantaneous notions of “gauge.” It follows that if G is a gauge
group in the covariant sense and all fields are variational, then G “acts” on each
Cτ by gauge transformations in the instantaneous sense.

To ensure that G comprises all the gauge freedom of the theory, we shall
require

A5 Fullness. gCτ
= X(Cτ ) ∩ X(Cτ )⊥.

A gauge group G is called full if this condition holds.
This condition should be thought of as a means of checking whether the

choice of gauge group is “correct.” We emphasize that this is a nontrivial matter
in general. Our philosophy throughout this work is that one knows the correct
gauge group at the outset; this is indeed often the case, as in the examples we
have presented. But from a practical standpoint, for a given Lagrangian field
theory, the choice of G may not be entirely obvious. Thus one may “undershoot,”
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that is, choose a candidate gauge group which is too small. This error would be
signaled by a violation of A5. We illustrate the sort of things that can go wrong
when the gauge group is not full in Chapter 10. We point out, however, that
it is not possible to “overshoot,” at least when all fields are variational. This is
because of Theorem 8C.2; a candidate gauge group which is too large (in the
sense that gCτ

⊃ X(Cτ ) ∩ X(Cτ )⊥) would have to violate either localizability
or covariance, and so could be immediately discarded.

Remark 8C.3. Note that by definition, gCτ
always contains kerωτ ∩ X(Cτ ) as

an involutive subdistribution. Consequently, if a given theory has only primary
constraints, so that Cτ = Pτ , then any gauge group is vacuously full, since
in this case X(Cτ ) ∩ X(Cτ )⊥ = kerωτ . This is true even for the zero group.
This observation and the closing comments in §6E indicate that the fullness of
G is correlated with first class secondary constraints, but not with first class
primaries. The connection between G and the first class secondaries will be
made more precise in Chapter 10. We also remark that there is a condition
on G, similar to fullness, which is explicitly tailored to the first class primary
constraints; see §11D. �

Remark 8C.4. A computable sufficient condition for fullness is given in Corol-
lary 10B.6. �

Remark 8C.5. It is conceivable that a given theory could have several different
full gauge groups. (See Example d following for an illustration, as well as the
footnote to Example 4C.b.) However, up to questions of reconstructing groups
from algebras25 and the faithfulness of the representation ξ 7→ ξCτ , assumption
A5 makes the gauge group “unique,” simply because X(Cτ )∩ X(Cτ )⊥ is intrinsic
to the theory, independent of any choice of gauge group.26 �

We now state and prove a modified version of Proposition 8C.1, as promised
earlier. Recall from Section 7C that the subgroup Gτ of G does act in the
instantaneous formalism with momentum map Jτ : T ∗Yτ → g∗τ .

Proposition 8C.6. Assume A1, A2, and A4. Then the action of Gτ stabilizes
both the instantaneous primary and final constraint sets Pτ and Cτ in T ∗Yτ .

Proof. By Proposition 4D.1 the covariant Legendre transform is equivariant
with respect to the actions of Gτ on (J1Y )τ and Zτ , so that Gτ stabilizes Nτ

25We will not consider global issues—such as the existence of ‘large’ gauge transformations

(viz., the connectedness of G)—in this book.
26 More precisely, it makes the action on Cτ unique.
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in Zτ and hence Nτ in Zτ . Then (7C.2) and Corollary 6C.5 imply that the
Gτ -action stabilizes Pτ in T ∗Yτ .

Recall from (6D.10) that the canonical decomposition map canτ : Y → Pτ

relative to the embedding τ : Σ → X is given by

canτ (φ) = Rτ (FL ◦ j1φ ◦ τ).

The above results yield, for all η ∈ Gτ ,

canτ (ηY(φ)) = ηT∗Yτ
(canτ (φ)).

In view of A2 and A4, Corollary 6E.11 asserts that canτ (Sol) = Cτ ; to prove
that Gτ stabilizes Cτ , it therefore suffices to show that Gτ stabilizes Sol in
Y. But this is immediate from our assumption of covariance together with
Proposition 8A.1. �

Now, on T ∗Yτ we may solve

ξT∗Yτ
ωT∗Yτ

= d〈Jτ , ξ〉 (8C.2)

uniquely for the generators ξT∗Yτ . Finally, Proposition 8C.6 together with
Corollary 7D.2(ii) guarantee that (8C.2), when pulled back to Pτ , coincides
with (8C.1) for ξ ∈ gτ , and that ξT∗Yτ |Cτ is tangent to Cτ .

Examples

a Particle Mechanics. Fix a Cauchy “surface” Σt. We know from Example
a of §6E that Ct = Pt, and from Example a of §7D that Et ≡ 0. Thus (8C.1)
yields gCt

= kerωt, so the gauge group Diff(R) is vacuously full, in accordance
with Remark 8C.3.

b Electromagnetism. In the background case G = Gτ , so we obtain a
genuine action of G = F(X) on T ∗Yτ . It is given by

(f, (A,E)) 7→ (A+ df |Στ ,E)

for f ∈ F(X). For χ ∈ g ≈ F(X), we may write

χT∗Yτ
= χ0

δ

δA0
+∇χτ ·

δ

δA
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in adapted coordinates, where χ0 := χ,0 |Στ and χτ = χ |Στ . Now χ0 and χτ

are independently specifiable along Στ and so, by referring to Example b of §6E,
we see that A5 is satisfied. Thus F(X) is the full gauge group for background
electromagnetism.

For parametrized electromagnetism it is no longer true that G̃ = G̃τ , so
we must compute the Hamiltonian vector fields directly. Given (ξ, χ) ∈ g̃ ≈
X(X) n F(X), from (6C.22 ) and (7D.12) we eventually obtain:

(ξ, χ)Cτ =−
(
ξ0Nγ−1/2γijE

j +
1

N
√
γ

(ξ0M j + ξj)Fji +Di(ξµAµ − χ)
) δ

δAi

−Dj

(
ξ0γikγjmFkm +

[
(ξ0M i + ξi)Ej − (ξ0M j + ξj)Ei

] ) δ

δEi

modulo terms in the direction δ/δA0. Because the metric on X is not variational
Theorem 8C.2 fails and these vector fields need not lie in X(Cτ )∩ X(Cτ )⊥. But
they do when ξµ = 0, and the same argument as in the background case shows
that G̃ = Diff(X) n F(X) is “overfull” in the sense that X(Cτ )∩ X(Cτ )⊥ ⊂ gCτ .

c A Topological Field Theory. From (6C.30) and (7D.14) we compute

(ξ, χ)Cτ = Di(ξµAµ − χ)
(
ε0ij δ

δπj
− δ

δAi

)
modulo the directions δ/δA0. Referring back to §6E, it follows from this and
the argument given in Example b above that G = Diff(X) n F(X) is full. Note
also that Diff(X) alone is not full.

This example indicates that it may suffice—and indeed may be necessary—
to require just that the action of a field theory, as opposed to the Lagrangian
density itself, be invariant for the main results of this chapter to hold.

d Bosonic Strings. Consider (ξ, λ) ∈ g ≈ X(X) n F(X). From (7D.17)
and (6C.37) we compute

(ξ, λ)Cτ
=
(
ξ0N

2
√
γ
gABπB + ξ1MDϕA

)
δ

δϕA

+
(

ξ0

2
√
γ
gABD(NDϕB) + ξ1D(MπA)

)
δ

δπA

modulo the directions δ/δhσρ. In view of (6E.31), this may be rewritten

(ξ, λ)Cτ
= ξ0XNH + ξ1XMJ.



162 §9 The Vanishing Theorem and Its Converse

Since ξ0 and ξ1 are independently specifiable, it follows from the computation of
X(Cτ )∩ X(Cτ )⊥ in Example d of §6E that the gauge group Diff(X) n F(X,+)
is full in this case. The subgroup Diff(X) is full as well.

9 The Vanishing Theorem and Its Converse

Here we begin the program of relating initial value constraints to zero levels
of the energy-momentum map by proving the Vanishing Theorem (also called
the second Noether theorem). This says that when evaluated on any solution
of the Euler–Lagrange equations, the covariant momentum map integrated over
a hypersurface is zero. The result is a consequence of Noether’s theorem and
localizablility.

9A The Vanishing Theorem

Let Σ+ and Σ− denote two hypersurfaces in X which form the boundary of a
compact region; we call Σ+ and Σ− an admissible pair of hypersurfaces. (We
have in mind the case of a spacetime X with Σ+ and Σ− deformations of a
given hypersurface to the future and past, respectively, as in Figure 9.1.)

X 

Σ
+

Σ
–

Figure 9.1: An admissible pair of hypersurfaces
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Lemma 9A.1. For every compact oriented hypersurface Σ there is a disjoint
hypersurface Σ′ such that (Σ,Σ′) form an admissible pair.

Proof. Choose an outward pointing normal vector field along Σ, and smoothly
extend it to a vector field n on a neighborhood U of Σ in X. Since Σ is compact,
there is a neighborhood V ⊂ U of Σ on which the flow F of n is defined on
some interval (−k, k). Now take Σ′ = Fk/2(Σ); then Σ ∪ Σ′ is the boundary of
the compact region F ([0, k/2]× Σ) in X. �

Suppose that G is a localizable group of automorphisms of Y . Then for
every compact oriented hypersurface Σ and every ξ ∈ g, there exists a disjoint
hypersurface Σ′ and a ξ′ ∈ g such that (Σ,Σ′) form an admissible pair and

ξ′Y |YΣ = ξY |YΣ and ξ′Y |Y ′
Σ = 0,

where YΣ = π−1
XY (Σ) and Y ′

Σ = π−1
XY (Σ′). Roughly speaking, this means that

we can localize any ξ ∈ g by “shutting it off” on a hypersurface to the “past”
or “future.”

Now suppose that we have a field theory with gauge group G in which all
fields are variational. Then from the first Noether theorem (Theorem 4D.2 )
and Stokes’ theorem, we obtain∫

Σ+

τ∗+(j1φ)∗JL(ξ) =
∫

Σ−

τ∗−(j1φ)∗JL(ξ). (9A.1)

for every solution φ of the Euler–Lagrange equations and admissible pair of
hypersurfaces Σ+ and Σ−, where τ± : Σ± → X are the inclusions. Note that, as
always, the compactness assumption in this discussion can be relaxed provided
all fields fall off sufficiently rapidly at “infinity.”

Localizability and (9A.1) immediately lead to the “second Noether theorem”:

Theorem 9A.2. (Vanishing Theorem) Let L be the Lagrangian density
for a field theory with gauge group G. Then for any solution φ of the Euler–
Lagrange equations and hypersurface Σ, the energy-momentum map on Σ in the
Lagrangian representation vanishes:∫

Σ

τ∗(j1φ)∗JL(ξ) = 0

for all ξ ∈ g, where τ : Σ → X is the inclusion.
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9B The Converse of the Vanishing Theorem

This will be obtained using the results of §4D.

Theorem 9B.1. (Converse of the Vanishing Theorem) Suppose L is
equivariant with respect to a vertically transitive group action. Let φ be a section
of Y which satisfies ∫

Σ

τ∗(j1φ)∗JL(ξ) = 0 (9B.1)

for all hypersurfaces Σ, where τ : Σ → X is the inclusion. Then φ is a solution
to the Euler–Lagrange equations.

Proof. Let Σ+ and Σ− be the images of two such embeddings τ+ and τ−

which enclose a “bubble” U as in Figure 9.2. Then∫
U

d
[
(j1φ)∗JL(ξ)

]
=
∫

Σ+

τ∗+(j1φ)∗JL(ξ)−
∫

Σ−

τ∗−(j1φ)∗JL(ξ) = 0.

The open sets of the form U comprise a neighborhood base for X. Therefore

Σ
+

Σ
–

U

Figure 9.2: A bubble in spacetime

d
[
(j1φ)∗JL(ξ)

]
= 0 and so by Theorem 4D.3, φ is a solution to the Euler–

Lagrange equations. �

Theorem 9B.1 can be viewed as one formulation of the “geometrodynamics
regained” program of Kuchař [1974]. Indeed, it essentially states that from
symmetry assumptions and the vanishing of the energy-momentum map it is
possible to recover the Euler–Lagrange equations; that is, the geometry and
symmetry together determine the field theory.

Examples
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In each of the following examples, we compute the energy-momentum map
in the Lagrangian representation:∫

Σ

τ∗(j1φ)∗JL(ξ)

without assuming that φ is a solution of the Euler–Lagrange equations. Setting
this equal to zero for all values of ξ, we find that for fixed Σ equation (9B.1) is
equivalent to a subset of the Euler–Lagrange equations along Σ.

a Particle Mechanics. For time reparametrization-covariant particle dy-
namics with no internal symmetries, (4D.15) yields

(j1φ)∗JL(f) = 0

as a matter of course, cf. Example a in §4D. Thus the Vanishing Theorem just
reproduces this fact in this case. It gives no information at all regarding the
equations of motion, since the action of G = Diff(R) is vertically trivial.

b Electromagnetism. From (4C.12) we have

(j1A)∗JL(χ) = Fνµχ,νd
3xµ.

If we take Σ to be the Cauchy surface x0 = 0 then, by virtue of the antisymmetry
of Fνµ, the left hand side of (9B.1) reduces to∫

Σ

Fi0χ,id
3x0.

Setting this equal to zero for all χ ∈ F(X), and integrating by parts leads to
Gauss’ Law Fi0

,i = 0. On the other hand, if Σ is given by xk = 0, we obtain∫
Σ

Fνkχ,νd
3xk (no sum on k).

Using the fact that Fkk = 0 (no sum), we may again integrate by parts, and
so the vanishing of this expression for all χ ∈ F(X) gives the rest of Maxwell’s
equations Fνk

,ν = 0. Thus we get all of Maxwell’s equations, consistent with the
Converse of the Vanishing Theorem and the vertical transitivity of G = F(X).
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c A Topological Field Theory. From (4D.21), the energy-momentum map
is ∫

Σ

(
εµνσ(−Aτξ

τ
,ν −Aν,τξ

τ + χ,ν) +
1
2
εντσFντξ

µ
)
Aσ d

2xµ.

Taking Σ to be the x0 = 0 surface and integrating by parts, the terms involving
ξ drop out and this reduces to

−
∫

Σ

ε0ijχAj,i d
2x0.

Upon requiring this to equal zero, the arbitrariness of χ implies that F12 = 0.
Similarly, taking Σ to be the xk = 0 surface for k = 1, 2 we obtain F0k = 0. Thus
the conclusion of Theorem 9B.1 holds even though the Chern–Simons theory is
not F(X)-invariant.

d Bosonic Strings. From (4D.8), (3B.24), and (4C.22)–(4C.24), we com-
pute

j1(φ, h)∗JL(ξ, λ) =
√
|h|gAB

[{1
2
(h00φA

,0φ
B

,0 − h11φA
,1φ

B
,1)ξ0

+ h0µφB
,µφ

A
,1ξ

1
}
d1x0

+
{1

2
(h11φA

,1φ
B

,1 − h00φA
,0φ

B
,0)ξ1

+ h1µφB
,µφ

A
,0ξ

0
}
d1x1

]
.

First suppose that Σ is the Cauchy curve x0 = 0. Then if (9B.1) is to hold
for all (ξ, λ), we must have

gAB(h00φA
,0φ

B
,0 − h11φA

,1φ
B

,1) = 0 (9B.2)

and

gABh
0µφB

,µφ
A

,1 = 0. (9B.3)

Using (3B.25)–(3B.27)and (5C.10), one directly verifies that (9B.3) is just the
supermomentum constraint (6E.30), while (9B.2) is a combination of the super-
momentum constraint and the superhamiltonian constraint (6E.29).

Next suppose that Σ is the timelike curve x1 = 0. Then the vanishing of
(9B.1) leads to (9B.2) again and

gABh
1µφB

,µφ
A

,0 = 0. (9B.4)
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Equations (9B.2)–(9B.4) are not independent; in fact

h00(9B.4)− h11(9B.3) = h01(9B.2).

Together these equations are equivalent to the conformal Euler-Lagrange equa-
tion (3B.32). (Recall that of these latter three equations one is an identity.)
Observe that we do not obtain the harmonic map equation (3B.31).—this is
because G is not vertically transitive.

Thus while the Vanishing Theorem holds in this example and yields the
conformal Euler-Lagrange equation (or, equivalently, the superhamiltonian and
supermomentum constraints), its converse fails as it does not recover the har-
monic map equation.

10 Secondary Constraints and the Instantane-

ous Energy-Momentum Map

The examples in the previous chapter illustrate the general result that when
Σ is a Cauchy surface, the vanishing of the instantaneous energy-momentum
map over Σ yields (first class secondary) initial value constraints. Our goals
now are to prove this statement for a wide variety of field theories and to show
under some reasonable hypotheses that the Vanishing Theorem yields all such
constraints.

10A The Final Constraint Set Lies in the Zero Level of

the Energy-Momentum Map

Consider a Lagrangian field theory with gauge group G. Recall from §6E that
the final constraint set Cτ consists of all initial data on the Cauchy surface
Στ which can be formally integrated to dynamical trajectories which satisfy
Hamilton’s equations. Throughout we suppose that the regularity assumption
A3 holds, viz. that Cτ is a manifold and kerωCτ

is a regular distribution. We
will also need the following refinement of the notion of Lagrangian slicing:
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A6 G-Slicings. For a classical field theory with gauge group G and configu-
ration bundle Y , there exists a G-slicing of Y .

Our first main result is essentially a “Hamiltonian restatement” of the Van-
ishing Theorem:

Theorem 10A.1. Suppose that the Euler–Lagrange equations are well-posed.
Then

Cτ ⊂ E−1
τ (0) (10A.1)

where Eτ is the instantaneous energy-momentum map induced on Pτ .

Proof. Let (ϕ, π) ∈ Cτ . By A4 and Theorem 6D.4(ii), there is a solution
φ ∈ Y of the Euler–Lagrange equations such that canτ (φ) = (ϕ, π). Set σ =
FL ◦ j1φ ◦ τ so that σ is a holonomic lift of (ϕ, π). Now apply the Vanishing
Theorem 9A.2 to φ, obtaining for each ξ ∈ g,

0 =
∫

Σ

τ∗(j1φ)∗JL(ξ) =
∫

Σ

τ∗(j1φ)∗FL∗J(ξ) (by §4D)

=
∫

Σ

σ∗J(ξ) = 〈Eτ (σ), ξ〉 (by (7B.1))

= 〈Eτ (ϕ, π), ξ〉

according to §7D, as σ is a holonomic lift of (ϕ, π). Thus (ϕ, π) ∈ E−1
τ (0). �

This result shows that the conditions 〈Eτ , ξ〉 = 0 are secondary initial value
constraints. In fact:

Proposition 10A.2. The components 〈Eτ , ξ〉 of the energy-momentum map
are first class functions.

Proof. We must show that

TC⊥τ
[
〈Eτ , ξ〉

]
= 0 (10A.2)

for each ξ ∈ g. We break the proof into three parts, depending upon whether
or not ξX is tangent to Στ , is transverse to Στ , or is a combination.

First suppose that ξX is everywhere tangent to Στ , so that ξ ∈ gτ . In this
case, Proposition 8C.6 ff. asserts that ξCτ = ξT∗Yτ |Cτ satisfies

ξCτ
ωτ = d〈Eτ , ξ〉 (10A.3)
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along Cτ . Furthermore, we know that ξCτ is tangent to Cτ so that (10A.3),
when evaluated on vectors in TC⊥

τ , yields (10A.2).
Next suppose that ξX is everywhere transverse to the surface Στ . Then

Corollary 7D.2(i) states that 〈Eτ , ξ〉 = −Hτ,ξ. Then (10A.2) is satisfied by
virtue of Corollary 6E.3.

Finally, consider the intermediate case when ξX is neither everywhere tan-
gent nor everywhere transverse to Στ . Utilizing assumption A6, let ζ be the
generating vector field of any G-slicing of Y ; then ζ ∈ g and ζX t Στ . Along
Στ , we may decompose

ξX = ξ
‖
X + fζX

where ξ
‖
X is tangent to Στ and f is some function on Στ . Choose any

k > maxx∈Στ |f(x)| (such a number exists as Στ is compact), and define
ϑ = kζ − ξ. Then ϑ ∈ g and ϑ t Στ so we may write ξ = kζ − ϑ as the
difference of two transverse gauge generators. Since 〈Eτ , ξ〉 = k〈Eτ , ζ〉− 〈Eτ , ϑ〉,
the desired result follows from the transverse case proved above and the com-
ment immediately following Corollary 6E.12. �

In summary: The components 〈Eτ , ξ〉 of the energy-momentum map are first
class secondary initial value constraints.

Remark 10A.3. Recall that for secondary constraints we measure class relative
to (Pτ , ωτ ), cf. §6E. �

Remark 10A.4. This result combined with Proposition 6E.1gives Proposi-
tion 8C.1. Theorem 8C.2 now follows either from Propositions 8C.1 and 6E.8(i)
or from Propositions 10A.2 and 6E.8(iii). �

Remark 10A.5. Theorem 10A.1 together with Corollary 7D.2(i) show that
each Hamiltonian Hτ,ξ vanishes identically on Cτ . Thus on Cτ the Hamilton
equations (6E.11)pull back to iXωCτ

= 0, that is to say, X ∈ X(Cτ ) ∩ X(Cτ )⊥;
in this sense the evolution is “purely gauge.” This is one of the hallmarks of
parametrized theories (in which all fields are variational), cf. Kuchař [1973]. �

Remark 10A.6. When working with background theories, Theorem 10A.1
remains valid as long as A6 is satisfied. So does Proposition 10A.2 (but now the
tangential case is the only relevant one). Proposition 10A.2 also holds in theories
in which there are non-variational fields, but in this context Theorem 10A.1 fails
(because the first Noether theorem 4D.2 does) and so there is no reason why,
for instance, the Hamiltonian should vanish on Cτ . See Example b at the end
of this chapter for more details. �
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With a slight shift in viewpoint, it is possible to substantially weaken the
well-posedness hypothesis in Theorem 10A.1. Consistent with our general phi-
losophy, suppose we know ab initio that G “acts” on Cτ by gauge transforma-
tions in the sense that Theorem 8C.2 holds (in particular, we might assume
that the gauge group is full). Then for each ξ ∈ g, the gauge vector field
ξCτ

∈ X(Cτ ) ∩ X(Cτ )⊥ satisfies equation (8C.1):

(ξCτ
ωτ − d〈Eτ , ξ〉) |Cτ = 0.

Evaluate this equation on TCτ ; since pointwise ξCτ
∈ TCτ ∩ TC⊥τ , we find that

TCτ [〈Eτ , ξ〉] = 0.

Thus each component 〈Eτ , ξ〉 is constant along Cτ . Now suppose that at least
one initial data point (ϕ, π) ∈ Cτ can be integrated to a spacetime solution φ of
the Euler–Lagrange equations. Applying the Vanishing Theorem to φ, it follows
that each 〈Eτ (ϕ, π), ξ〉 is zero on Cτ . We have therefore proven the following
variant of Theorem 10A.1.

Theorem 10A.7. Let G be the gauge group for the Lagrangian field theory
under consideration. Suppose that the conclusion of Theorem 8C.2 holds and
that at least one initial data point in Cτ admits a finite time evolution. If Cτ is
connected, then Cτ ⊂ E−1

τ (0).

Thus we obtain the desired inclusion with the assumption that only one, as
opposed to every, initial data set is integrable. This amounts to requiring that
the field theory be non-trivial, i.e., Sol 6= ∅.

Remark 10A.8. If Cτ is not connected, then Theorem 10A.7 applies only to
those components which contain well-posed initial data. Other components can
be ignored. �

10B The Energy-Momentum Theorem

We have shown that the components of the instantaneous energy-momentum
map are first class secondary constraints. Our goal now is to show that Eτ

contains all such constraints when the gauge group is full.
To begin, we prove equality in either of Theorems 10A.1 or 10A.7 under

the hypothesis that the field theory is first class. Throughout this section we
make whatever assumptions are necessary for Theorem 10A.1 (or its variant
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Theorem 10A.7) to hold. We also suppose that E−1
τ (0) is a submanifold of Pτ .

(Remark 10B.8 below discusses the singular case.)

Theorem 10B.1. (Energy-Momentum Theorem, Version I) If G is full,
all secondary constraints are first class, and E−1

τ (0) is connected, then

Cτ = E−1
τ (0). (10B.1)

Proof. To say that all secondary constraints are first class is the same as
saying that Cτ is coisotropic in Pτ : TC⊥τ ⊂ TCτ . Then at every point of Cτ A5

requires
gCτ

= TC⊥τ . (10B.2)

Next, suppose V ∈ kerTEτ at a point of Cτ . Then equation (8C.1) yields
ωτ (ξCτ

, V ) = 0 for all ξ ∈ g. This means that

kerTEτ |Cτ ⊂ (gCτ
)⊥ = TCτ ⊂ TE−1

τ (0) |Cτ (10B.3)

by (10B.2), Lemma 6E.7, and (10A.1). Since obviously TE−1
τ (0) ⊂ kerTEτ , we

conclude that
kerTEτ = TE−1

τ (0)

along Cτ . Substituting into (10B.3) gives finally

TCτ = TE−1
τ (0) |Cτ .

The inverse function theorem shows that Cτ is open in E−1
τ (0). But Cτ is

closed by its very construction (being given by the vanishing of constraints), so
(10B.1) follows from the connectedness of E−1

τ (0). �

Remark 10B.2. In the event that E−1
τ (0) is not connected, Cτ is a union

of components of E−1
τ (0). In practice, the connectedness hypothesis is not a

problem; Example a in §11D provides an illustration. �

Remark 10B.3. An examination of the first part of the proof shows that if G

is full and Cτ = E−1
τ (0) is a coisotropic submanifold of Pτ , then zero must be a

weakly regular value of Eτ ; that is, in addition to E−1
τ (0) being smooth,

kerTEτ = TE−1
τ (0). (10B.4)

However, the operators DEτ are generally elliptic in the appropriate sense, so
that one can sometimes prove, relative a suitably chosen Sobolev topology, that
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0 is a regular value. See Arms et al. [1982] and Interlude IV for more information
and references on this point. We usually shall not pursue the distinction in this
work for simplicity. �

Here is another way to obtain equality in (10A.1) which assumes that E−1
τ (0),

rather than Cτ , is coisotropic.

Theorem 10B.4. (Energy-Momentum Theorem, Version II) If E−1
τ (0)

is coisotropic, then Cτ = E−1
τ (0).

Proof. Let ζ ∈ g with ζX t Στ ; such a ζ exists by virtue of A6. By Corol-
lary 7D.2(i), the corresponding Hamiltonian −Hτ,ζ is a component of Eτ , so

TE−1
τ (0)[Hτ,ζ ] = 0.

As E−1
τ (0) is coisotropic, this implies that

TE−1
τ (0)⊥[Hτ,ζ ] = 0.

The desired result now follows from Corollary 6E.3,Corollary 6E.12,(along with
the comment afterwards), and Theorem 10A.1. �

Theorem 10B.1 is perhaps more theoretically appealing than Theorem 10B.4,
but the latter has three important advantages over the former. First, it requires
no a priori knowledge of Cτ . Second, its hypotheses are straightforward (al-
though not necessarily trivial!) to verify in practice. Last, it eliminates the
necessity of having to worry about the connectedness of E−1

τ (0). Later in §13C
we will see that one can check for equality of Cτ and E−1

τ (0) by equation count-
ing.

Using Proposition 10A.2, we obtain a partial converse to Theorem 10B.4.

Proposition 10B.5. If zero is a weakly regular value of Eτ and Cτ = E−1
τ (0),

then E−1
τ (0) is coisotropic.

Proof. By hypothesis and equation (10A.2),

TE−1
τ (0)⊥

[
〈Eτ , ξ〉

]
= 0

for all ξ ∈ g. In other words,

TE−1
τ (0)⊥ ⊂ kerTEτ = TE−1

τ (0)

by the weak regularity of 0. �
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In Theorem 10B.1 we had to assume that G was full, but not in Theo-
rem 10B.4. This is because of the next result which, in view of Remark 10B.3
above, can be considered a converse to Theorem 10B.1.

Corollary 10B.6. If zero is a weakly regular value of Eτ and E−1
τ (0) is coiso-

tropic, then G is full.

Proof. By Theorem 10B.4, E−1
τ (0) = Cτ . So we must show pointwise that

gE−1
τ (0) = TE−1

τ (0)⊥.

From (8C.1) and weak regularity

g⊥
E−1

τ (0)
= kerTEτ = TE−1

τ (0).

Taking polars we obtain
g⊥⊥

E−1
τ (0)

= TE−1
τ (0)⊥. (10B.5)

Thus we will be done if we can show that g⊥⊥
E−1

τ (0)
= g

E−1
τ (0)

.
To this end Lemma 6E.7 gives

g⊥⊥
E−1

τ (0)
= g

E−1
τ (0)

+ TP⊥
τ (10B.6)

along E−1
τ (0). Now by (10B.5) and the assumption that E−1

τ (0) is coisotropic,
g⊥⊥

E−1
τ (0)

is tangent to E−1
τ (0), and by definition so is gE−1

τ (0). From (10B.6) we
conclude that TP⊥

τ ⊂ TE−1
τ (0). But then TP⊥

τ = TP⊥
τ ∩ TE−1

τ (0) ⊂ gE−1
τ (0)

(cf. Remark 8C.3) and so (10B.6) shows that g⊥⊥
E−1

τ (0)
= g

E−1
τ (0)

. �

These last two results show that the fullness of G is a necessary condition for
equality in (10A.1). It is not sufficient, however, since clearly neither (10B.1)
nor the converse of Corollary 10B.6 can hold in the presence of second class
secondary constraints. Notice also that Corollary 10B.6 can be used to show
that G is full.

Thus, roughly speaking, we have:

G full + Cτ coisotropic ⇔ Cτ = E−1
τ (0) ⇔ E−1

τ (0) coisotopic.

Remark 10B.7. With regard to the hypotheses of Theorem 10B.4 and Corol-
lary 10B.6, observe that E−1

τ (0) is not necessarily coisotropic. This is because
Eτ is not a true momentum map, but rather an energy-momentum map. (Of
course, the zero levels of momentum maps for cotangent actions—and for arbi-
trary actions, provided zero is a weakly regular value—are coisotropic; see Arms
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et al. [1989] and Abraham and Marsden [1978]) We illustrate this point in our
discussion of Palatini gravity in Part V.

Note that Proposition 10A.2, which states that the components of Eτ are
first class constraints, does not imply that E−1

τ (0) is globally coisotropic. Rather,
it only shows that E−1

τ (0) is coisotropic along Cτ . �

Remark 10B.8. Throughout this chapter we have been treating Cτ and E−1
τ (0)

as if they were smooth manifolds. In practice, of course, they are not, except in
special (linear) cases such as electromagnetism or abelian Chern–Simons theory
(cf. Remark 6E.4). However, we emphasize that Theorem 10A.1 holds regard-
less, as does Theorem 10B.1 provided certain reasonable conditions are met.
Suppose both E−1

τ (0) and Cτ are the closures of their smooth points, denoted
S(E−1

τ (0)) and S(Cτ ), and that

S(Cτ ) = S(E−1
τ (0)) ∩ Cτ ; (10B.7)

in other words, the smooth points of Cτ are also smooth points of E−1
τ (0). If the

set S(E−1
τ (0)) is connected, then the argument in the proof of Theorem 10B.1

shows that S(Cτ ) is open in S(E−1
τ (0)). But (10B.7) implies that it is closed

in addition, so S(Cτ ) = S(E−1
τ (0)), and thus we recover (10B.1) upon taking

closures. In a similar manner, one can show that Theorem 10B.4 etc. hold,
using the groundwork laid in Arms et al. [1990]. �

Remark 10B.9. Given that G is the gauge group of a particular classical field
theory, then in view of Theorem 10B.1 the fullness assumption A5 provides a
sufficient condition for the validity of the “Dirac conjecture” that all first class
secondary constraints generate gauge transformations. Gotay [1983] contains
more information. �

10C First Class Secondary Constraints

Either version of the Energy-Momentum Theorem requires that the field theory
under consideration be first class in an appropriate sense. Here we consider the
general case.

To prepare for this, we now give an algebraic restatement of our results. Let
I(Cτ ) be the ideal27 in F(Pτ ) consisting of secondary constraints (i.e., smooth
functions on Pτ vanishing on Cτ ), and denote by (Eτ ) the ideal generated by

27All ideals are multiplicative.
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the components 〈Eτ , ξ〉 of Eτ as ξ ranges over g. From either Theorem 10A.1 or
Theorem 10A.7 we have that (Eτ ) ⊂ I(Cτ ).

Proposition 10C.1. Suppose (10B.1) holds and that zero is a regular value of
Eτ , so that all secondary constraints are first class. Then

I(Cτ ) = (Eτ ). (10C.1)

In other words, if f is a secondary constraint, then

f =
∑
α

gα〈Eτ , ξα〉 (10C.2)

for some smooth functions gα, where {ξα} forms a basis for g in a topology
appropriate to the analysis needed for the particular application (usually this
means a Sobolev topology, so (10C.2) will generally be a countably infinite sum).

Proof. By (10B.1), it suffices to demonstrate that f ∈ (Eτ ) iff f |E−1
τ (0) = 0.

The obverse is immediate. For the converse, suppose f | E−1
τ (0) = 0. We

will prove that there exists open sets U about each (ϕ, π) ∈ Pτ , such that
f | U ∈ (Eτ ) | U . The Proposition then follows by patching these local results
together with a partition of unity.28

There are two cases to consider: (ϕ, π) /∈ E−1
τ (0) and (ϕ, π) ∈ E−1

τ (0). Fix
a basis {ξα} for g. For the first case, choose U such that U ∩ E−1

τ (0) = ∅. By
shrinking U if necessary, we can find an α̂ such that 〈Eτ , ξα̂〉 6= 0 on U . Then
g = (f |U)/〈Eτ , ξα̂〉 is smooth on U , and

f |U = g〈Eτ , ξα̂〉 ∈ (Eτ ) |U.

Secondly, let (ϕ, π) ∈ E−1
τ (0). Since 0 is a regular value of Eτ , a neighbor-

hood U of (ϕ, π) is isomorphic to a neighborhood V of the origin in kerTEτ ×
g∗ = TE−1

τ (0) × g∗ in such a way that Eτ (x, µ) = µ on V (cf. Theorem
2.5.15 in Abraham et al. [1988]). By Taylor’s theorem with remainder, f |(
V ∩ (TE−1

τ (0)× {0})
)

= 0 implies that f(x, µ) =
∑

α gαµ
α on V for some

smooth functions gα, where {µα} is the dual basis to {ξα}. Thus on U , we have
f |(U ∩ E−1

τ (0)) = 0 implies that f |U =
∑

α gα〈Eτ , ξα〉. �

28If partitions of unity are not available, then one must localize (10C.1) to sufficiently small

open sets in Pτ .
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When second class secondary constraints appear, neither (10B.1) nor (10C.1)
will remain valid. But we can recover their essential content by utilizing the
well-known “Dirac bracket construction” to eliminate these constraints.

Here is how this works in the case at hand. Apply the standard Dirac bracket
construction as developed in Śniatycki [1974] to Cτ viewed as a submanifold of
T ∗Yτ , thereby obtaining a symplectic submanifold Vτ ⊂ T ∗Yτ containing Cτ as a
coisotropic submanifold. Set Wτ = Vτ∩Pτ ; then it is readily verified that (i) Wτ

is a second class submanifold of Cτ , and (ii) Cτ is also a coisotropic submanifold
of Wτ . The point is that, viewing such a choice of a Dirac manifold Wτ as
the ambient space and Cτ as the final constraint set therein, all the secondary
constraints are now purely first class.

Setting Kτ = Eτ |Wτ , we may therefore apply Theorem 10B.1 and Proposi-
tion 10C.1 verbatim to Cτ ⊂ Wτ and Kτ , with the result that

I(Cτ ) = (Kτ ), (10C.3)

the ideals now being taken in F(Wτ ).

Let IF (Cτ ) denote the ideal in F(Pτ ) consisting of first class constraints,
and let I(Wτ ) be the ideal of all smooth functions on Pτ vanishing on Wτ (so
that I(Wτ ) is “generated by the second class constraints”). Set IF (Wτ ) =
IF (Cτ ) ∩ I(Wτ ). Pulling (10C.3) back to Pτ , we finally have:

Theorem 10C.2. Suppose that zero is a regular value of Eτ , and that either
(i) G is full and E−1

τ (0) ∩ Wτ is connected, or (ii) E−1
τ (0) ∩ Wτ is coisotropic

in Wτ . Then

IF (Cτ ) ≡ (Eτ ) mod IF (Wτ ).

Proof. Let f ∈ IF (Cτ ). Then f |Wτ vanishes on Cτ , so our assumptions
imply (10C.3), which gives

f |Wτ =
∑
α

g̃α〈Kτ , ξα〉

for some smooth functions g̃α on Wτ . We may therefore write

f =
∑
α

gα〈Eτ , ξα〉+ ψ

on Pτ , where the gα extend the g̃α and ψ |Wτ = 0 with ψ first class. �
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Theorem 10C.2(i) is optimal insofar as it guarantees—modulo the connect-
edness of E−1

τ (0) ∩ Wτ—that one can recover all the “important” first class sec-
ondary constraints from Eτ without having to determine beforehand the class
of all the constraints. The latter, of course, would necessitate running through
the entire constraint algorithm. This works provided the gauge group is full; as
part of our general philosophy (cf. the discussion in §8C), we assume that this
is known at the outset, as is the case in all our examples.

The only constraints that cannot be obtained in this fashion are those be-
longing to IF (Wτ ) = IF (Cτ ) ∩ I(Wτ ); since these first class secondaries are
generated by the second class secondaries, they are clearly irrelevant insofar as
constraint theory is concerned. In fact, such constraints ψ are ineffective in
the sense that dψ |Cτ = 0.

To see this, let ψ ∈ IF (Cτ ) ∩ I(Wτ ), and let U ⊂ Pτ be an open set such
that U ∩ Cτ 6= ∅. Let {χα} be a functionally independent set of second class
constraints defining U ∩Wτ in U . By our assumptions, we may write

ψ |U =
∑
α

hαχα (10C.4)

for some smooth functions hα. As the χα are second class, for each α there
is a vector field Vα ∈ X(U ∩ Cτ )⊥ such that Vα[χβ ] = δαβ on some shrunken
neighborhood V ⊂ U . On the other hand, ψ is first class, whence Vα[ψ] = 0
on V ∩ Cτ . Taking differentials in (10C.4), restricting to V , and evaluating on
each Vα in turn, we see that hα |(V ∩ Cτ ) = 0, whence the desired result.

Of course, when there are no second class secondaries, Theorem 10C.2 re-
duces to Proposition 10C.1 in which case we get all the secondaries via Eτ .

Remark 10C.3. The global geometry and topology of the Dirac manifold Wτ

are not uniquely determined by our constructions. However, our results are
insensitive to the global structure of Wτ . �

Remark 10C.4. In general, Wτ will not be symplectic (in contrast to Vτ ),
since the surrounding space Pτ itself need not be symplectic. (But Wτ is always
second class.) Even so, IF (Wτ ) is usually nonzero. The reason is that if f is a
second class constraint, then f2 is a first class constraint. �

Remark 10C.5. It may happen that Cτ is symplectic. In this case our results
still apply—albeit trivially—with G the zero group, so Eτ = 0, Wτ = Cτ , and
Theorem 10C.2 reduces to a tautology. �
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Remark 10C.6. If Cτ is not a smooth manifold, we localize our results to
F(U), for open sets U in Pτ such that U ∩ Cτ ⊂ S(Cτ ). �

The Dirac bracket construction enables us to work on Wτ instead of Pτ .
This is possible by the following result, which encapsulates a key property of
Dirac manifolds.

Proposition 10C.7. Suppose C ⊂ (W, $) ⊂ (P, ω), with the second inclusion
being presymplectic. Let H be a Hamiltonian on P. If there exists a vector field
X ∈ X(C) such that

(iXω − dH)|C = 0 (10C.5)

then

(iX$ − dh)|C = 0, (10C.6)

where h is the pull-back of H to W. Conversely, assume that W is a second class
submanifold of P and let h be a Hamiltonian on W. If there exists a vector field
X ∈ X(C) such that (10C.6) holds, then X satisfies (10C.5) for some extension
H of h to P.

Proof. Since X is assumed to be tangent to C, (10C.5) ⇒ (10C.6) by pulling
the former back to W.

The opposite implication is subtler. Let U ⊂ P be an open set with U ∩
C 6= ∅, chosen so that there exists a basis of constraints {χα} defining U ∩
W ⊂ U. By our assumptions and Proposition 6E.8(vi) the χα are second class.
Consequently, for each α we may find (shrinking U as necessary) a collection of
vector fields {Vα} on U which forms a basis for X(U ∩ W)⊥ such that Vα[χβ ] =
δαβ . By again shrinking U, if required, we may suppose there exist extensions
h̃ of h and X̃ of X satisfying (10C.6) to U.

Now if H is any extension of h to U, we may write H = h̃ +
∑

α gαχα for
some smooth functions gα. We show how to chooseH in such a way that (10C.5)
holds along U ∩ C.

First observe that (10C.6) shows that (10C.5) holds when evaluated on TW

along U ∩ C, regardless of the choice of H. Next, evaluate (10C.5) on Vα.
Then ω(X̃, Vα) | (U ∩ C) = 0, and we may arrange dH(Vα) | (U ∩ C) = 0 by
fixing gα = −Vα[h̃ ]. With this choice, (10C.5) also holds when evaluated on
TW⊥ along U ∩ C. But then the second class condition TW + TW⊥ = TWP

establishes (10C.5). It only remains to patch these locally defined extensions
together with an appropriate partition of unity. �



§10C First Class Secondary Constraints 179

Thus Hamilton’s equations on the primary constraint set have exactly the
same solutions as on the Dirac manifold: the two arenas for dynamics are en-
tirely equivalent. This Dirac bracket construction can save substantial compu-
tational effort, and we shall repeatedly use this construction in the remainder
of the book.

Examples

a Particle Mechanics. In the case of the standard relativistic free particle,
Et = 0 and there are no secondary constraints. However, there is a formulation of
relativistic dynamics in which the free particle does have secondary constraints;
we will discuss this in Chapter 11.

b Electromagnetism. Most of the theory developed in this section applies
only to parametrized field theories in which all fields are variational; nonetheless,
the conclusions all hold for background electromagnetism (cf. Remark 10A.6).
Indeed, we know from §8C that F(X) is full and from §6E that the divergence
constraint (6E.21) is first class. Since clearly

E−1
τ (0) = {(A,E) |DiE

i = 0}

is connected, we conclude from Theorem 10B.1 that Cτ = E−1
τ (0). Since fur-

thermore the divergence constraint is linear, zero is a regular value of Eτ , and
Proposition 10C.1 then shows that I(Cτ ) = (DiE

i).

On the other hand, when the metric is treated parametrically (but is still
nonvariational), our results are no longer valid. In particular, (10A.1) fails; in
fact, we see from (7D.12) that now

Ẽ−1
τ (0) ⊂ C̃τ

strictly. The reversal of the inclusion here is due to G̃ being overfull, as explained
in Example 8C.b. Of course, in this case Ẽ−1

τ (0) is not coisotropic.

c A Topological Field Theory. From Examples c of §6E and §9B, we see
that Cτ = E−1

τ (0). This could have been anticipated on the basis of either of
Theorems 10B.1 or 10B.4; note, for instance, that E−1

τ (0) given by D[1A2] = 0 is
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coisotropic. As this spatial flatness constraint is linear, Proposition 10C.1 may
be applied with the result that I(Cτ ) = (D[1A2]).

If we took the gauge group to be just Diff(X), which is not full, then from the
computations in Example 9B.c we would have Eτ = 0, whence Cτ ⊂ E−1

τ (0) =
Pτ strictly. Thus there are no supermomentum or superhamiltonian-type con-
straints for Chern–Simons theory, even though it has the entire spacetime dif-
feomporhism group as part of its gauge group.

d Bosonic Strings. The instantaneous energy-momentum map is given by
(7D.17). Thus

E−1
τ (0) =

{
(ϕ, h, π) | π2 +Dϕ2 = 0, π ·Dϕ = 0

}
coincides with the final constraint set computed in Example d of §6E, as ex-
pected.

Interestingly, (10B.1) would remain valid if instead for G we used the (full)
subgroup Diff(X) of G. The difference between these two gauge groups—not
apparent on the level of secondary constraints—will appear in the next chapter.

The bosonic string example is the first one in which the distinction between
the energy-momentum map and the momentum map becomes crucial (insofar
as identifying secondary constraints is concerned). While Jτ picks up the su-
permomentum constraint π ·Dϕ = 0, it misses the superhamiltonian constraint
π2 + Dϕ2 = 0. This is because the latter constraint is associated with that
part of the spacetime diffeomorphism group which moves Στ in X, and only
Eτ is sensitive to G/Gτ . The momentum map also misses the superhamiltonian
constraints (11D.10) and (14B.42) of the Polyakov particle and Palatini gravity,
respectively.

11 Primary Constraints and the Momentum

Map

The results of Chapter 10 enabled us to recover first class secondary constraints
from the energy-momentum map by means of the Vanishing Theorem. Here we
show that first class primary constraints can be obtained in a similar manner,
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by equating to zero the “momentum map” for a certain foliation Ġτ derived
from the gauge group G. We begin with a description of Ġτ and its “action.”

11A Motivation

We know that the vanishing of the energy-momentum map Eτ : Pτ → g∗ yields
first class secondary constraints; moreover, for first class systems, Cτ = E−1

τ (0).
It is natural to ask whether the first class primary constraints can be recovered
in an analogous fashion. The obvious counterpart of Eτ in this context is the
momentum map Jτ : T ∗Yτ → g∗τ for the action of Gτ on T ∗Yτ . (Recall from
§7B that Gτ consists of those elements of the gauge group G that stabilize the
hypersurface Στ and that gτ is its Lie algebra.) Now, in coordinates adapted
to Στ , (7C.6) and (7C.4) give

〈Jτ (ϕ, π), ϑ〉 =
∫

Στ

π (ϑYτ
(ϕ))

=
∫

Στ

πA

(
ϑA ◦ ϕ− ϕA

,iϑ
i
)
dnx0 (11A.1)

for ϑ ∈ gτ . But the comments at the end of Section 11C show that this quantity
need not vanish whenever (ϕ, π) ∈ Pτ .

However, let us go back to the infinitesimal equivariance condition (4D.2)
which states that δξL = 0, that is,

∂L

∂xµ
ξµ +

∂L

∂yA
ξA +

∂L

∂vA
µ

(
ξA

,µ − vA
νξ

ν
,µ + vB

µ
∂ξA

∂yB

)
+ Lξµ

,µ = 0.

Suppose ξ = ξµ∂µ + ξA∂A happens to satisfy

ξµ = 0 = ξA and ξ0,0 = 0 (11A.2)

along Yτ . Then evaluating the infinitesimal equivariance condition on j1φ ◦ iτ ,
where iτ : Στ → X is the inclusion, it collapses to[

∂L

∂vA
0
(ξA

,0 − vA
iξ

i
,0)
] (
j1φ ◦ iτ

)
= 0;

in other words,

πA(ξA
,0 − ϕA

,iξ
i
,0) = 0 (11A.3)

where ϕ = φ ◦ iτ .
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Now use A6 to choose an element ζ ∈ g with ζX t Στ . We may suppose
that bundle coordinates on Y are chosen such that ζY |Yτ = ∂/∂x0, so (11A.3)
may be rewritten

πA

(
[ζ, ξ]A − ϕA

,i[ζ, ξ]i
)

= 0. (11A.4)

As ξ ∈ g varies subject to (11A.2), (11A.4)—when integrated over a Cauchy
surface—imposes restrictions on the fields (ϕ, π) ∈ T ∗Yτ . These restrictions are
primary constraints since (11A.4) holds on the entire image of the Legendre
transform. If (ϕ, π) ∈ Pτ , so that it satisfies (11A.4) , then (11A.1) implies that
〈Jτ (ϕ, π), [ζ, ξ]〉 = 0.

We next formalize these observations, with an eye to determining Pτ by
group-theoretic means.

11B The Foliation Ġτ

Let G act on Y by bundle automorphisms. Define

pτ = {ξ ∈ gτ | ξYτ = 0 and [ξ, g] ⊂ gτ}.

In bundle coordinates adapted to Yτ , elements ξ ∈ pτ satisfy (11A.2) along Yτ

(which is the reason we make this particular definition). The subspace pτ is
readily verified to be a Lie subalgebra of gτ ; the only nontrivial part to check is
closure under bracket. For this, let ξ, χ ∈ pτ . Then29

[ξ, χ]Yτ = −[ξYτ , χYτ ] = 0.

For ζ ∈ g, the Jacobi identity gives

[[ξ, χ], ζ] = [ξ, [χ, ζ]]− [χ, [ξ, ζ]].

Then the fact that gτ is a Lie algebra imply that each term on the right hand
side of this expression belongs to gτ .

We assume, as in A6, the existence of a G-slicing of Y with generating
vector field ζ ∈ g for which Yτ is a slice. Throughout this chapter, we will
routinely compute in adapted bundle coordinates for which ζY = ∂/∂x0 on a
neighborhood of Yτ in Y .

Now define a distribution on Yτ by

ġτ = spanF(Yτ ){ [ζ, ξ]Yτ
| ξ ∈ pτ}. (11B.1)

29 Recall that for left actions, infinitesimal generators satisfy [ξ, χ]M = −[ξM , χM ].
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We assume that ġτ is regular distribution in the sense that the pointwise eval-
uation of (11B.1) defines a subbundle of TYτ . In adapted bundle coordinates,
we have

[ζ, ξ]Yτ
= −ξi

,0∂i − ξA
,0∂A.

Thinking of ζY as a “time direction” then, as both this expression and the nota-
tion suggest, ġτ consists of the time derivatives of those infinitesimal generators
in gτ which act trivially on Yτ .

The following properties of ġτ are key.

Proposition 11B.1. The distribution ġτ is

(i) independent of the choice of slicing, and

(ii) involutive.

Proof. (i) Choose any other G-slicing of Y with generator ϑ ∈ g, and for
which Yτ is a slice. A straightforward calculation using (11A.2) gives

[ϑY , ξY ] |Yτ = (ϑ0[ζY , ξY ]) |Yτ .

The result now follows from the fact that ϑ0 6= 0 along Yτ .

(ii) Let ξ, χ ∈ pτ . Repeatedly using the Jacobi identity gives

2[[ζ, ξ], [ζ, χ]] = [ζ, [ζ, [ξ, χ]]] + [χ, [ζ, [ζ, ξ]]]− [ξ, [ζ, [ζ, χ]]]. (11B.2)

We first compute the last term on the right hand side of (11B.2) along Yτ .
We have

[ζ, χ]Y = −χµ
,0∂µ − χA

,0∂A and [ζ, [ζ, χ]]Y = χµ
,00∂µ + χA

,00∂A.

Since ξ ∈ pτ , it satisfies ξYτ
= 0 and ξ0,0 |Yτ = 0. Thus, we calculate the last

term in (11B.2) to be

[ξ, [ζ, [ζ, χ]]]Y |Yτ = χ0
,00(ξi

,0∂i + ξA
,0∂A) = −χ0

,00[ζ, ξ]Y |Yτ .

But by the definition of pτ , [ζ, ξ]Y |Yτ = [ζ, ξ]Yτ
. The middle term of (11B.2) is

similar. Hence along Yτ , (11B.2) becomes

2[[ζ, ξ]Yτ ,[ζ, χ]Yτ ] =

[ζ, [ζ, [ξ, χ]]]Y |Yτ − ξ0,00[ζ, χ]Yτ
+ χ0

,00[ζ, ξ]Yτ
. (11B.3)
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Consider the first term on the right hand side of (11B.3). Since the other
terms in (11B.3) are tangent to Yτ , so is this one; thus,

[ζ, [ζ, [ξ, χ]]]Y |Yτ = [ζ, [ζ, [ξ, χ]]]Yτ
. (11B.4)

Now [ξ, χ] ∈ pτ and as [pτ , g] ⊂ gτ , [ζ, [ξ, χ]] ∈ gτ . Moreover, by expand-
ing [ξ, χ]Yτ

in coordinates, we conclude from (11A.2) and the Leibniz rule
that [ζ, [ξ, χ]]Yτ

= 0, whence [ζ, [ξ, χ]] ∈ pτ . Combining this observation with
(11B.4), (11B.3) shows that the bracket of two elements of ġτ is a linear com-
bination over F(Yτ ) of elements of ġτ . �

Remark 11B.2. Later in §12B we will give a principal bundle-theoretic con-
struction of ġτ . �

Remark 11B.3. We point out that the construction of ġτ utilized a G-slicing,
even though this distribution does not depend upon the choice thereof. Con-
sequently we effectively restrict attention to parametrized theories (cf. Re-
mark 6A.1). However, the results of this section will carry over in their entirety
to background theories, provided G is normal in Aut(Y ). (By the constructions
in §6A the slicing generator ζY ∈ aut(Y ); normality is needed to guarantee that
[ζ, g] ⊂ g so that (11B.1), etc., make sense.) Typically, in background theories
G ⊂ AutId(Y ), so this is not a severe restriction. �

Remark 11B.4. The fact that ġτ forms an involutive distribution will play a
crucial role in Chapter 12 when we construct the dynamic and atlas fields. �

Remark 11B.5. The construction of ġτ is reminiscent of that of the distri-
bution gCτ in §8C. In both cases we were led to generalize to the notion of
distributions to obtain Lie algebra “actions” in the instantaneous formalism.
But the analogy is deeper than this; in fact, as we shall see in the remainder of
Chapter 11, ġτ plays the same role in regard to the first class primary constraints
as gCτ does in regard to the first class secondaries. �

Lie differentiation of the distribution ġτ on Yτ via (7C.4) gives rise to the
distribution

spanF(Yτ ){[ζ, ξ]Yτ | ξ ∈ pτ}

on Yτ and then, by cotangent lift, to the distribution

spanF(T∗Yτ ){[ζ, ξ]T∗Yτ
| ξ ∈ pτ}
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on T ∗Yτ . When there is no chance of confusion, we will denote these all by
the same symbol ġτ . Each ġτ is involutive and so they define foliations on Yτ ,
Yτ , and T ∗Yτ , respectively, which we will collectively denote by Ġτ . Our final
goal in this subsection is to construct a “momentum map” for Ġτ on T ∗Yτ . Of
course, Ġτ is not a group and does not act on T ∗Yτ , but it does have “orbits,”
viz. its leaves. It turns out that this is sufficient.

Recall from §7C that the cotangent action of Gτ on T ∗Yτ has a momentum
map Jτ : T ∗Yτ → g∗τ given by

〈Jτ (ϕ, π), ξ〉 =
∫

Στ

π · ξYτ
(ϕ).

Writing ξ̇ := [ζ, ξ], we analogously define a map J̇τ : T ∗Yτ → ġ∗τ by〈
J̇τ (ϕ, π),

∑
α

fα(ξ̇α)T∗Yτ

〉
=
∑
α

∫
Στ

(fα ◦ ϕ)π ·
(
(ξ̇α)Yτ

(ϕ)
)
. (11B.5)

for ξα ∈ pτ and functions fα ∈ F(T ∗Yτ ). In adapted bundle charts, we have

〈
J̇τ (ϕ, π), f ξ̇T∗Yτ

〉
=
∫

Στ

(f ◦ ϕ)π ·
(
[ζ, ξ]Y ◦ ϕ− Tϕ ◦ [ζ, ξ]X

)
= −

∫
Στ

(f ◦ ϕ)πA(ξA
,0 − ϕA

,iξ
i
,0) dnx0 (11B.6)

by virtue of (7C.4) and (11A.2). Equation (11B.6) and the proof of Proposi-
tion 11B.1(i) shows that J̇τ so defined is independent of the choice of slicing.

For future reference, we collect here some useful properties of J̇τ .

Proposition 11B.6. (i) For each ξ ∈ pτ , we have

ξ̇T∗Yτ ωT∗Yτ = d〈 J̇τ , ξ̇T∗Yτ〉. (11B.7)

(ii) Let ` denote the polar with respect to the canonical symplectic structure
on T ∗Yτ . Then

(kerT J̇τ )` = ġτ .

(iii) J̇−1
τ (0) is coisotropic in T ∗Yτ .

Proof. (i) This follows from the observation that 〈 J̇τ , ξ̇T∗Yτ
〉 = 〈Jτ , [ζ, ξ]〉

upon recalling that Jτ is a genuine momentum map.
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(ii) For each ξ ∈ pτ and V ∈ T(ϕ,π)(T ∗Yτ ), (11B.7) yields

ωT∗Yτ
(ξ̇T∗Yτ

(ϕ, π),V) = d〈J̇τ (ϕ, π), ξ̇T∗Yτ
(ϕ, π)〉 · V (11B.8)

= 〈T(ϕ,π)J̇τ · V, ξ̇T∗Yτ (ϕ, π)〉. (11B.9)

Thus, V ∈ kerT(ϕ,π)J̇τ iff ωT∗Yτ
(ξ̇T∗Yτ

(ϕ, π),V) = 0 for all ξ ∈ pτ .

(iii) From (11B.5) we see that J̇−1
τ (0) is the annihilator, in T ∗Yτ , of the

distribution ġτ on Yτ . But it is straightforward to check that the annihilator of
a distribution is always coisotropic. �

In view of these properties it is natural to regard J̇τ : T ∗Yτ → ġ∗τ as a
momentum map for the foliation Ġτ . It is important to realize, however, that
J̇τ is not the momentum map Jτ restricted to pτ ⊂ gτ , but rather is the “time
derivative” of this restriction.

11C The Primary Constraint Set Lies in the Zero Level

of the Momentum Map

Our first main result relates the τ -primary constraint set Pτ ⊂ T ∗Yτ with the
zero level of the momentum map J̇τ for the foliation Ġτ on T ∗Yτ . Roughly speak-
ing, the covariance assumption A1 implies that L is independent of (certain
combinations of) the time derivatives of various field components ϕA. There-
fore (certain combinations (11A.4) of) the corresponding conjugate momenta
πA must vanish; these are exactly the momenta 〈 J̇τ , ξ̇T∗Yτ〉 for ξ ∈ pτ . The
conditions 〈 J̇τ , ξ̇T∗Yτ〉 = 0 are thus primary constraints. More precisely, we
have:

Theorem 11C.1. Suppose the Lagrangian density is G-equivariant. Then

Pτ ⊂ J̇−1
τ (0).

The detailed proof is contained in the discussion in §11A.
Our next goal is to prove that the constraints 〈 J̇τ , ξ̇T∗Yτ

〉 = 0 are first class.

Proposition 11C.2. Assume A1–A4. Then the components 〈 J̇τ , ξ̇T∗Yτ
〉 of the

momentum map for the foliation Ġτ of T ∗Yτ are first class functions.

We require some preliminaries. Define ġPτ
= ġτ |Pτ and ġCτ

= ġτ |Cτ . From
the construction of ġτ and Proposition 8C.6, we obtain:
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Lemma 11C.3. If A1–A4 hold, the distributions ġPτ and ġCτ are tangent to
Pτ and Cτ , respectively.

Proof of Proposition 11C.2 Let ξ ∈ pτ and evaluate (11B.7) along the final
constraint set Cτ . By Lemma 11C.3, ξ̇T∗Yτ

|Cτ is tangent to Cτ , so the constraint
functions 〈 J̇τ , ξ̇T∗Yτ

〉 satisfy the first class condition (6E.9). �

In summary: The components 〈 J̇τ , ξ̇T∗Yτ〉 of the momentum map for the
foliation Ġτ are first class primary initial value constraints.

We can say more. As ġPτ
⊂ X(Pτ ), we can pull (11B.7) back to Pτ ; Theo-

rem 11C.1 gives ġPτ
⊂ kerωPτ

and then Lemma 11C.3 gives

Corollary 11C.4. ġCτ
⊂ kerωPτ

∩ X(Cτ ).

Corollary 11C.4 is the analogue, for primary constraints, of Theorem 8C.2.
It proves that the covariant notion of “gauge transformation” is consistent with
the corresponding instantaneous notion on the primary level.

Since directions in kerωPτ
∩ X(Cτ ) are by definition kinematic (see the dis-

cussion surrounding (6E.16)and also at the end of §6E), Corollary 11C.4 proves
that the directions in Cτ corresponding to ġCτ

are kinematic. Thus the evolu-
tion of the corresponding (combinations of) fields ϕA is completely arbitrary
(or “gauge”). We will see in Chapter 12 that these kinematic fields are closely
related to the atlas fields mentioned in the Introduction.

Remark 11C.5. One may wonder why primary constraints are correlated with
the momentum map for Ġτ , whereas only secondary constraints are associated
with the energy-momentum map for all of G. The reason is that the Leg-
endre transform appears implicitly in JL(ξ) = FL∗J(ξ) when working in the
Lagrangian representation. (Equivalently, when working in the instantaneous
formalism, the energy-momentum map is defined only on Pτ .) Thus the pri-
mary constraints are not detected by the Vanishing Theorem 9A.2. Even so,
the primary as well as secondary first class constraints are encoded in the gauge
group, but different tools are required to extract them. �

Remark 11C.6. While Theorem 11C.1 is the direct analogue of Theorem 10B.1
for primary constraints, the hypotheses in these results are quite different. In
particular, the former requires only G-covariance, unlike the latter which also
requires localizability, well-posedness, and all fields to be variational. �
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Examples

In what follows we work in adapted bundle coordinates on Y for which
ζX |Στ = ∂0.

a Particle Mechanics. For the relativistic free particle Jt ≡ 0 so J̇t ≡ 0.
Theorem 11C.1 is vacuously true in this case.

b Electromagnetism. We treat the parametrized case first. From (4C.14)–
(4C.15), we compute

pτ =
{
(ξ, χ) ∈ X(X) n F(X)

∣∣ j1ξ |Στ = 0 and dχ |Στ = 0
}
. (11C.1)

Then (11B.6) gives〈 ˙̃
Jτ (A,E; g, π), (ξ, χ)̇T∗Ỹτ

〉
= −

∫
Στ

(
Eν(χ,ν0 −Aµξ

µ
,ν0)− 2πσρgσµξ

µ
,ρ0)
)
d3x0

where (ξ, χ) ∈ pτ . Using (11C.1) to set χ,i0 = χ,0i = 0, etc., this reduces to

−
∫

Στ

(
E0(χ,00 −Aµξ

µ
,00)− 2πσ0gσµξ

µ
,00)
)
d3x0.

Since both χ,00 and ξµ
,00 are arbitrarily specifiable along Στ , we get

˙̃
J−1

τ (0) = {(A,E; g, π) | E0 = 0 and πσ0 = 0}

which is a proper subset of P̃τ which was computed in Example b of §6C. Recall
also that ab initio, Fµν is not antisymmetric; it only becomes so when restricted
to the covariant primary constraint set, cf. (3B.14).

The computations in the background case are simplified by the absence of the
metric momenta πσρ. Now we find that J̇−1

τ (0) = Pτ exactly, as was computed
in Example b of §6C. The reason we get equality in the background case but
not in the parametrized case will be explained in the next section.

c A Topological Field Theory. Equation (4C.18) yields

pτ =
{
(ξ, χ) ∈ X(X) n F(X)

∣∣ j1ξ |Στ = 0 and dχ |Στ = 0
}
, (11C.2)

and then equation (11B.6) becomes〈
J̇τ (A, π), (ξ, χ)̇T∗Yτ

〉
= −

∫
Στ

π0(χ,00 −Aµξ
µ

,00)d2x0.
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So
J̇−1

τ (0) = {(A, π) | π0 = 0}

and from Example c of §6C we see that Theorem 11C.1 is indeed satisfied.

d Bosonic Strings. Equations (4C.22)–(4C.24) lead to

pτ =
{
(ξ, λ) ∈ X(X) n F(X)

∣∣ j1ξ |Στ = 0 and λ |Στ = 0
}
. (11C.3)

Now〈
J̇τ (ϕ, h, π,$), (ξ, λ)̇T∗Yτ

〉
= −

∫
Στ

$σρ
(
2λ,0hσρ − (hσµξ

µ
,ρ0 + hρµξ

µ
,σ0)
)
d1x0

= −2
∫

Στ

(
λ,0(hσρ$

σρ)− (hσµ$
σ0)ξµ

,00

)
d1x0

As λ,0 and ξµ
,00 are arbitrarily specifiable along Στ , the vanishing of J̇τ implies

that
hσρ$

σρ = 0 and hσµ$
σ0 = 0. (11C.4)

View these as a system of three linear homogeneous equations for the three
independent $σρ. Writing these equations out, we compute the determinant
of the coefficient matrix to be h11(dethσρ). Now of course dethσρ 6= 0 as h
is a metric on X. But Στ is assumed to be a spacelike curve, so that i∗τh =
h11dx

1⊗ dx1 must be a positive-definite metric on Στ . (See Remark 6A.4 and
Example 6C.d.) Thus h11 never vanishes on Στ , and it follows that (11C.4)
forces $σρ = 0. From Example 6C.d we conclude that Pτ = J̇−1

τ (0).

It is interesting to see what would happen if instead of J̇τ we considered the
momentum map Jτ for Gτ . For electromagnetism, (7D.8) gives

〈Jτ (A,E), χ〉 = −
∫

Στ

Eνχ,ν d
3x0

=
∫

Στ

E0χ,0 d
3x0 −

∫
Στ

Ei
,iχd

3x0.

Demanding that this vanish for all χ ∈ F(X) would yield the correct primary
constraint E0 = 0 but also forces the divergence of the (spatial) electric field
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to be zero which, however, is a secondary constraint. Analogously, one recovers
both the primary constraint π0 = 0 and the secondary spatial flatness constraint
in this manner in Chern–Simons theory, as well as all constraints—except for
the superhamiltonian constraint—for the bosonic string. In particular we see
that Pτ is not necessarily contained in J−1

τ (0).
That the vanishing of Jτ yields secondary constraints is not surprising in

view of Corollary 7D.2(ii), and that it yields primary constraints in addition is
a consequence of the fact that J̇τ (ξ̇) = Jτ ([ζ, ξ]) for ξ ∈ pτ . Thus we can assert
that

E−1
τ (0) ⊂ J−1

τ (0) ∩ Pτ and J−1
τ (0) ⊂ J̇−1

τ (0).

So might it be possible to short-circuit Chapters 10 and 11 by demanding
simply that the momentum map Jτ vanish? Unfortunately, no. One obvious
reason is that the first inclusion in the above is typically strict, as has been
repeatedly emphasized. An equally important reason is that there is no apparent
theoretical basis for insisting that Jτ = 0, such as the Vanishing Theorem for
Eτ and the covariance assumption A1 for J̇τ . We can conclude a posteriori that
the vanishing of Jτ must yield constraints, but it need not yield all of them.

11D First Class Primary Constraints

In Examples d and e and the background version of b of the previous section,
the momentum map J̇τ for the foliation Ġτ on T ∗Yτ contains “all” the first
class primary constraints present in the theory. We now show that this is true
in general provided the gauge group acts “effectively,” and prove equality in
Theorem 11C.1 under the assumption that all primary constraints are first class.

Corollary 11C.4 shows that ġτ consists of gauge generators in the sense of
constraint theory. On the other hand, from §6E we know that the distribution
kerωPτ ∩ X(Cτ ) is locally spanned by the Hamiltonian vector fields of first
class primary constraints. Thus, if the components of J̇τ are to comprise all
such constraints, we must have equality in Corollary 11C.4. We say that the
gauge group is effective if this is the case, and formalize this requirement as
an assumption:

A7 Effectiveness. ġCτ = kerωPτ ∩ X(Cτ ).

This assumption is to primary constraints as the fullness assumption A5 is
to secondary constraints. It may be viewed as a way of verifying that the gauge
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group is “large enough,” as discussed in §8C. But it may happen that G does
not act effectively, even when G is the correct gauge group, as in the cases of the
relativistic free particle or the Nambu string. In such theories the gauge group
is not properly synchronized with the geometry, and this suggests that the basic
setup of such examples should be modified. We discuss this in some detail in
Example a following, and at the end of this section.

We now prove a converse to Theorem 11C.1; to do this, we impose certain
regularity conditions. The system is required to be almost regular as set forth
in A2 so that, in particular, kerωPτ

is a regular distribution on Pτ . In addition,
we shall require that ġτ be a regular distribution on T ∗Yτ . Lemma 11C.3 then
implies that ġPτ

is regular as well. Finally, we suppose that J̇−1
τ (0) is smooth.

Theorem 11D.1. Suppose that the above assumptions hold. If G acts effec-
tively, all primary constraints are first class,30 and J̇−1

τ (0) is connected, then

Pτ = J̇−1
τ (0). (11D.1)

Proof. Let ` denote the polar with respect to the canonical symplectic struc-
ture on T ∗Yτ . From Proposition 6E.8(ii) applied to Pτ ⊂ T ∗Yτ , we see that
TP`

τ is pointwise spanned by the Hamiltonian vector fields of the primary con-
straints. From §6E, the Hamiltonian vector fields of the first class primary
constraints span kerωPτ

∩ TCτ pointwise along Cτ . By assumption all primary
constraints are first class, so it follows that

TP`
τ |Cτ = kerωPτ ∩ TCτ (11D.2)

whence
TP`

τ |Cτ ⊂ TCτ ⊂ TPτ |Cτ .

Thus Pτ is coisotropic along Cτ , and the regularity of kerωPτ = TPτ ∩ TP`
τ

then guarantees that Pτ is globally coisotropic in T ∗Yτ .
On the other hand, (11D.2) shows that kerωPτ ∩ TCτ = kerωPτ |Cτ . By

A7 we conclude that ġCτ = kerωPτ |Cτ . This, the fact that ġPτ ⊂ kerωPτ and
the regularity of ġPτ imply that ġPτ = kerωPτ . Since Pτ is coisotropic, this is
equivalent to

ġPτ = X(Pτ )`. (11D.3)

Equation (11B.7) and Theorem 11C.1 imply that

ωT∗Yτ

(
ġτ ,X(J̇−1

τ (0))
)

= 0

30 In this context, a primary constraint f is “first class” provided TC`τ [f ] = 0.
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along Pτ , whence

X
(
J̇−1

τ (0)
)
|Pτ ⊂ ġ`τ |Pτ = ġ`Pτ

.

Taking polars in (11D.3) and substituting in this last result, we get

X
(
J̇−1

τ (0)
)
|Pτ ⊂ X(Pτ ).

Since Pτ ⊂ J̇−1
τ (0), we obtain

TPτ = T J̇−1
τ (0) |Pτ .

From the inverse function theorem Pτ is an open submanifold of J̇−1
τ (0). Since

Pτ is closed in J̇−1
τ (0) by A2, the connectedness of J̇−1

τ (0) implies that Pτ must
be all of J̇−1

τ (0). �

Corollary 11D.2. With the same assumptions as in Theorem 11D.1, zero is
a weakly regular value of J̇τ .

Proof. Taking polars in (11D.3) results in g`Pτ
= TPτ , while Theorem 11D.1

states that TPτ = T J̇−1
τ (0). Combining these results with the polar of Propo-

sition 11B.6(ii), we obtain kerT J̇τ = T J̇−1
τ (0). �

We observe that Remark 10B.3 holds in the case of primary constraints as
well.

In view of Corollary 11D.2, we have the following partial converse to Theo-
rem 11D.1.

Proposition 11D.3. If zero is a weakly regular value of J̇τ and Pτ = J̇−1
τ (0),

then G acts effectively.

Proof. We must show that gCτ
= kerωPτ

∩ TCτ = TP`
τ ∩ TCτ .

Now equation (11B.7) and weak regularity imply that ġ`τ = kerT J̇τ =
T J̇−1

τ (0). By assumption we thus have ġ`τ = TPτ so that ġτ = TP`
τ . But

Lemma 11C.3 shows that ġCτ
= ġτ |Cτ ⊂ TCτ , and the desired result fol-

lows. �

This shows that effectiveness is a necessary condition for the equality of Pτ

with J̇−1
τ (0). It is not sufficient, however; see Example c below.

Remark 11D.4. If J̇−1
τ (0) is not connected, we may still conclude that Pτ is

a component of J̇−1
τ (0).
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Remark 11D.5. Although the regularity assumptions in this Theorem are
stringent, they invariably hold in cases of interest (and in particular in Examples
a–d). One finds in practice that both Pτ and J̇−1

τ (0) are well-behaved objects;
this is a reflection of the fact that primary constraints are usually “simple.” (If
only the same could be said for secondary constraints!)

Remark 11D.6. Our assumption that all primary constraints are first class
masks several subtle points, concerning its implication that Pτ is coisotropic in
T ∗Yτ (cf. the first paragraph in the proof of Theorem 11D.1).

The first point is that J̇−1
τ (0) is always coisotropic by Proposition 11B.6(iii).

Consequently, Pτ must be coisotropic if (11D.1) is to hold. It would not suffice,
however, simply to replace this primary first class assumption by the assumption
that Pτ is coisotropic in T ∗Yτ . The reason is that Pτ being coisotropic in and of
itself does not guarantee that all primary constraints are first class. (Whether
a (primary) constraint is first class is determined by the geometry of the final
constraint set Cτ , not the primary constraint set Pτ .)

Another point is that the regularity condition on kerωPτ is crucial, since
the primary constraints being first class need not imply that Pτ is coisotropic.
The reason is that a constraint being first class restricts its behavior only along
the final constraint set Cτ ; in the absence of regularity, the first class condition
cannot regulate its behavior elsewhere in Pτ .

Remark 11D.7. Because J̇−1
τ (0) is always coisotropic in T ∗Yτ , there is no ana-

logue of Version II of the Energy-Momentum Theorem for primary constraints.
�

Theorem 11C.1 and Proposition 11C.2 show that the components of J̇τ are
first class primary constraints. Because of Theorem 11D.1, we expect that J̇τ

gives all such constraints. We now make this more precise.
Let I(Pτ ) denote the ideal in F(T ∗Yτ ) consisting of primary constraints

(i.e., smooth functions on T ∗Yτ vanishing on Pτ ). As in §10C, utilizing Theo-
rem 11D.1, Corollary 11D.2, and Remark 10B.3, we may prove:

Proposition 11D.8. Suppose that (11D.1) holds and let zero be a regular value
of J̇τ . Then

I(Pτ ) = (J̇τ ).

Thus under the stated conditions all primary constraints are first class, and
are generated by the components of the momentum map J̇τ . Of course Theo-
rem 11D.1 and Proposition 11D.8 will not hold in the presence of second class
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primary constraints (in particular, in Example c). As in §10C we are able to
circumvent this problem using a slight variant of the Dirac bracket construction.

Let Ẇτ ⊂ T ∗Yτ be defined by the vanishing of the second class (with respect
to Cτ !) primary constraints and Pτ ⊂ Ẇτ be defined by the vanishing of the
first class primary constraints. Setting K̇τ = J̇τ | Ẇτ , we may therefore apply
Theorem 11D.1 and Proposition 11D.8 verbatim to Pτ ⊂ Ẇτ and K̇τ , with the
result that

I(Pτ ) = (K̇τ ), (11D.4)

the ideals now being taken in F(Ẇτ ).
Let IF (Pτ ) denote the ideal in F(T ∗Yτ ) consisting of first class primary

constraints, and let I(Ẇτ ) be the ideal of all smooth functions on T ∗Yτ vanishing
on Ẇτ (so that I(Ẇτ ) is “generated by the second class primary constraints”).
Set IF (Ẇτ ) = IF (Pτ )∩ I(Ẇτ ). Pulling (11D.4) back to T ∗Yτ , we finally have:

Theorem 11D.9. Let zero be a regular value of J̇τ , and assume regularity as
in Theorem 11D.1. If G acts effectively and J̇−1

τ (0) ∩ Ẇτ is connected, then

IF (Pτ ) ≡ (J̇τ ) mod IF (Ẇτ ).

This result shows that we can recover essentially all the first class primary
constraints from the momentum map J̇τ . The only ones that cannot be obtained
in this fashion are the ineffective constraints belonging to IF (Pτ )∩ I(Ẇτ ); since
these first class primaries are “generated by the second class primaries,” they
are clearly irrelevant insofar as constraint theory is concerned. (This works just
as in §10C.)

Examples

In every instance one may verify that both the regularity and connectivity
assumptions in Theorem 11D.1 are satisfied. As always, we work in appropri-
ately adapted coordinates.

a Particle Mechanics. Referring to Example a of §§6C and 6E, we find that
for the relativistic free particle ġt = {0} whereas kerωt ∩ X(Ct) = kerωt is non-
trivial. Thus the time reparametrization group Diff(R) does not act effectively
and Theorem 11D.1 fails. (This is to be expected from other considerations:
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The mass constraint (6C.14) is quadratic in the momenta πA, and so could not
in any case be recovered from J̇t which, according to (11B.5), is linear in the
πA.)

To repair this example, we introduce a (positive-definite) metric h = htt on
R, and consider the Lagrangian density

L̃ = −m
2

(
1√
h
‖v‖2 +

√
h

)
dt (11D.5)

viewed as a function also of h and its first jet. Thus we replace Y by Ỹ =
Y ×X S 0,1

2 (X).31

Now the group G = Diff(R) of time reparametrizations acts on Ỹ in the
obvious way. For ξ ∈ F(R), the Lie algebra of Diff(R), we compute

ξỸ = ξ
∂

∂t
− 2hξ,t

∂

∂h
. (11D.6)

Clearly the Lagrangian density (11D.5) is Diff(R)-covariant.
Fix a G-slicing of Ỹ with generating vector field ζỸ of the form (11D.6) with

ζ > 0. The Legendre transform yields

$ = 0 (11D.7)

πA = mζ−1gAB q̇
Bh−1/2, (11D.8)

where $ is the momentum conjugate to h, along with the Hamiltonian

H̃t,ζ(q, π, h,$) =
1

2m
(
gABπAπB +m2

)
ζ
√
h (11D.9)

on P̃t. There is a single secondary constraint:

gABπAπB +m2 = 0. (11D.10)

Both constraints (11D.7) and (11D.10) are first class.
Notice how this treatment of the relativistic free particle differs thus far

from the original one. The Lagrangian density no longer has the square root
of (3B.8), but the factor h−1/2 compensates for this so that L̃ is still time
reparametrization-equivariant. However, this apparently innocuous modifica-
tion of the Lagrangian density has dramatic effects insofar as the initial value
constraints are concerned. There is a “new” primary constraint $ = 0, and the

31 This reformulation of the relativistic free particle has also been employed in Green et al.

[1987], §2.1.
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“old” primary (6C.14) now turns up as the secondary (11D.10). This is possible
since the new Hamiltonian (11D.9) does not vanish identically on P̃t (compare
(6C.15) with ζA = 0). Observe also that the infinitesimal generator (11D.6) has
picked up a vertical component.

Returning to our analysis of the primary constraints, (11D.6) gives

p̃t = {ξ ∈ F(X) | j1ξ | Σt = 0}.

But, precisely because of the vertical term in (11D.6), ˙̃gt is no longer trivial; in
fact, since

[ζ, ξ]Ỹt
= 2hζξ,tt

∂

∂h
(11D.11)

we have
˙̃gt = spanF(Ỹt)

{
∂

∂h

}
. (11D.12)

On the other hand, from the above,

kerωP̃t
∩ X(C̃t) = kerωP̃t

| C̃t = spanF(C̃t)

{
δ

δh

}
so Diff(R) now acts effectively. Theorem 11D.1 gives

P̃t = {(q, π, h,$) | $ = 0} = ˜̇
J−1

t (0)

as can be verified directly from (11D.11) and (11B.6).
Thus the “Polyakov particle” displays none of the pathologies of the rel-

ativistic free particle in its ordinary formulation. The underlying reason this
reformulation works is that the offending primary constraint—the mass con-
straint (6C.14)—is now reincarnated as the secondary constraint (11D.10), and
so the problems discussed in the first paragraph of this example are obviated.

Now we show that that the constraint (11D.10) is captured on the secondary
level by the energy-momentum map. We compute the latter to be

〈Ẽt, ξ〉 = − 1
2m

(
gABπAπB +m2

)
ξ
√
h (11D.13)

on P̃t, whence we have

Ẽ−1
t (0) = {(q, π, h) | gABπAπB +m2 = 0}. (11D.14)

Obviously E−1
t (0) is coisotropic, so Corollary 10B.6 implies that Diff(R) is full

for the Polyakov particle, as can also be verified directly .
In this example Theorem 10B.1 gives a weaker result than Theorem 10B.4

as Cτ has two components. Cτ is connected only when m = 0 in which case it
has a conical singularity at the origin. Nonetheless, Proposition 10C.1 remains
valid when m = 0; see Gotay [1984].
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b Electromagnetism. Using (11C.1) and (4C.11)we compute

[ζ, χ]Yτ = −χ,00
∂

∂A0

for χ ∈ pτ . Thus

ġPτ
= spanF(Pτ )

{
δ

δA0

}
.

From Example b of §6E we see that ġCτ
= kerωPτ

|Cτ = kerωPτ
∩ X(Cτ ), so

that the gauge group F(X) acts effectively. We have found in Example 11C.b
that J̇−1

τ (0) = Pτ ; from Proposition 11D.8 we conclude that I(Pτ ) = (E0).

In the parametrized case we have in addition for ξ ∈ pτ

[ζ, ξ]Yτ = 2gσµξ
µ

,00
∂

∂gσ0

from (4C.14). So now

˙̃gP̃τ
= spanF(P̃τ )

{
δ

δA0
,
δ

δgσ0

}
which is strictly contained in

ker ω̃P̃τ
= spanF(P̃τ )

{
δ

δA0
,
δ

δgσρ

}
.

Thus parametrized electromagnetism is not effective, and as a consequence the
momentum map ˙̃

Jτ does not capture all the primary constraints in this system
as was noted in Example 11C.b.

Interestingly, one finds that electromagnetism coupled to ADM gravity is also
effective: the appropriate momentum map produces the 5 first class primaries
E0 = 0 and πσ0 = 0. (In this example there are only 5 primary constraints, and
they are all first class.) So at the two extremes—in the background case and
coupled to gravity—electromagnetism is effective. It is only in the somewhat
artificial intermediate case, viz. when the system contains a nonvariational
metric, that this example behaves badly. (Even though it is still producing
the “correct”—that is, the first class—primary constraints of the fully dynamic
theory.) We have already seen this anomalous behavior on the level of secondary
constraints in §10C. The upshot seems to be that all fields should be treated
variationally.
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c A Topological Field Theory. Together (4C.18) and (11C.2) yield

[ζ, (ξ, χ)]Yτ
= (Aµξ

µ
,00 − χ,00)

∂

∂A0

for (ξ, χ) ∈ pτ . Thus just as in background electromagnetism

ġPτ
= spanF(Pτ )

{
δ

δA0

}
= kerωPτ

.

Glancing back at Example 6E.c, we verify that Diff(X) n F(X) satisfies A6.
Regardless, Theorem 11D.1 fails in this example, because of the presence of the
second class primaries πi− ε0ijAj = 0. Indeed, from Example c in the previous
section, J̇τ correctly incorporates the first class primary π0 = 0, but of course
does not “see” these second class primaries.

We take the corresponding Dirac manifold to be

Ẇτ =
{
(A, π) ∈ T ∗Yτ |πi − ε0ijAj = 0

}
with the symplectic structure

ω̇τ =
∫

Στ

(
dA0 ∧ dπ0 + ε0ijdAi ∧ dAj

)
⊗ d2x0

induced by (5C.9). Then Pτ given by π0 = 0 is coisotropic in Ẇτ , as expected,
and Theorem 11D.9 finally gives

IF (Pτ ) ≡ (π0) mod IF (Ẇτ ).

d Bosonic Strings. For (ξ, λ) ∈ pτ , we have from (4C.22)–(4C.24) and
(11C.3) that

[ζ, (ξ, λ)]Yτ
= −2λ,0hσρ

∂

∂hσρ
+ 2hσµξ

µ
,00

∂

∂hσ0
.

Employing an argument similar to that surrounding (11C.4), we thus have

ġPτ
= spanF(Pτ )

{
hσρ

δ

δhσρ
, hσ0

δ

δhσ0

}

= spanF(Pτ )

{
δ

δhσρ

}

= kerωPτ .

Comparing with Example 6E.d, we see that the gauge group acts effectively and
consequently that I(Pτ ) = ($σρ).
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Remark 11D.10. Consider, for instance, either the relativistic free particle (in
its ordinary formulation) or the Nambu string. In both cases, G = Diff(X) acts
purely “horizontally” on Y (in the sense that ξA = 0 for all ξ ∈ g), and the mo-
mentum map J̇τ fails to capture all the first class primary constraints. In either
case the problem can be corrected by introducing a metric on X and treating it
variationally. This procedure—the “Polyakov trick”—in essence “extends” the
action of G by allowing it to act “vertically” on the metric components. Either
system, reformulated in this manner (and with a suitably modified Lagrangian)
now has the property that G acts effectively. Thus, the relativistic free particle
and the Nambu string become the Polyakov particle and the Polyakov string,
respectively, which, as shown above, behave perfectly well.

The fundamental lesson to be drawn here is that it is often useful to en-
dow the “spacetime” X with a metric; this contention is also supported by
our comments in Interlude I and following the definition of Lagrangian slicing
in §6A. Furthermore, Example b indicates that the metric should be treated
variationally as opposed to merely parametrically.

It may be possible to achieve this in many circumstances from first principles
according to the following philosophy. Recall the setup for general relativistic
fluids or elasticity as sketched in Interlude I. Consider the special case of a fluid
in which there is no internal energy, so that the particles all move independently
on geodesics. Rather than viewing them one at at time, imagine viewing them as
a swarm of particles, with a given initial density. From this point of view one can
reformulate the dynamics of a free relativistic particle (our Example a), where
the base is not R but spacetime X and fields are maps φ : X → Σ×R where Σ
now labels the particle’s initial location (or, equivalently, its world line) and φ

has the interpretation of a particle labeling field. In either case, this point of
view turns our Example a upside down: what was the base before, namely R,
now is part of the fiber, and the base now is standard spacetime. Thus, the base
now comes naturally equipped with a metric which one then treats variationally,
so one might expect effectiveness to hold, as above, without having to resort
to the Polyakov trick. This point of view has the pedagogical disadvantage of
being overly sophisticated for a free particle, but has the pedagogical advantage
of treating elasticity, fluids, and particles in a consistent manner. �
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Interlude III—Multisymplectic Integrators

IIIA Introduction

A Vision for Integration Algorithms for Field Theories. Multisym-
plectic integrators are numerical algorithms for field theories that respect the
field-theoretic structure at the discrete level. They have very attractive numer-
ical properties, such as getting the total energy as well as the energy balance
between modes in the system correct and, in addition, computing the total
momentum as well as the multimomentum fluxes exactly on the discrete level.
Considerable numerical evidence shows that these are desirable properties in-
deed and are especially useful in situations in which one would like to get good
mechanical properties without a fully resolved simulation. These sorts of in-
tegration algorithms have been implemented for nonlinear wave equations and
for nonlinear elasticity, for example, and have proven to be very effective and
competitive with existing algorithms. Other systems, such as fluids, are actively
being developed; in addition, relativistic theories, including general relativity,
comprise an important area for future research.

One of the reasons these integrators are promising for general relativity is
that if they are compatible with the gauge symmetry structure of a theory, then
they automatically preserve, in the multisymplectic sense, the multimomentum
mapping and the constraints of the theory—exactly on the discrete level. In
general relativity, these constraints are of course the superhamiltonian and su-
permomentum constraints and it is known numerically that the preservation of
these constraints are one of several crucial roadblocks in the development of
integrators sufficiently accurate to be able to compute, for example, the wave
forms of gravitational waves that are emitted from inspiraling black holes. This
is felt to be a critical ingredient in the detection of gravitational waves. See, for
instance, Holst et al. [2004].

Not surprisingly, there remain many difficulties to overcome. One problem
is how to discretize the diffeomorphism group, the gauge group of general rel-
ativity. However, recently, in connection with fluid mechanics, a candidate has
arisen, namely the group of doubly stochastic matrices (also known as the incom-
pressible Markov group) associated with a given mesh (see Ebin and Marsden
[1970], Desbrun, Kanso, Marsden, Mackenzie, and Tong [2006], and Johnson
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[1985]. A second problem is the need for development of and incorporation
of discrete differential geometry (perhaps in the form of Regge calculus) into
the formalism of multisymplectic integrators. This is currently believed to be
important for electromagnetism; see for instance, Bossavit [1998].

Despite these roadblocks, the outlook for the continued development of mul-
tisymplectic integrators is bright and they have, in fact, already been extremely
successful in various contexts, as has been mentioned.

In this Interlude, we will focus on a special class of these integrators known
as variational integrators. The key idea here is to not directly discretize
the Euler–Lagrange equations, which would be the normal procedure in nu-
merical analysis, but to discretize the variational principle on which they are
based. As we shall see variational integrators are automatically multisymplec-
tic. In particular, these algorithms preserve the multisymplectic structure in
the sense that a discrete version of the multisymplectic form formula holds; this
is the multisymplectic analog of the fact that the flows of the Euler–Lagrange
equations and Hamilton’s equations consist of symplectic transformations (see
§IIIC). The variational approach allows one additional flexibility in the design
of the algorithms and also helps in understanding how one passes from particle
mechanics to field theories.

The basic ideas of multisymplectic integration are already present in simple
examples, such as particle mechanics, which we discuss after a brief historical
aside.

A Brief History and Abbreviated Literature. The history of varia-
tional integrators is somewhat complex, but its roots can be traced to Hamilton-
Jacobi theory and to discrete optimal control. We shall not recount this early
history, but refer to Marsden and West [2001] for an extensive survey, and pick
up the story in more recent times. One line of motivation comes from the work
of Suris [1989, 1990] and Moser and Veselov [1991]. Here one finds the origins
of many of the ideas of discrete mechanics based on discrete variational princi-
ples. These ideas were developed and applied to a number of examples, such as
particle mechanics and rigid bodies, in Wendlandt and Marsden [1997]. Still in
the standard context of Lagrangian and Hamiltonian mechanics, there were sev-
eral other key developments. in particluar, the incorporation of external forces
(such as dissipative forces) as well as the study of the Newmark scheme (one of
the workhorses of computational mechanics) was given in Kane, Marsden, Or-
tiz, and West [2000]. It was shown there that variational methods respect the
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energy budget of a system in a way that is far superior to standard algorithms.

It should be also noted that there are deep links between the variational
method for discrete mechanics and integrable systems. This area of research
was started by Moser and Veselov [1991] and was continued by many others,
notably by Bobenko and Suris; we refer the reader to the book Suris [2003] for
more information. The main and very interesting example studied by Moser
and Veselov was to find an integrable discretization of the n-dimensional rigid
body, an integrable system; see also Bloch, Crouch, Marsden, and Ratiu [2002]
for further insight into the discretization process in this case.

This line of work on mechanical integrators provided a natural avenue of
investigation into the field-theoretical case for the simple reason—as is evident
in this book—that it is based on variational methods. Again, the idea is to
discretize not the field equations, but the variational principle and to show
that because of the resulting discrete variational structure, the multisymplectic
properties get inherited on the discrete level. The first major paper to take this
viewpoint is Marsden et al. [1998]—hereafter abbreviated as MPS. The main
numerical example treated there is the sine-Gordon equation; the algorithm
was shown to have excellent numerical properties, such as good energy and
conservation law behavior. We present this example in §IIID.

The variational viewpoint was further developed and applied to nonlinear
elasticity in a series of papers on asynchronous variational integrators in Lew
et al. [2003, 2004]. Their methods have also been applied to collision problems
(see Fetecau, Marsden, Ortiz, and West [2003] and references therein), to mesh
adaptation (see, for instance, Thoutireddy and Ortiz [2004]), and many other
problems. The developments in this area continue apace.

Around the same time, a rather different method, based on a “many-sym-
plectic” viewpoint, appeared in the work of Bridges [1997] and subsequent
papers. This was also numerically implemented in Bridges and Reich [2001]
amongst other works. The two viewpoints are related; see, for example, Mars-
den and Shkoller [1999], but the developments have proceeded along their own
paths. Other (nonvariational) approaches to multisymplectic integrators have
been studied by Moore and Reich [2003] and Islas and Schober [2004].

IIIB Basic Ideas of Variational Integrators

The idea of variational integrators is quite simple: one obtains algorithms by
forming discrete versions of variational principles. For conservative systems (in-
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cluding field theories) one typically uses Hamilton’s principle, while for dissipa-
tive or forced systems one uses the Lagrange–d’Alembert principle. For simplic-
ity we limit ourselves to illustrating the former in the case of finite-dimensional
systems.

Recall from basic mechanics (see, for example, Marsden and Ratiu [1999]) the
configuration space form of Hamilton’s principle. Let an autonomous mechanical
system have an N -dimensional configuration manifold Q and be described by a
Lagrangian L : TQ→ R. Then the principle states that the action integral

S =
∫ b

a

L(q(t), q̇(t)) dt

is stationary for curves q(t) in Q with fixed endpoints as in Figure III.1.

q(t)

varied curve

Q

δq(t)

q(a)

q(b)

Figure III.1: The configuration space form of Hamilton’s principle

Of course, by Theorem 3B.1 Hamilton’s principle is equivalent to the Euler–
Lagrange equations (3B.7).

In discrete mechanics from the Lagrangian point of view, one first forms
a discrete Lagrangian, a function Ld of two points q0, q1 ∈ Q and a time
step h by approximating the the action integral along an exact trajectory with
a quadrature rule:

Ld(q0, q1, h) ≈
∫ h

0

L
(
q(t), q̇(t)

)
dt

where q(t) is an exact solution of the Euler–Lagrange equations for L joining
q0 to q1 over the time step interval 0 ≤ t ≤ h. Holding h fixed for the moment,
we may regard Ld as a mapping Ld : Q×Q → R. This way of thinking of the
discrete Lagrangian as a function of two nearby points (which take the place
of a discrete position and velocity) goes back to the origins of Hamilton–Jacobi
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theory itself, but appears explicitly in the discrete optimal control literature in
the 1960s, and was exploited effectively by, for example, Suris [1990], Moser and
Veselov [1991], and Wendlandt and Marsden [1997]. It is a point of view that
is crucial for the development of the theory.

varied point

δqi

qi

Q

q0

qK

Figure III.2: The discrete form of Hamilton’s principle

Given a discrete Lagrangian Ld, the discrete theory proceeds in its own right
as follows. Given a sequence q0, . . . , qK of points in Q, form the discrete action

sum:

Sd =
K−1∑
k=0

Ld (qk, qk+1, hk) .

Then the discrete Hamilton configuration space principle requires us to
seek a critical point of Sd with fixed end points, q0 and qK . See Figure III.2
Taking the special case of three points qi−1, qi, qi+1, so the discrete action sum
is

Ld (qi−1, qi, hi−1) + Ld (qi, qi+1, hi) ,

and varying with respect to the middle point qi gives the discrete Euler–

Lagrange (DEL ) equations:

D2Ld (qi−1, qi, hi−1) +D1Ld (qi, qi+1, hi) = 0. (IIIB.1)

One arrives at exactly the same result using the full discrete variational principle.
Equation (IIIB.1) defines, perhaps implicitly, the DEL algorithm: (qi−1, qi) 7→
(qi, qi+1).

Example: Particle Mechanics. Let M be a positive definite symmetric
3×3 matrix and V : R3 → R be a given potential. Choose a discrete Lagrangian
on R3 × R3 of the form

Ld(h,q0,q1) = h

[
1
2

(
q1 − q0

h

)T

M
(

q1 − q0

h

)
− V (q0)

]
, (IIIB.2)
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which arises in an obvious way from its continuous counterpart by using a “rect-
angle rule” on the action integral. For this discrete Lagrangian, the DEL equa-
tions are readily worked out to be

M
(

qk+1 − 2qk + qk−1

h2

)
= −∇V (qk),

a discretization of Newton’s equations, using a simple finite difference rule for
the derivative. �

In mechanics, the initial conditions are typically specified as a position and
a velocity or momentum rather than two positions; therefore it is beneficial to
write the DEL equations in a position-momentum form. To this end, define
the momentum at time tk to be:32

pk := D2Ld(qk−1, qk) = −D1Ld(qk, qk+1)

where the second equality holds due to the DEL equations. The position-
momentum form of the discrete equations is then given by:

pk = −D1Ld(qk, qk+1) , pk+1 = D2Ld(qk, qk+1). (IIIB.3)

For (qk, pk) known, (IIIB.3)(left) is an (often implicit) equation whose solution
gives qk+1. qk+1 is then substituted in (IIIB.3)(right) to find pk+1. This provides
an update rule in phase space.

One may also approach discrete mechanics from a Hamiltonian point of view;
here, Hamilton’s phase space principle comes into play. Many algorithms, such
as the midpoint rule and symplectic Runge–Kutta (“SPARK”) schemes, appear
more naturally in the Hamiltonian context, as pointed out in Marsden and West
[2001]. Additionally, there is a hybrid of the Hamilton configuration and phase
space principles known as the Hamilton-Pontryagin principle Yoshimura and
Marsden [2006], which has counterparts in some field theories and is important
in what is called the discontinuous Galerkin method. For instance, in nonlinear
elasticity, it is called the “Hu-Washizu principle.” It would be of substantial
interest to extend this principle to the general context of field theories as given
in this book.

It is shown in Kane, Marsden, Ortiz, and West [2000] that the widely used
Newmark scheme is variational in our sense. (Structurally, the Newmark scheme
is similar to the example presented above. One can argue that the variational

32 Henceforth we suppress the time step dependence in Ld.
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nature of the Newmark scheme is one of the reasons for its excellent perfor-
mance.) Many other standard integrators are variational as well, including the
midpoint rule, SPARK schemes, etc.; we refer to Suris [1990] for details. In fact,
every symplectic integrator is variational (Marsden and West [2001]).33

IIIC Properties of Variational Integrators

We motivate the properties of variational integrators first with a few examples
and then we briefly discuss a bit of theory involving momentum maps and
symplecticity.

Numerical Motivation. No matter what the choice of the discrete La-
grangian, variational integrators are in the conservative case momentum con-
serving and symplectic in a way that will be made precise below. “Momentum
conserving” means that when the discrete system has a symmetry, then there
is a discrete Noether theorem that gives a quantity that is exactly conserved
at the discrete level. Figure III.3(a) illustrates the sort of qualitative difference
that momentum conservation gives in solar system dynamics, and in (b) we
illustrate in the case of two-dimensional systems that “symplectic” means area
preserving, even with large distortions.34

(a) (b)

Figure III.3: (a) Variational integrators give good qualitative behavior for comparable

computational effort. (b) Variational integrators preserve the symplectic form in phase space

(area, in two dimensions).

33 It is not known if the analogous statement is true for multisymplectic integrators.
34 These figures are due to Hairer, Lubich, and Wanner [2001].
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(a) Conservative mechanics (b) Dissipative mechanics

Figure III.4: Showing the excellent energy behavior for both conservative and dissipative

systems: a particle in R2 with a radially symmetric polynomial potential (left); with small

dissipation proportional to the velocity (right).

Variational integrators have remarkably good energy behavior in both the
conservative and dissipative cases (for the latter, one discretizes the Lagrange-
d’Alembert principle); consider, for example, the system described in Figure
III.4, namely a particle moving in the plane. This figure illustrates the fact that
variational integrators have long time energy stability (as long as the time step
is reasonably small). This is an important property, but it is also a deep one
from the theoretical point of view and is observed to hold numerically in many
cases when the theory cannot strictly be verified; the key technique is known
as backward error analysis and it seeks to show that the algorithm is, up to
exponentially small errors, the exact time integration of a nearby Hamiltonian
system, an idea going back to Neishtadt [1984]. See Hairer and Lubich [2000]
for a thorough analysis.

We now turn to a brief outline of some of the theory.

Momentum Conservation. The discrete version of Noether’s (first) the-
orem parallels the continuous case discussed in §4D. Consider a one-parameter
family of discrete time curves {qε

k}K
k=0, with q0k = qk, such that Ld(qε

k, q
ε
k+1) =

Ld(qk, qk+1) for all ε and k. The corresponding infinitesimal symmetry is written

ξk =
∂qε

k

∂ε

∣∣∣∣
ε=0

. (IIIC.1)

Invariance of the discrete Lagrangian implies invariance of the action sum, and
so its ε-derivative will be zero. Assuming that {qk} is a solution trajectory, then
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variation of the discrete action sum gives

0 =
∂

∂ε

∣∣∣∣
ε=0

K−1∑
k=0

Ld(qε
k, q

ε
k+1) = D1Ld(q0, q1)·ξ0+D2Ld(qK−1, qK)·ξK . (IIIC.2)

Observing that 0 = D1Ld(q0, q1) · ξ0 + D2Ld(q0, q1) · ξ1 as Ld is invariant, we
thus have the discrete Noether theorem

D2Ld(qK−1, qK) · ξ = D2Ld(q0, q1) · ξ, (IIIC.3)

where the discrete momentum in the direction ξ is given by D2Ld(qk, qk+1) · ξ.

Example: Particle Mechanics. Consider the discrete mechanical La-
grangian (IIIB.2) and assume that V is a function of ‖q‖ only. (This is the
case of a particle in a radial potential, for example.) Then Ld is invariant
under rotations qε

k = exp(εΩ)qk, for any skew-symmetric matrix Ω ∈ R3×3.
Evaluating (IIIC.3) in this case gives

qK ×M
(

qK − qK−1

tK − tK−1

)
= q1 ×M

(
q1 − q0

t1 − t0

)
. (IIIC.4)

Thus, we get expressions for the discrete angular momentum, and have shown
that it is conserved on the discrete level. Note that while this result might seem
obvious, in more complicated examples this will not be the case. �

As in the continuous case, we can extend the above derivation to general
Lie groups and define a full discrete momentum map JLd

: Q × Q → g∗ by
JLd

(q0, q1) · ξ = D2Ld(q0, q1) · ξQ(q1). (In fact there are two discrete momentum
maps, corresponding to D1Ld and D2Ld, but they are equal whenever Ld is
invariant.) From here one can proceed to develop a theory of discrete reduction
as in Bobenko and Suris [1999a,b], Marsden, Pekarsky, and Shkoller [1999, 2000],
and Jalnapurkar, Leok, Marsden and West [2006].

Symplecticity. In addition to conserving energy and momenta, Lagrang-
ian evolution also preserves the Lagrange form ωL = −dθL, where35

θL =
∂L

∂qA
dqA.

35 Intrinsically, θL is the pullback to TQ of the mechanical Cartan form (3B.6) on J1Y =

R × TQ. The 2-form ωL, which is the Lagrangian counterpart of the symplectic form, is

actually symplectic iff L is regular.
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Extended discussions can be found in MPS and Marsden and Ratiu [1999], and
the analogous statement for continuous Hamiltonian evolution has already been
proved explicitly in Corollary 6D.2. As the symplecticity of continuous time
Lagrangian systems is a direct consequence of the variational structure, there
is thus an analogous property of discrete Lagrangian systems. We proceed to
discover this conservation law “by hand” using the variational structure in the
mechanical case.

Consider a two-parameter set of initial conditions {(qε,ν
0 , qε,ν

1 )} and let
{qε,ν

k }K
k=0 be the resulting discrete trajectories. We denote the corresponding

variations by

δqε
k =

∂

∂ν
qε,ν
k

∣∣∣∣
ν=0

δq̄ν
k =

∂

∂ε
qε,ν
k

∣∣∣∣
ε=0

δ 2qk =
∂2

∂ε∂ν
qε,ν
k

∣∣∣∣
ε,ν=0

and we write δqk = δq0k, δq̄k = δq̄0k and qε
k = qε,0 for k = 0, . . . ,K. The second

derivative of the action sum is given by

∂

∂ε

∣∣∣∣
ε=0

∂

∂ν

∣∣∣∣
ν=0

Sd({qε,ν
k })

=
∂

∂ε

∣∣∣∣
ε=0

(
DSd({qε

k}) · δqε
)

=
∂

∂ε

∣∣∣∣
ε=0

(
D1iLd(qε

0, q
ε
1) (δqε

0)
i +D2iLd(qε

K−1, q
ε
K) (δqε

K)i
)

= D1jD1iLd(q0, q1)δqi
0δq̄

j
0 +D2jD1iLd(q0, q1)δqi

0δq̄
j
1

+D1jD2iLd(qK−1, qK)δqi
Kδq̄

j
K−1 +D2jD2iLd(qK−1, qK)δqi

Kδq̄
j
K

+D1iLd(q0, q1)δ 2qi
0 +D2iLd(qK−1, qK)δ 2qi

K .

By symmetry of mixed partial derivatives, reversing the order of differentiation
above will give an equivalent expression. Subtracting one from the other will
thus give zero, and rearranging the resulting equation we obtain

D1jD2iLd(qK−1, qK)
[
δqi

Kδq̄
j
K−1 − δq̄i

Kδq
j
K−1

]
= D2jD1iLd(q0, q1)

[
δq̄i

0δq
j
1 − δqi

0δq̄
j
1

]
. (IIIC.5)
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Directly from the symmetry of mixed partial derivatives we have

D2jD1iLd(q0, q1)
[
δq̄i

0δq
j
1 − δqi

0δq̄
j
1

]
= D1jD2iLd(q0, q1)

[
δqi

1δq̄
j
0 − δq̄i

1δq
j
0

]
. (IIIC.6)

Substituting this into (IIIC.5) now gives

D1jD2iLd(qK−1, qK)
[
δqi

Kδq̄
j
K−1 − δq̄i

Kδq
j
K−1

]
= D1jD2iLd(q0, q1)

[
δqi

1δq̄
j
0 − δq̄i

1δq
j
0

]
. (IIIC.7)

We can now see that each side of this equation is an antisymmetric bilinear
form, which we call the discrete Lagrange form, evaluated on the variations
δqk and δq̄k. The two sides give this expression at the first time step and the
final time step, so we conclude that the discrete Lagrange form is preserved by
the time evolution of the discrete system.

Intrinsically we can identify two one-forms θ+Ld
= D2Lddq1 and θ−Ld

=
D1Lddq0, so that dSd = (FK

Ld
)∗θ+Ld

+ θ−Ld
, where FK

Ld
is the discrete time flow.

Then 0 = d2Sd = (FK
Ld

)∗(dθ+Ld
) + dθ−Ld

and so defining the discrete two-forms
ω±Ld

= −dθ±Ld
gives (FK

Ld
)∗ω+

Ld
= −ω−Ld

, which is the intrinsic form of (IIIC.5).
However, we observe that 0 = d2Ld = d(θ+Ld

+ θ−Ld
) = −ω+

Ld
− ω−Ld

and hence
ω+

Ld
= −ω−Ld

, which is (IIIC.6). Combining this with our previous expression
then gives (FK

Ld
)∗ω+

Ld
= ω+

Ld
as the intrinsic form of (IIIC.7), which is discrete

symplecticity of the evolution.

IIID Multisymplectic and Asynchronous Variational In-

tegrators

One of the beautiful things about the variational approach is that it suggests
a natural extension to the PDE case. Namely one should discretize, in space-
time, the variational principle for a given field theory, such as electromagnetism,
elasticity, or gravity, etc. To lay the groundwork for such a discretization, one
replaces the discrete time points with a mesh in spacetime and replaces points in
Q with clusters of points in Y (so that one can represent the needed derivatives
of the fields). These clusters of points may be regarded as a discretization of
the first jet bundle. (See Figure III.5.) Then the theory proceeds in much the
same way as described above.

The basic set-up and feasibility of this idea for infinite-dimensional systems
was first demonstrated in MPS. This paper showed that there were discrete field-
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Figure III.5: Depiction of the heuristic interpretation of an element of J1Y when
X is discrete.

theoretic analogs of all the structures one has in mechanics with some obvious
modifications; mainly, the symplectic structure gets replaced by the appropriate
multisymplectic structure. The key new ingredient is the multisymplectic

form formula which states that the integral of a bilinear expression in the field
variations, built out of the multisymplectic form, integrated over the boundary
of a region in spacetime and evaluated at a solution, is zero. This generalizes
the symplecticity property, in which the difference of the values of the Lagrange
form at two ends of a temporal interval is zero. This is proved, both in the
continuous and discrete settings in exactly the same way as was done above
for mechanics; namely, it follows from the fact that the second differential of
the action function restricted to the space of solutions is zero. As in the finite-
dimensional case, all of these properties follow from the fact that one has a
discrete variational principle.

Example: Nonlinear Wave Equation. Consider the scalar nonlinear wave
equation

∂2φ

∂x02 −4φ−N ′(φ) = 0, (IIID.1)

where 4 is the Laplace-Beltrami operator and N is a real-valued C∞ function
of one variable. For concreteness, we fix n = 1 and take X = R2 and Y = X×R.

Equation (IIID.1) is governed by the Lagrangian density

L =

{
1
2

[(
∂φ

∂x0

)2

−
(
∂φ

∂x1

)2
]

+N(φ)

}
dx1 ∧ dx0.
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To discretize it, we visualize each triangle ∆ ⊂ X as having base length h

and height k; see Figure III.5. We then think of the continuous jet j1φ as
corresponding to a discrete jet as follows:

φ(x̄ij) =
yij + yi +1j + yi+1 j+1

3
,

∂φ

∂x0
(x̄ij) =

yi j+1 − yij

h
,

∂φ

∂x1
(x̄ij) =

yi+1 j+1 − yi j+1

k
,

where x̄ij is at the center of ∆. This leads to the discrete Lagrangian

L =
1
2

(
y2 − y1
h

)2

− 1
2

(
y3 − y2
k

)2

+N

(
y1 + y2 + y3

3

)
,

where we use y1, y2, y3 as generic labels for the vertices yij , yi j+1, yi+1 j+1 of a
triangle in Y covering ∆.

The corresponding DELF equations are

yi+1 j − 2 yij + yi−1 j

k2
− yi j+1 − 2 yij + yi j−1

h2

+
1
3
N ′
(
yij + yi j+1 + yi+1 j+1

3

)

+
1
3
N ′
(
yi j−1 + yij + yi+1 j

3

)

+
1
3
N ′
(
yi−1 j−1 + yi−1 j + yij

3

)
= 0. (IIID.2)

When N = 0 (wave equation) this gives the explicit method

yi j+1 =
h2

k2
(yi+1 j − 2 yij + yi−1 j) + 2 yij − yi j−1.

In MPS some numerical investigations of this integrator were undertaken us-
ing the sine-Gordon equation [ (IIID.1) withN ′(φ) = sinφ ] with periodic bound-
ary conditions. Figure III.6 shows the time evolution of a waveform through
a soliton collision just before the simulation stops, and may be compared to
Figure III.7. As can be seen, the high frequency oscillations that are present
during the soliton collisions are smaller and smoother for the triangle-based
multisymplectic method than for the energy-conserving method of Guo et al.
[1986]. �

The multisymplectic formalism appropriate for discrete elasticity was given
in Marsden et al. [2001]. Motivated by this work, Lew et al. [2003] developed
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Figure III.6: A soliton collision after the triangle-based multisymplectic method (IIID.2)

has simulated about 5000 soliton collisions. The solitons collide beginning at the top left and

proceed to the top right, then to the bottom left, and finally to the bottom right.
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Figure III.7: Similar to the previous plot but using an energy-conserving integrator.
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the theory of asynchronous variational integrators (AVIs) along with
an implementation for the case of elastodynamics (discussed below). These
integrators are based on the introduction of spacetime discretizations allowing
different time steps for different elements in a finite element mesh. This is similar
in spirit to subcycling (see, for example, Neal and Belytschko [1989]), but with
no constraints on the ratio of time step between adjacent elements. It is the
flexibility of the variational formulation (rather than trying to directly preserve
the multisymplectic structure) that allows for such a formulation, without any
sacrifice of the benefits of structured integrators.

A local discrete energy balance equation is obtained in a natural way in the
AVI formalism. This equation can be satisfied exactly by adjusting the elemental
time steps. However, it is sometimes computationally expensive to do so and
from simulations (such as the one given below), it seems to be unnecessary. That
is, the phenomenon of near energy conservation indefinitely in time appears
to hold, just as in the finite-dimensional case. However, the full theory of a
backward error analysis in the PDE context is in its infancy, cf. Moore and
Reich [2003].

Example: Elastodynamics Simulation. The formulation and implemen-
tation of a sample algorithm (explicit Newmark for the time steps) has been
carried out in this framework. An important and nontrivial issue is how to
decide which elements to update next consistent with hyperbolicity (causality)
and the CFL (Courant–Friedrichs–Levy) condition; one accomplishes this using
the notion of a priority queue borrowed from computer science. Figure III.8
shows one snapshot of the dynamics of an elastic L-beam (the beam is undergo-
ing oscillatory deformations). The smaller elements near the edges are updated
much more frequently than the larger elements.

The figure also shows the very favorable energy behavior for the L-beam
obtained with AVI techniques; the figure shows the total energy, but it is im-
portant to note that also the local energy balance is excellent—that is, there is
no spurious energy exchange between elements as can be obtained with other
elements. �

Issues of small elements (sliver elements) are even more pronounced in other
examples such as rotating elastic helicopter blades (without the hydrodynamics)
which have also been simulated in some detail. The helicopter blade is one of the
examples that was considered by the late Juan Simo who showed that standard
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Figure III.8: AVI methods are used to simulate the dynamics of an elastic L-beam. The

energy of the L-beam is nearly constant after a long integration run with millions of updates

of the smallest elements.

(and even highly touted) algorithms can lead to troubles of various sorts. For
example, if the modeling is not done carefully, then it can lead to spurious
softening and also, even though the algorithm may be energy-respecting, it can
be very bad as far as angular momentum conservation is concerned. The present
AVI techniques suffer from none of these difficulties.

Amongst the many other possible future directions, one that is very exciting
involves combining AVIs with emerging theories of Discrete Exterior Calculus
(DEC) or Discrete Tensor Calculus (DTC). For example, it is known in com-
putational electromagnetism (see, for instance Bossavit [1998]) that one gets
spurious modes if the usual grad–div–curl relation is violated on the discrete
level.
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Gawȩdzki, K. [1972], On the geometrization of the canonical formalism in the
classical field theory, Rep. Math. Phys. 3, 307–326.

Goldschmidt, H. and S. Sternberg [1973], The Hamilton–Cartan formalism in
the calculus of variations, Ann. Inst. Fourier 23, 203–267.

Gotay, M. J. [1979], Presymplectic Manifolds, Geometric Constraint Theory
and the Dirac–Bergmann Theory of Constraints, Thesis. Univ. of Maryland,
Technical Report 80–063.



REFERENCES 261

Gotay, M. J. [1983], On the validity of Dirac’s conjecture regarding first class
secondary constraints, J. Phys. A: Math. Gen. 16, L141–145.

Gotay, M. J. [1984], Poisson reduction and quantization for the (n+ 1)-photon,
J. Math. Phys. 25, 2154–2159.

Gotay, M. J. [1988], A multisymplectic approach to the KdV equation. In
Bleuler, K. and M. Werner, editors, Differential Geometric Methods in The-
oretical Physics, volume 250 of NATO Advanced Science Institutes Series C:
Mathematical and Physical Sciences, pages 295–305. Kluwer, Dordrecht.

Gotay, M. J. [1989], Reduction of homogeneous Yang–Mills fields, J. Geom.
Phys. 6, 349–365.

Gotay, M. J. [1991a], A multisymplectic framework for classical field theory and
the calculus of variations I. Covariant Hamiltonian formalism. In Francaviglia,
M., editor, Mechanics, Analysis, and Geometry: 200 Years After Lagrange,
pages 203–235. North Holland, Amsterdam.

Gotay, M. J. [1991b], A multisymplectic framework for classical field theory and
the calculus of variations II. Space + time decomposition, Diff. Geom. Appl.
1, 375–390.

Gotay, M. J. [1991c], An exterior differential systems approach to the Cartan
form. In Donato, P., C. Duval, J. Elhadad, and G. Tuynman, editors, Sym-
plectic Geometry and Mathematical Physics, volume 99 of Progress in Math.,
pages 160–188. Birkhäuser, Boston.
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Math. J. 33, 467–475.

Horowitz, G. [1989], Exactly soluble diffeomorphism invariant theories, Com-
mun. Math. Phys. 129, 417–437.

Hughes, T., T. Kato, and J. Marsden [1977], Well-posed quasi-linear second-
order hyperbolic systems with applications to nonlinear elastodynamics and
general relativity, Arch. Rat. Mech. Anal. 63, 273–294.

Isenberg, J. and J. Marsden [1982], A slice theorem for the space of solutions of
Einstein’s equations, Phys. Rep. 89, 179–222.

Isenberg, J. and J. Nester [1977], The effect of gravitational interaction on
classical fields: a Hamilton–Dirac analysis, Ann. Phys. 107, 56–81.

Isenberg, J. and J. Nester [1980], Canonical analysis of relativistic field theories.
In Held, A., editor, General Relativity and Gravitation, Vol. 1, pages 23–97.
Plenum Press, New York.

Islas, A. L. and C. M. Schober [2004], On the preservation of phase space struc-
ture under multisymplectic discretization, J. Comput. Phys. 197, 585–609.

Jalnapurkar, S.M., M. Leok, J.E. Marsden and M. West [2006], Discrete Routh
reduction, J. Phys. A: Math. Gen., 39, 5521–5544.

John, F. [1982], Partial Differential Equations. Applied Mathematical Sciences
1. Springer-Verlag, New York, fourth edition.

Johnson, J. E. [1985], Markov-type Lie groups in GL(n,R), J. Math. Phys. 26,
252–257.



264 REFERENCES

Kanatchikov, I. V. [1997], On field theoretic generalizations of a Poisson algebra,
Rep. Math. Phys. 40, 225–234.

Kanatchikov, I. V. [1998], Canonical structure of classical field theory in the
polymomentum phase space, Rep. Math. Phys. 41, 49–90.

Kane, C., J. E. Marsden, M. Ortiz, and M. West [2000], Variational integra-
tors and the Newmark algorithm for conservative and dissipative mechanical
systems, Int. J. Num. Math. Eng. 49, 1295–1325.

Kastrup, H. A. [1983], Canonical theories of Lagrangian dynamical systems in
physics, Phys. Rep. 101, 1–167.

Kijowski, J. [1973], A finite-dimensional canonical formalism in the classical
field theory, Commun. Math. Phys. 30, 99–128.

Kijowski, J. [1974], Multiphase spaces and gauge in the calculus of variations,
Bull. Acad. Sc. Polon. 22, 1219–1225.

Kijowski, J. and W. Szczyrba [1975], Multisymplectic manifolds and the geo-
metrical construction of the Poisson brackets in the classical field theory. In
Souriau, J.-M., editor, Géométrie Symplectique et Physique Mathématique,
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