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1 Introduction

We continue our study of Groenewold-Van Hove obstructions to quanti-
zation. Let M be a symplectic manifold, and suppose that b is a finite-
dimensional “basic algebra” of observables on M . Given a Lie subalgebra
O of the Poisson algebra C∞(M) containing b, we are interested in de-
termining whether O can be “quantized.” (See §§2–3 and Gotay [2000] for
the precise definitions.) Already we know that such obstructions exist in
many circumstances: In Gotay and Grundling [1999] we proved that there
are no finite-dimensional quantizations of (O, b) on a noncompact symplec-
tic manifold, for any such Lie subalgebra O. Based on the work of Avez
[1974] or Ginzburg and Montgomery [2000], it is straightforward to show
that there are no quantizations of (C∞(M), b) for any compact symplec-
tic manifold M and basic algebra b. Furthermore, in Gotay, Grabowski,
and Grundling [2000] we proved that there are no quantizations of the pair
(P (M), b) on a compact symplectic manifold, where P (M) is the Poisson
algebra of polynomials on M generated by b.

It remains to understand the case when M is noncompact and the quan-
tizations are infinite-dimensional, which is naturally the most interesting
and difficult one. Here one has little control over either the types of basic
algebras that can appear (in examples they range from nilpotent to sim-
ple), their representations, or the structure of the polynomial algebras they
generate. However, in this context it is known from Gotay and Grabowski
[2001] that there is an obstruction to quantizing P (M) when b is nilpotent,
but that there is no universal obstruction when b is merely solvable.

In this paper we consider the problem of quantizing (P (M), b) in the
other extreme case, viz. when the basic algebra is semisimple. To begin,
we recall from Gotay [2000] that if a symplectic manifold M admits b as a
basic algebra, then M must be a coadjoint orbit in b∗. Unfortunately, it is
difficult to determine exactly which orbits M ⊂ b∗ are “basic,” i.e. admit
b as a basic algebra (cf. §2). Nonetheless, we are able to give conditions
which guarantee that various types of orbits will be basic (Proposition 2.1).
In particular, principal nilpotent orbits in b∗ are basic.

We then prove in §3 that there do exist polynomial quantizations of
certain basic orbits, specifically the nilpotent ones:

1.1 Theorem. Let b be a finite-dimensional semisimple Lie algebra, and
M a basic nilpotent coadjoint orbit in b∗. Then there exists a polynomial
quantization of (P (M), b).

The crucial structural feature underlying Theorem 1.1 is that nilpotent
orbits M ⊂ b∗ are conical, so that the (polynomial) ideal I(M) of M
is homogeneous. This allows us to split the coordinate ring of M as a
semidirect product

P (M) = (R ⊕ b) � P(2)(M),
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where P(2)(M) is the ideal of polynomials all of whose terms are at least
quadratic. The quantization constructed in the proof of Theorem 1.1 has
the property that it is zero on P(2)(M), and so is “essentially trivial.” We
then show that any polynomial quantization of a nilpotent orbit in sl(2,R)∗

must be essentially trivial (Proposition 3.3). Thus, while polynomial quan-
tizations of basic nilpotent orbits do exist, this example indicates that they
are likely to be uninteresting.

If I(M) is not homogeneous, then one might expect that there is an
obstruction to quantizing P (M), cf. Gotay [2000]. We show in §3 that
this is indeed the case when b = sl(2,R). Thus polynomial quantizations
are forced to be trivial for nilpotent orbits in sl(2,R)∗, and are genuinely
obstructed for all other basic orbits.

2 Semisimple Basic Algebras

A key ingredient in the quantization process is the choice of a basic algebra
of observables in the Poisson algebra C∞(M). This is a (real) Lie subalgebra
b of C∞(M) such that:

(B1) b is finitely generated,

(B2) the Hamiltonian vector fields Xb, b ∈ b, are complete,

(B3) b is transitive and separating, and

(B4) b is a minimal Lie algebra satisfying these requirements.

A subset b ⊂ C∞(M) is “transitive” if {Xb(m) | b ∈ b} spans TmM
at every point. It is “separating” provided its elements globally separate
points of M . Throughout this paper we assume that b is finite-dimensional
and semisimple, and we routinely use the Killing form to identify b with
b∗.

As previously noted, if the symplectic manifold M admits b as a basic
algebra, then M must be a coadjoint orbit of the adjoint group B of b. It
is of interest to determine those orbits M ⊂ b∗ which admit b as a basic
algebra. Unfortunately, this is not a straightforward matter. For instance,
let b = sl(2,R), so that the nonzero orbits are either open half-cones,
hyperboloids of one sheet, or components of hyperboloids of two sheets.
One can verify that the first two types of orbits are basic for sl(2,R), but
that the third type is not. (Instead, the components of hyperboloids of two
sheets are are basic for subalgebras of triangular matrices.) Note that these
orbits are all principal (i.e. have maximal dimension) in sl(2,R)∗.

The instances in which M ⊂ b∗ is guaranteed to be basic are listed below.

2.1 Proposition. Let b be a finite-dimensional semisimple Lie algebra,
and M ⊂ b∗ a nonzero coadjoint orbit. If either:
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(i) b is compact and M is principal,

(ii) b is compact and simple, and M is arbitrary, or

(iii) M is nilpotent and principal,

then M admits b as a basic algebra.

Before giving the proof, we make some remarks and recall several im-
portant facts. As the sl(2,R) example shows, neither (i) nor (ii) remain
valid when b is noncompact. It also shows that (iii) fails if “nilpotent”
is replaced by “semisimple.” It is easy to see that (iii) no longer holds if
“principal” is deleted: Let O be a nilpotent half cone in sl(2,R). Then the
nilpotent orbit O×{0} ⊂ sl(2,R)⊕ sl(2,R) has sl(2,R) as a basic algebra,
not sl(2,R) ⊕ sl(2,R). Similarly (ii) fails if “simple” is deleted. Finally,
regarding (iii), observe that if there is a nonzero nilpotent orbit in b∗, then
b is necessarily noncompact.

Given a (noncompact) semisimple Lie algebra b, recall that a “standard
triple” is a trio {h, e+, e−} of elements of b satisfying the commutation
relations

[h, e±] = ±2e± and [e+, e−] = h.

Thus {h, e+, e−} spans a subalgebra of b isomorphic to sl(2,R). The neu-
tral element h is semisimple, while e± are nilpotent. Given a nilpotent
element e ∈ b, the Jacobsen-Morozov theorem (Thm. 9.2.1 in Collingwood-
McGovern [1993]) asserts that there exists a standard triple {h, e+, e−} in
b with nilpositive element e+ = e.

Proof of Proposition 2.1. Parts (i) and (ii) are proven in §4 of Gotay,
Grabowski, and Grundling [2000], so here we consider only the remaining
case (iii), the proof of which has been kindly supplied by R. Brylinski.

Clearly conditions (B1)–(B3) are satisfied, so we need only check the
minimality condition (B4). Suppose a ⊂ b is transitive on M , so that

b = a + be (2.1)

for every e ∈ M , where be denotes the centralizer of e.
Fix a principal nilpotent e+ ∈ M . We first show that e+ is contained in

a Borel subalgebra (“BSA”) of b. Let {h, e+, e−} be a standard triple in b

with nilpositive element e+. From the representation theory of sl(2,R) we
see that the eigenvalues of adh are integral; we may therefore decompose

b =
⊕
i∈Z

bi (2.2)

where bi is the eigenspace of adh corresponding to the eigenvalue i. Since
e+ is principal, the neutral element h is generic, so its centralizer h = b0
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is a Cartan subalgebra (“CSA”) of b. Since furthermore [bi, bj ] ⊂ bi+j ,
k = h ⊕ n is a BSA, where n =

⊕
i>0 bi. Finally, as [h, e+] = 2e+ ∈ b2, it

follows that k is the desired BSA.
From the proof of Thm. 5 in Kostant [1963] we know that be+ ⊂ n, which

together with (2.1) implies that b = a + m for every B-conjugate m of n.
We will prove this forces a = b.

Since b = a + n, we may write h = h′ + n where h′ ∈ a and n ∈ n. So

h′ = h − n

lies in a and is generic (since h and h′ have the same characteristic polyno-
mial). Thus the centralizer h′ of h′ is also a CSA of b. A calculation based
on the decomposition (2.2) shows that h′ ⊂ k. This gives rise to the Levi
decomposition

k = h′ ⊕ n.

We next claim that a contains h′. Indeed, using b = a + n again, we see
that each element x′ ∈ h′ gives rise to an element x = x′ − nx′ of a, where
nx′ ∈ n. Since a is stable under adh′ , it follows that both x′ and nx′ lie in
a. (The reason is that h′

C is the zero eigenspace of adh′ in bC and nC is
the sum of nonzero eigenspaces. So both x′ and nx′ lie in aC. As both x′

and nx′ are real they must belong to a.) In particular a contains h′.
We can now finish the proof. We have the triangular decomposition

b = m ⊕ h′ ⊕ n

where m is the unique adh′ -stable complement to k in b. By a result of
Borel and Tits [1965], the two Borel subalgebras h′ ⊕ n and m ⊕ h′ are
B-conjugate, whence their nilradicals n and m are as well. Since a contains
h′, aC is the direct sum of h′

C and some of its root spaces. Using b = a+n,
we see that aC contains mC. Similarly, using b = a + m, we see that aC

contains nC. Thus aC = bC and so a = b. �

Let b be a Lie algebra and M a coadjoint orbit in b∗. Consider the sym-
metric algebra S(b), regarded as the ring of polynomials on b∗. The Lie
bracket on b may be extended via the Leibniz rule to a Poisson bracket on
S(b), so that the latter becomes a Poisson algebra. Let I(M) be the asso-
ciative ideal in S(b) consisting of all polynomials which vanish on M and
set P (M) = S(b)/I(M). Since M is an orbit I(M) is also a Lie ideal, hence
a Poisson ideal, so the coordinate ring P (M) of M inherits the structure
of a Poisson algebra from S(b). We denote the Poisson bracket on P (M)
by {·, ·}.

Let P k(M) denote the subspace of polynomials of degree at most k.
(When I(M) 
= {0}, P (M) is not freely generated as an associative algebra
by the elements of b. Consequently, the notion of “homogeneous polyno-
mial” is not necessarily well-defined, but that of “degree” is.) In the cases
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when it does make sense, we let Pl(M) denote the subspace of homoge-
neous polynomials of degree l, so that P k(M) =

⊕k
l=0 Pl(M). We then

also introduce P(k)(M) =
⊕

l≥k Pl(M). Notice that when b is semisimple,
P1(M) = b and P 1(M) = R ⊕ b.

3 Quantization

Fix a basic algebra b on M , and let O be any Lie subalgebra of C∞(M)
containing 1 and b. By a quantization of (O, b) we mean a linear map Q
from O to the linear space Op(D) of symmetric operators which preserve
a fixed dense domain D in some separable Hilbert space H, such that for
all f, g ∈ O,

(Q1) Q({f, g}) = i[Q(f),Q(g)],

(Q2) Q(1) = I,

(Q3) if the Hamiltonian vector field Xf of f is complete, then Q(f) is
essentially self-adjoint on D,

(Q4) Q represents b irreducibly,

(Q5) D contains a dense set of separately analytic vectors for some set of
Lie generators of Q(b), and

(Q6) Q represents b faithfully.

We refer the reader to Gotay [2000] for an extensive discussion of these
definitions. We take Planck’s reduced constant to be 1. Here we are inter-
ested in the case when O = P (M).

Let A be the associative algebra over C generated by I along with
{Q(b) | b ∈ b}, and let Ak denote the subspace of polynomials of degree
at most k in the Q(b). We say that a quantization Q of P (M) is polyno-
mial if it is valued in A. That “polynomials quantize to polynomials” can
be regarded as a generalized “Von Neumann rule,” cf. Gotay [2000].

Proof of Theorem 1.1. Let M be a basic nilpotent orbit. Since each
nilpotent orbit is conical (Brylinski [1998]), it follows that we may choose
a set of generators for I(M) which are homogeneous. As a consequence,
the gradation of S(b) by degree passes to the quotient P (M). Thus the
notion of homogeneous polynomial does make sense in P (M). Further-
more, by virtue of the commutation relations of b, for each l ≥ 0 the
subspaces Pl(M) are ad -invariant: {P1(M), Pl(M)} ⊂ Pl(M). In view of
this, {Pk(M), Pl(M)} ⊂ Pk+l−1(M), whence each P(l)(M) is a Lie ideal.
We thus have the semidirect sum decomposition

P (M) = P 1(M) � P(2)(M). (3.1)
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Because of (3.1), we can obtain a polynomial quantization Q of all of
P simply by finding an appropriate representation of P 1(M) = R⊕ b and
setting Q(P(2)(M)) = {0}! To this end, let B̃ be the connected, simply
connected Lie group with Lie algebra b, and let Π be a faithful irreducible
unitary representation of B̃ on a Hilbert space H. (For instance, we may
take Π to be a generic irreducible component of the left regular represen-
tation of B̃ on L2(B̃), cf. §5.6 in Barut and Ra̧czka [1986].) Let D ⊂ H be
the dense set of analytic vectors for Π, and define π = −i d Π�D, cf. §11.4
ibid. Extend π to P 1(M) by setting π(1) = I. Now take Q = π ⊕ 0 (recall
(3.1)); then it is straightforward to verify that Q satisfies (Q1)–(Q6) and
so is the required quantization of (P (M), b). �

Note that the quantization constructed above is infinite-dimensional. In-
deed, there can be no finite-dimensional quantizations of a noncompact
basic algebra (Gotay and Grundling [1999]); this is a reflection of the fact
that semisimple Lie groups of noncompact type have no faithful finite-
dimensional unitary representations. Furthermore, since Q(P(2)(M)) =
{0}, this quantization is essentially trivial. When b = sl(2,R) it turns out
that any polynomial quantization is essentially trivial, as we show after
some preliminaries.

Henceforth take b = sl(2,R) and let M be an arbitrary coadjoint orbit.
It is convenient to complexify. Define

h =
(

0 −i
i 0

)
and e± =

1
2

[(
1 0
0 −1

)
±

(
0 i
i 0

)]
.

Then {h, e+, e−} is a standard triple in bC = sl(2,C). Note that h2+4e+e−
is the Casimir element for bC; consequently

h2 + 4e+e− = c

is constant on M .
Suppose Q were a polynomial quantization of (P (M), b) on a dense

invariant domain D in an infinite-dimensional Hilbert space H. By re-
quiring Q to be complex linear, we can regard it as a “quantization” of
(P (M)C, bC). From now on, we abbreviate P (M)C = P , etc. We set
H = Q(h) and E± = Q(e±), and let (·, ·) denote the anti-commutator.
Finally, observe that H2 + 4(E+, E−) is the Casimir element for the repre-
sentation Q of bC; since by axiom (Q4) this representation is irreducible,

H2 + 4(E+, E−) = CI (3.2)

for some fixed constant C (cf. Prop. 3 in Gotay and Grabowski [2001]).
We first establish the following technical result.

3.1 Lemma. For any nonnegative integer r, the set of operators

Sr = {HjE l
+, HkE m

− | j + l ≤ r, k + m ≤ r}
forms a basis for Ar.
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Proof. We proceed by induction on r. The statement is obviously true for
S0 = {I}. Now assume Sr−1 is a basis for Ar−1.

Any element of Ar can be written
∑

k+l+m=r

αr
klmHkE l

+E m
− + lower degree terms.

Now observe that
E+E− = (E+, E−) − i

2
H.

Applying (3.2) we may use this relation to eliminate all factors of E+E−
in the leading terms of the expression above, thereby obtaining

αrH
r +

∑
j+l=r

l≥1

β +
jl HjE l

+ +
∑

k+m=r
m≥1

β −
kmHkE m

− + lower degree terms (3.3)

for some coefficients αr, β
+

jl , β −
km. Together with the induction hypothesis,

this shows that Sr spans Ar.
Now suppose there exist coefficients αr, β

+
jl , β −

km, not all zero, such that
the expression (3.3) vanishes. We claim that without loss of generality we
may assume αr 
= 0. For suppose β +

JL were the first nonzero coefficient in
this expression. By taking the commutator of the equation (3.3) = 0 with
E− L-times, applying the commutation relations, and simplifying using
(3.2), we obtain a condition of the form (3.3) = 0 where now the coefficient
of Hr is nonzero. Similarly, if β −

KM were the first nonzero coefficient in
(3.3), then taking the commutator with E+ M -times would lead to the
same end.

Now repeatedly take the commutator of the equation (3.3) = 0 with H.
This yields further independent conditions of the form (3.3) = 0 but with
no terms involving Hr. By Gaussian elimination, we may then remove
all terms on the left hand side of (3.3) = 0 of the types β +

jl HjE l
+ and

β −
kmHkE m

− with j, k < r. Thus we end up with

αrH
r + Ar−1 = 0 (3.4)

where αr 
= 0 and Ar−1 ∈ Ar−1. Taking the commutator of (3.4) with H
yields [Ar−1, H] = 0. Applying the induction hypothesis, it follows that
Ar−1 can only depend upon H. Thus (3.4) reduces to

r∑
k=0

αkHk = 0.

Factor this equation over C:

αr(H − λr) · · · (H − λ1) = 0. (3.5)
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As αr 
= 0, (3.5) implies that the range of Tr−1 = (H−λr−1) · · · (H−λ1) is
contained in the λr-eigenspace of H. By the induction hypothesis Tr−1 
= 0,
so there exists ψ ∈ D such that ψr−1 = Tr−1ψ is a (nonzero) eigenvector
of H. In view of the irreducibility assumption (Q4), we conclude from
sl(2,R) theory (cf. Lang [1975]) that the set {E l

+ψr−1, E
m
− ψr−1 | l, m ∈ N}

contains an infinite number of eigenvectors of H, corresponding to distinct
eigenvalues λ. Each such λ must satisfy

∑r
k=0 αkλk = 0 which is impossible.

Thus αr = 0 and so Sr is a linearly independent set. �

We now determine what Q(h2) must be.

3.2 Lemma. Q(h2) = αH2 + γI, where α, γ ∈ C.

Proof. By assumption Q(h2) must be a polynomial of degree r, say, in
H, E+, E−, which by Lemma 3.1 we may write in the form (3.3). Since H
commutes with Q(h2), from Lemma 3.1 we see that Q(h2) can only depend
on H:

Q(h2) =
r∑

k=0

αkHk. (3.6)

Using (Q1) and (Q2) to quantize the classical identity

3h2 − 1
2
{{h2, e−}, e+} = c

we obtain

3Q(h2) +
1
2
[[Q(h2), E−], E+] = cI. (3.7)

Substituting (3.6) into (3.7) and simplifying yields
(

3 − 1
2
r(r + 1)

)
αrH

r + lower degree terms = cI.

From Lemma 3.1 it follows that Q(h2) is at most quadratic in H. Taking
(3.6) with r = 2, again substituting into (3.7) and simplifying, we obtain the
advertised expression for Q(h2), where α = α2 is arbitrary and γ satisfies

3γ = c − αC. (3.8)

�

Using (Q1) to quantize the identity

he± = ±1
4
{h2, e±},
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applying Lemma 3.2, and simplifying, we obtain

Q(he±) = α(H, E±).

In turn, using this to quantize the identities

e 2
± = ±1

2
{he±, e±},

we find that

Q(e 2
± ) = αE 2

± .

Similarly, upon quantizing

e+e− =
1
2

(
h2 − {he+, e−}

)

and using the formulæ above, we get

Q(e+e−) = α(E+, E−) +
γ

2
I.

Next use these formulæ to quantize the classical identities

2{e 2
+ , e 2

− } + {he+, he−} = ch

and

{
(e+ − e−)2, {e 2

+ − e 2
− , h(e+ + e−)}

}
+ 3

4

{
(e+ + e−)2, {(e+ + e−)2, h(e+ − e−)}

}
= 8ch(e+ − e−).

After tedious calculations and simplifications, we end up with

α2 (C + 3)H = cH (3.9)

and

α3 (C + 9) (H, E+ − E−) = αc(H, E+ − E−), (3.10)

respectively.
With these formulæ in hand, we are now ready to prove

3.3 Proposition. Let M be a nilpotent orbit in sl(2,R)∗. Then for any
polynomial quantization Q of (P (M), sl(2,R)),

Q(P(2)(M)) = {0}.
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Proof. We first claim that Q(P2) = {0}. To see this, observe that since M
is nilpotent, the constant c = 0. Since by (Q6) H 
= 0, (3.9) implies that
either α = 0 or C = −3 in the given representation. But if α = 0, then
from (3.8) we conclude that Q(h2) = 0 which, as we show below, leads to
the desired conclusion.

In the event that C = −3, we turn to (3.10). Since (H, E+ −E−) 
= 0 by
Lemma 3.1, we must again have α = 0. Thus in any eventuality Q(h2) = 0
and it follows from (Q1) that Q(P2) = {0}, since h2 is a cyclic vector
for the adjoint action of sl(2,C) on P2 (i.e., every element of P2 can be
written as a sum of repeated brackets of elements of sl(2,C) with h2, as
the calculations above show).

Finally, it is straightforward to check that hl is a cyclic vector for the
adjoint representation of sl(2,C) on Pl. Since for l ≥ 2

hl =
1

2l + 2
{
{h2, hl−2e+}, e−

}

(recall that c = 0), Q(h2) = 0 together with (Q1) imply that Q(hl) = 0 for
l > 2. Thus Q(P(2)) = {0}. �

When M ⊂ sl(2,R)∗ is not nilpotent (in which case it must be semisim-
ple), it turns out that it is not even possible to polynomially quantize
(P (M), b); rather than finding that Q(P(2)(M)) = {0}, we get an outright
inconsistency.

3.4 Proposition. If M is a basic semisimple orbit in sl(2,R)∗, then
there is no polynomial quantization of (P (M), b).

Proof. We mimic the proof of Proposition 3.3; the only difference is that
c is now nonzero. As before, H 
= 0, so by (3.9)

α2 (C + 3) = c.

In particular, since c 
= 0, α 
= 0. Since (H, E+−E−) 
= 0, (3.10) then gives

α2 (C + 9) = c,

which is the required contradiction. �

Proposition 3.4 is the noncompact analogue of the results obtained in Go-
tay, Grundling, and Hurst [1996] for b = su(2), in which context every orbit
is semisimple. In fact, the only significant difference between the analyses
of semisimple orbits in the sl(2,R) and su(2) cases is that the representa-
tions for the former are infinite-dimensional, while those for the latter are
finite-dimensional. Since moreover the complexifications of these Lie alge-
bras are the same (viz. sl(2,C)), the arguments leading from Lemma 3.2
to Proposition 3.4 don’t distinguish between sl(2,R) and su(2). The same
is true of the results in §2 ibid., which we may therefore immediately carry
over to the present context, yielding:
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3.5 Proposition. Let M be a basic semisimple orbit in sl(2,R)∗. Then
P 1(M) = R ⊕ sl(2,R) is the largest Lie subalgebra of the coordinate ring
P (M) that can be consistently polynomially quantized.

Thus the obstruction to quantizing polynomial algebras on semisimple
orbits in sl(2,R)∗ is very severe: the best one can do is quantize the Lie
subalgebra of affine polynomials!

We end this section with a discussion of the assumption that Q be polyno-
mial. In general, when the basic algebra b is compact (or, equivalently, when
the coadjoint orbit M is compact) every quantization of (P (M), b) is poly-
nomial. For then the Hilbert space H must be finite-dimensional, and the
claim follows from a well known property of enveloping algebras, cf. Prop.
2.6.5 in Dixmier [1977]. Furthermore, when b is nilpotent, it was proven
that Q must be polynomial in Gotay and Grabowski [2001]. These results
are direct consequences of the irreducibility condition (Q4). However, the
analogous statement does not seem to hold for noncompact semisimple
basic algebras.

To see this, we provide an alternate version of Lemma 3.2, which does not
assume that Q is polynomial ab initio. For what follows, we need to be more
specific about the domain D. As a consequence of (Q5), Q � b integrates
to a unique unitary representation Π of B̃ on H (Cor. 1 of Flato and
Simon [1973]). Naturally associated with Π is the derived representation
of b on the domain Cω(Π) consisting of analytic vectors of Π. We shall
henceforth assume that D ⊃ Cω(Π). Furthermore, for the sake of simplicity,
we suppose that the representation Π drops to SL(2,R) from its double
cover B̃.

Then from sl(2,R) theory (cf. Lang [1975]) we know that (i) the spec-
trum ∆ of H consists of certain imaginary integers, (ii) in view of (Q4),
for each −in ∈ ∆ the corresponding eigenspaces Hn are 1-dimensional, and
(iii) each eigenvector of H is an analytic vector, so that Hn ⊂ D. Further-
more, the quantizations of b are labeled by certain complex numbers s, and
that for each −in ∈ ∆, there is a vector ψn ∈ Hn such that

Hψn = −inψn and E±ψn = − i

2
(s + 1 ± n)ψn±2. (3.11)

By (Q1), both H and Q(h2) commute. From observations (ii) and (iii)
above, and the fact that

⊕
n∈i∆ Hn is dense in H, it follows that

Q(h2) = ξ(H) (3.12)

for some Borel function ξ on the spectrum of H. We now compute ξ.
Apply the relation (3.7) to ψn; from (3.11) and (3.12) we get the recursion

relation

3ξn − 1
8
[
(s + (1 + n)) (s − (1 + n)) (ξn − ξn+2)

− (s + (1 − n)) (s − (1 − n)) (ξn−2 − ξn)
]

= c, (3.13)
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where ξn is defined via ξ(H)ψn = ξnψn. It is straightforward to check that
any polynomial solution of this recursion relation is of the form ξn = γ−αn2

from which, in view of (3.12) and (3.11), we recover the formula derived
previously for Q(h2). But there are other solutions of (3.13) which are
transcendental: for instance, consider the discrete series representation with
s ≥ 1 an even integer. Then ∆ = −i{s+1, s+3, . . . }, and with some effort
one can show that the general solution of (3.13) is

ξn = γ − αn2 + β
(
(s2 − 3n2 − 1)

[
�

(
1+n−s

2

)
− �

(
1+n+s

2

)]
− 6ns

)
,

where α, β are arbitrary, γ is given by (3.8), and the digamma function �

is the logarithmic derivative of the gamma function. Similar formulæ hold
for other allowable values of s.

Thus in the case of sl(2,R) irreducibility enables one to determine Q(h2)
and then, following the template set forth after the proof of Lemma 3.2, all
of Q(P 2(M)), and so on. But unlike for su(2), irreducibility alone appar-
ently does not suffice to guarantee that Q is polynomial. While Proposi-
tion 3.4 shows that polynomial quantizations of (P (M), sl(2,R)) for semi-
simple M cannot exist, it is unclear whether such transcendental quanti-
zations are similarly obstructed.

4 Discussion

The quantization of (P (M), b) for M ⊂ b nilpotent given above is not
the first know example of a consistent quantization: In Gotay [1995] a full
quantization of (C∞(T 2)), t) was exhibited, where t is the basic algebra
of trigonometric polynomials of mean zero; and in Gotay and Grabowski
[2001] a polynomial quantization of P (T ∗R+), with the basic algebra be-
ing the affine algebra a(1), was constructed. This last example “works” for
exactly the same reason the nilpotent one does, viz. the ideal I(M) is homo-
geneous. However, in contrast to the case of sl(2,R) (cf. Proposition 3.3),
a polynomial quantization of P (T ∗R+) with basic algebra a(1) need not
be zero on P(2).

In fact, a moment’s reflection shows that there will exist a polynomial
quantization of (P (M), b) for any basic algebra b whenever I(M) is homo-
geneous, for then one has the crucial splitting (3.1). But this construction
will fail whenever I(M) is inhomogeneous so that P(2)(M) is not well-
defined. It is tempting to conjecture that an obstruction to quantization
exists whenever I(M) is inhomogeneous; this is borne out explicitly here in
the case of semisimple orbits in sl(2,R) by Proposition 3.4. This correlation
is also known to hold in all other examples that have been investigated thus
far (Gotay [2000]).

The next step is to extend Propositions 3.3 and 3.4 to higher rank
semisimple basic algebras. Clearly, this necessitates using more Poisson the-
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oretic techniques, as opposed to the computational approach taken here.
These issues are addressed in Gotay [2001].
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