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1. Introdﬁction

When quantizing a' constrained classical system with nonunimodular gauge
symmetries, the usual Dirac prescription for selecting the gauge invariant states
of the system must be modified {2, 11]. Otherwise, one may lose the correlation
between the classical and quantum gauge invariant states, and the quantization of
the original system may lead to incorrect resulis.

To be more precise, let (M,w) be a symplectic manifold, H a Lie group acting
symplectically on M on the left, and J an Ad*-equivariant momentum mapping
for this action &, The invariance of the system with respect to the gauge group H
demands that J vanish [5]. Onthe quantum level, these constraints are traditionally
implemented by means of the Dirac conditions

Q¢ [¥] =0 )

for all ¢ ¢ h, the Lie algebra of H, where QJ¢ is the quantum operator
. corresponding to the function Je = (J,€). The space Mg of all such  is supposed
10 comprise the physically admissible quantum states of the system,

———

Reenll that a group H is \mimodular jf it carries a bi-invarient volume, Infinitesimally, this is equivalent to
tr(edy) = 0 for all ceh.
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In general, one expects the Hilbert space H obtained by quantizing the
classical reduced phase space M = H\J-! (0) to coincide with H,. Put another
way, the processes of reduction and quantization should commute. Provided the
reducing group I is unimodular! this is indeed the case, at least under mild
restrictions which are satisfied by most systems of physical interest. (See [2, 4]
and references cited therein.)

When H is not unimoduiar this equivalence is no longer guaranteed, and in
fact can be shown to fail [2, 3, 11]. In practical terms, however, this has not been
a matter of concern, as nonunimodular symmetries are rare. Nonetheless, there
are bona fide mechanical systems which have such symmetries, and for which the
Dirac prescription (1) leads to demonstrably erroneous conclusions. In this paper
we will study one such system: the pseudo-rigid body.

To regain the correspondence between the original and reduced phase space
quantizations, a theory has been developed in [2] which for our purposes can be
regarded as a means of “unimodularizing” a classical system with nonunimodular
symmetries. One thereby obtains a new unimodular system which is “classically
equivalent” to the original system and to which the results cited above apply. Thus
reduction and quantization will commute when one considers this new system,
This theory is in essence a “bosonic” counterpart to the classical BRST formalism,
but is phrased purely in terms of the underlying symplectic geometry of the system.

A comprehensive discussion of these matters is given in [2]. It is enough here
to sketch the results. One replaces the original Hamiltonian system (M,w,H,&_J)
by an “extended” Hamiltonian system (M Jo, H, & F ), where:

M= Mx (4 &b)
W= w + wye
H=T'H~Hxb 2
hvy (Mym, ) = (@n (m), Ady 2, () + v, Adyp)
Jew) (msm, p) = Je (m) — {adg (n), p) + (v, 0} .
In these expressions wy- is the canonical symplectic structure on h* @ h ~ T*h*
and we have used the canonical left trivialization to endow T*H =~ H x h* with
a semi-direct product structure. (H acts on §* by the coadjoint representation.)
~'This construction has three salient features: (i) The reduced spaces

‘ H\J1(0,0) ~ H\J™1(0),

so that this new extended system is classically equivalent to the original one.
(ii) The extended reducing group H = T*H is always unimodular, so that the
quantization of M will be compatible with that of the reduced space M. (iii) Itis_
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canonical and symplectically natural. That is, the definition .of (AZ’ o, H, 8, F
in (2) is not arbitrary, but rather is the result of applying symplectic induction fo
H viewed as a subgroup of T*H =~ H x h*.

Since the extended system is unimodular, we may apply the Dirac prescription
(1) to it, obtaining

Qe [¥] =0 3

for all (¢,v) € b =~ hx bh*. Thus the physically admissible quantum states of
the system are those which are H-invariant. In terms of the original system, (3)
effectively reduces to the modified Dirac prescription

QJe (V] = _% tr{ade) ©. (4)

It follows that from the standpoint of the nonuniumodular group H, the physically
admissible quantum states are actually quasi-invariant.

We use the pseudo-rigid body to illustrate these results as well as the for-
malism developed in [2]. We show that our unimodularization technique (or,
equivalently, the modified Dirac prescription (4)) yields the expected ~— and cor-
rect — results, whereas the original Dirac prescription (1) goes awry.

Our conclusions here may have interesting implications regarding the quanti-
zation of field theories, as one would not expect their (infinite-dimensional) gauge

groups to be unimodular in any reasonable sense. This issue has only begun to
be explored [7].

2. The Classical Pseudo-Rigid Body

Consider a pseudo-rigid body, that is, an elastic body moving in R3 which
is allowed to undergo linear deformations. The configuration space for such a
body is the group G = GL(3,R) + X R3, where the identity component GL(3,R),
of GL{3,R) consists of shears, dilations and rigid rotations, and the R3 factor
comprises rigid translations. The Lie algebra g of G consists of pairs (a,b) with
¢ € g1(3,R) and b € R3; similarly, we may represent its dual g* by pairs (a,5)
with @ € gl(3,R) and 3 € R3. The pairing between g and g* is defined by

((a,5), (a, b)) = tr(ac) + Bb, ®

where we regard 8 and b as row and column vectors, respectively.

L]
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The “true” configuration space (or the space of shapes) of the body is clearly
the homogeneous space § = H\G, where H = (R} x S0 (3)) x R3. Geometri-
cally, this means that we identify configurations that differ only by rigid rotations,
homogeneous dilations and spatial translations. The crucial point for the present
discussion is that the reducing group H is nonunimodular: for (c,d) € b, we have
tr(ad(. ) = tr c. Nonunimodularity actually comes from the dilations via the
semi-direct product structure on H.

Let us now describe the details of the classical reduction. We use the canonical
left trivialization to identify the phase space T*G with M = G x g*. (That is,
we work in “body coordinates” or the “material representation.””) The canonical
1—form on M is 8 (g, ) = (u,g~'dyg), where ¢ = (4, B), g~'dg denotes the
Maurer-Cartan form of G and y = (a, 8) € g*. We thus have

0 =tr(aA™'dA) + p47'dB. (6)

The Hamiltonian action of H on M is (h, (g, 1)) ~ (hg p#) with momentum
mapping J : M — h* given by

J(A,B,a,B) =7 (Ad(A:B)—l (a:ﬁ))

=i*(Ad,% (a+ 471BB) ,p47Y), )

where ¢ : h — g is the inclusion (¢f. [1], §4.4). From (7) and (5) we see that the
vanishing of (J (4, B,a,8),(¢,d)) for all (c,d) € b implies # = 0 and

tr(AdAL (a) c) =0. (8)

Since ¢ € Lie (R} x SO(3)), c must be of the form r/ + K, where r €
R, I is the 3 x 3 identity and K is skew-symmetric. Taking K = 0, (8) yields
r a = 0. Similarly, taking r = 0 we find that Ad,*, (o) = AaA™! must be
symmetric, so that

= (A'A) a(A'4)7. )

The constraint submanifold J=1 (0) therefore consists of triples (A,B,a), where
« is traceless and satisfies (9).

*
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Now every matrix A € GL(3,R), admits a unique polar decomposition A
= RO, where Q = V A'A is positive-definite symmetric and R ¢ 50O (3). Set
P=Qa@Q™ ! and § = Q/ (det Q)%. From this and (9) we deduce that the reduced
manifold M = H\J~!(0) consists of pairs (g, p) of symmetric 3 x 3 matrices
with § >0 & det ¢ = 1 and tr p = 0. The symplectic form on M is & = —d8,
where from (6) '

§=1tr(z"'pdg). (10)
Evidently .
M =~ T*S ~ R5 x RS,

Remarks: (i) These results could also have been obtained by means of the
cotangent bundle reduction theorem [8]. In this regard we point out that the
symplectic structure on M ~ T*S is canonical, although the coordinates (g,D)
are not (¢f. (10)). This is because we are working in the material representation
of T*S. -

(i5) The reduced symplectic manifold T*S also arises in the liquid drop model
of the nucleus {6, 9, 10]. In this context, the cotangent bundle of § = SO3N\SL(3,R)
appears as a coadjoint orbit of the 15—dimensional group CM(3) of (lower) block
triangular matrices in Sp(3,R). The fact that M can be viewed as a reduction of
T*SL(3,R) has proved quite useful in deriving the general form of “collective”
Hamiltonians. Here, however, the reducing group SO(3) is unimodular.

3. Unimodularization and Quantization

We now uvrimodularize the pseudo-rigid body and quantize it. For the
necessary background regarding quantization theory in this context, see [2]. Since
we will be working exclusively in the cotangent category, it suffices to consider
only the half-density quantization.

Let G = G x h* be the “extended” configuration space. Then the smooth
quantum state space associated to the extended phase space M ~ T*G is A3 (G),
the linear space of 1/2—densities on G. We may explicitly describe these half-
densities as follows.

Fix an everywhere nonvanishing right G—invariant half-density 65 on G and
let £ denote the Lebesgue volume on h*. Then : '

~ 65 =06c® leglt (1
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is a half-density on the extended configuration space which is invariant under the
left action of H on G given by?

((h,v),(g,m) ~ (hg, Ady: (n) + v)-

Indeed, invariance follows from the observations that (i) for h € H, det{ Ady) is
the same regardless of whether one computes the adjoint action with respect to G
or its subgroup H.? and (ii) [det(Ady)] [det(Ad,%)] = 1. Thus wave functions
¥ ¢ A3(G) take the form ¥ = ¢ (A4, B,n)éa

Since 6 1s H-invariant it follows that 8(5,,,};6(? = 0 forall (¢,v) € h.
(Here (¢, v)a denotes the fundamental vector field on G corresponding to (§,v) €
b.) Thus Ji,) quantizes as

QJien¥] = —i[(é, ¥ @bH] ba- (12)

Setting ¢ = 0, the Dirac prescription (3) yields P = ¥ (A, B) only. Similarly,
setting v = 0 we obtain b =1 (Q/ (det Q)E). Thus the space Hg of H-invariant
quantum states of the pseudo-rigid body consists of wave functions of the form

¥ = (Q/ (det Q)F) 8¢ (13)

We remark that elements of Hg are not square integrable over G.
It is instructive to compare (12) and (13) with what one would obtain by

directly quantizing the original system. Every element ¥ e A3 (G) can be written
¥ = ¢ (A, B)ég. Note, however, that ¢ is not invariant under the action of
H on G; in fact,
1 ‘
25(‘.5(‘; = E t?‘(adg) 6G (14)

for all £ € h. Thus we have

QJ (2} = -itab + 5 tr(oc) s 5

z Note that the action ¥ in (2} is just the cotangent Tift of this action 1o M=TG.

3 The same can then be said for tr{adg) for all £ € h. These coicidences result from the particular-forms of G and
H.

L]
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Consequently the modified quantization condition {4) reduces to éop =0, since
the right hand side of (4) exactly cancels the half-density contribution in (15),
(This is, of course, why we chose éc as we did. Here we are again making
crucial use of the coincidence that tr(ade) for ¢ € b is the same regardless of
whether ade is computed relative to 4 or G.) The space M, of quasi H-invarians

states therefore consists of wave functions of the form ¥ — P (Q/ (det Q)%) 8a,
consistent with (13) and (11).4

Next we tumn to the quantization of the reduced phase space. The correspond-
ing wave functions & A%(S) may be expressed as ¥ = 5 (7) &5, where §g is
the natural half-density on § induced from ¢ on G as follows. Since H is uni-
modulzir, h carries an Ac{—invaria.nt volume.® Fix a frame 15 for b of unit volume,

Now H acts freely on G, sothat G — S is a principal H-bundle. Thus if ¢ is
a frame for TS, we may define

bs (0) = 8(¢,95), | (16)
where ( is any lift of ( to TG. Since 66 is left H—invariant and H is unimodular,

we see that this definition makes sense, Moreover, bs so defined is independent
of the choice of frame for .

The association H, ~ 7 given by

b (@1 et @) 65 o 4 (3) 65 (17

therefore provides a canonical identification of the f7 ~invariant quantum stateg of
the extended system with the quantum states of the reduced system, as guaranteed
by the Smooth Equivalence Theorem of [2, 4].

Using this result we can endow the space ﬁg with an inner product, (Recall

that elements of Hp are not square integrable over G) We simply use the inner
product on H » L%(S) along with (17) to define

(©.8)= [ 3@ 305
S

Thus our unimodularization technique enables us to make the space of H—invariant
States into a Hilbert space.

Although the coefficient function % is H-invariant, the 1013 wave function ¥ = Yéa is not, since 8¢ is not,

In fact, since 7 is a colangent bundle there i3 a canonical choice for this volume. Simply demand that it give one
when evaluated on frames of the form (9,9*%) for § b & B*, where 9 is any frame for § and 9* is the dual frame for
b*.

*
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4. On the Dirac Quantization Conditions

The computations above illustrate how one unimodularizes (and then quan-
tizes) a system with nonunimodular gauge symmetries. We wish to emphasize
here the fact that one raust unimodularize the original system if there is to be
an intrinsically defined correspondence between the gauge invariant and reduced
quantum states of the system. Why this is so is explained in detail in [11}; see
also [2]. But one can gain an appreciation for what goes wrong in the presence
of nonunimodular gauge symmetries in general by again examining the specific
case of the pseudo-rigid body. One basic problem is that there is no intrinsic
way to associate H~invariant (or even quasi H-invariant) half-densities on G with
half-densities on §; indeed, there is no strict analogue of (16) in either of these
contexts. And it is this relation which is the key ingredient in the canonical
equivalence (17) of the extended and reduced phase space quantizations.

In the absence of unimodularity — as in the quantization of the original phase
space — one can try to mimic the approach of the last section. For instance, fix a
frame ¥ for §; then one may verify from (16) and (11) (scaling & as appropriate)
that

85 (0) = 66 (¢, 9¢) (18)

This result gives rise to an isomorphism H, ~ H, but it is not intrinsically defined
as — in contrast to (16) — it depends on the choice of frame 9 for h. Even
worse, one must tesort to an ad hoc construction in order to identify the space
Ho of H-invariant states with H. (An example of such an ad hoc isomorphism
is provided by (24) below.)

Having extolled the virtues of quantizing the extended unimodular system,
Iet us now study the quantization of the original system. Our analysis thus far
does not distinguish in any significant way between the original and modified
Dirac quantization conditions; as we have indicated above, both H, and H, can
be (noncanonically) identified with 7{. Thus it may seem that either quantization
prescription will lead to results which are (again, noncanonically) equivalent to
those obtained by quantizing the reduced space. In fact this is true if one uses the
modified Dirac prescription (4) as was demonstrated in [11]. But this is certainly
not the case if one uses instead the uncorrected Dirac prescription (1): we will
show that the resulting quantization is actually inconsistent with the quantization
of the reduced phase space. The simplest way to do this is via the quantization
of observables on«M.




Nonumimedularity and the Quantization of the Pseudo-Rigid Body 157

If the quantizations of the original and reduced systems are to be equivalent,
there must exist an isomorphism ¢ : Hy — H which intertwines the quantizations
of (a certain class of) observables. That is, suppose that f is an observable on M
which is H—invariant and so reduces to an observable f on M then we require

o (QF [¥]) = OF [o(W)) (19)

for all ¥ € H,. The class of observables to which (19) applies must include
those which are at most linear in the momenta. We now prove, in the case of the
pseudo-rigid body, that there does not exist such an isomorphism ¢.

For suppose there did. Set § = o=1(§s), where 65 is given by (18). Since
& € Hy it is left H—invariant.

On the other hand, let us consider the action of G on itself by right translations.
Denote by K the momentum map for the lifted action on M; observe that K is
linear in the momenta. Since right translations commute with the left H-action,
the G-action descends to § with corresponding momentum map K on M. Using
(18) and the fact that ¢ is right-invariant, it follows that &g is right-invariant.
Thus QK [65] = Oforall u € g*. Then (19) implies that QK,[6] =0 so
that ¢ is right-invariant as well. Then § must be a constant multiple of §; . But
according to (14), 8¢ is not left H-invariant unless tr (ad;) vanishes for all ¢ € b,
which it does not. Thus we have a contradiction.

As a concrete illustration, consider the right action of GL(3,R) on G given
by (W, (A4, B)) ~ (AW, B). The lifted action on M is

(W,(4, B, 8)) ~ (AW, B,W™'aW, W) .

The corresponding momentum map K : M — gl(3,R)" can be interpreted as the
“material momentum.” Analogous to (7) we obtain from (5) that

Kq (A, B,a,pB) = tr(afl) 20)

for Q € gl(3,R). Since Ky, is linear in the momenta, its quantization is routine;
using the fact that §¢ is right-invariant, we compute

QKq[¥] = — [tr ((Aﬂ)tg—j{;)}ég. @y
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Extend the GL (3, R)-action to ¢ = G x b* by letting it act trivially on the
second factor. Then the momentum map K : M - gl(3,R)" for the lifted action
on M is given by the same formula (20), and it quantizes according to essentially
the same formula (21), viz,,

OKq[¥] = —i| tr (AQ)t-g—% 8¢ (22)

On the other hand, as it is H—invariant, Kq descends 1o M ~ T*S as
Kq(g,p) = tr(g-1pgt). We then find that

QRQ [T] = —1 [tr (n%’g)} és, (23)

where the symmetric matrix « is the unique solution of

2
kG + gr = Qg + 7 — 3 (tr Q)

It is then straightforward, albeit tedious, to directly verify that the isomorphism
Hy ~ 7 unitarily intertwines the operators OFq and OKg. (Alternatively, this
follows from the Smooth Equivalence Theorem.) Similarly one shows using {11]
that the isomorphism H. ~ H induced by the association (18) intertwines the
operators (21) and (23), and that the isomorphism Ho ~ H, induced by the .
association (11) intertwines the operators (21) and (22).

Now suppose that we use instead the uncorrected quantization condition (1).
Furthermore assume that the isomorphism ¢ : Ho — H is chosen in such a way
that

_1
§(A, B) = [det(Ada,m))) *éc(4,B)
— (det A) "% 65 (4, B).
Note that § is the left-invariant helf-density on G associated to the right-invariant
half-density ég. Then from (21) we compute

24)

QKa (6] = 5 (ir 0)5,

and this does not, correspond under o to OKq(8s), which vanishes. Thus
this particular isomorphism o is not an equivalence of the original and reduced
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g:Hy — H.

We close by presenting an entirely different argument as to why the uncor-
rected Dirac prescription (1) is untenable. Suppose that we fix the center of mass
of the body at the outset, so that the spatial translations in G and H are eliminated.
Then H is unimodular! If we now quantize this system and its reduction, we ob-
tain results which coincide exactly with those presented here using the modified
quantization condition (4). As one does not expect that fixing the center of mass
of the body will substantially alter its quantum behavior, one must again conclude
that the “—2£ ¢r(ad;)” correction is essential,

quantum systems. Of course, our result above shows that this is the case for any
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