On Quantizing Nonnilpotent Coadjoint Orbits of Semisimple Lie Groups

MARK J. GOTAY*

Department of Mathematics, University of Hawai'i, 2565 The Mall, Honolulu, HI 96822, U.S.A. e-mail: gotay@math.hawaii.edu

(Received: 21 August 2002)

Abstract. We prove that there is no consistent polynomial quantization of the coordinate ring of a nonnilpotent coadjoint orbit of a semisimple Lie group.

Mathematics Subject Classifications (2000). Primary: 81S99; secondary: 17B63.

Key words. Poisson algebras, quantization, semisimple Lie groups.

1. Introduction

In a recent paper [1], we showed that there do not exist polynomial quantizations of the coordinate ring P(M) of a semisimple coadjoint orbit $M \subset sl(2, \mathbb{R})^*$. Here we extend that result to any nonnilpotent coadjoint orbit of a general semisimple Lie group:

THEOREM 1. Let \mathfrak{b} be a finite-dimensional semisimple Lie algebra, and M a non-nilpotent coadjoint orbit in \mathfrak{b}^* . Then there are no polynomial quantizations of the coordinate ring P(M).

Consider the symmetric algebra $S(\mathfrak{b})$, regarded as the ring of polynomials on \mathfrak{b}^* . The Lie bracket on \mathfrak{b} may be extended via the Leibniz rule to a Poisson bracket on $S(\mathfrak{b})$, so that the latter becomes a Poisson algebra. Let I(M) be the associative ideal in $S(\mathfrak{b})$ consisting of all polynomials which vanish on M and set $P(M) = S(\mathfrak{b})/I(M)$. Since M is an orbit I(M) is also a Lie ideal, hence a Poisson ideal, so the coordinate ring P(M) of M inherits the structure of a Poisson algebra from $S(\mathfrak{b})$. We denote the Poisson brackets on both P(M) and $S(\mathfrak{b})$ by $\{\cdot, \cdot\}$.

Here we are interested in quantizing the coordinate ring P(M). By a quantization of P(M) we mean a Lie representation \mathcal{Q} thereof by symmetric operators preserving a fixed dense domain D in some separable Hilbert space \mathcal{H} , such that $\mathcal{Q} \upharpoonright \mathfrak{b}$ is irreducible, integrable, and faithful. Let \mathcal{A} be the associative operator algebra generated over \mathbb{C} by I and $\{\mathcal{Q}(b)|b \in \mathfrak{b}\}$. We say that a quantization \mathcal{Q} of P(M) is polynomial if \mathcal{Q} is valued in \mathcal{A} . We refer the reader to [2] for a detailed discussion of quantization.

^{*}Supported in part by NSF grant DMS 00-72434.

48 MARK J. GOTAY

2. Proof of Theorem 1

Suppose to the contrary that \mathcal{Q} were a polynomial quantization of P(M) in a dense invariant domain D in a Hilbert space \mathcal{H} . By extending \mathcal{Q} to be complex linear, we obtain a Lie representation $\mathcal{Q}_{\mathbb{C}}$ of the Poisson algebra $P(M, \mathbb{C})$ of complex-valued polynomials on M in D.

By assumption the representation of $\mathfrak b$ in D provided by $\mathcal Q$ may be integrated to a strongly continuous unitary representation Π of the 1-connected Lie group B with Lie algebra $\mathfrak b$ in $\mathcal H$. Let $B_{\mathbb C}$ be the universal complexification of B; since B is simply connected, $B_{\mathbb C}$ can be identified with the 1-connected semisimple complex analytic group with Lie algebra the complexification $\mathfrak b_{\mathbb C}$ of $\mathfrak b$. (See [3], pp. 256–258 and 400–404 for background on complexifications of Lie groups.) Since B is semisimple, B is a closed subgroup of $B_{\mathbb C}$, and so we may use induction to obtain a strongly continuous unitary representation $\Pi_{\mathbb C}$ of $B_{\mathbb C}$ in a certain infinite-dimensional Hilbert space $\mathcal K$.

Now let C be a compact real form of $B_{\mathbb{C}}$, and denote by Γ the restriction of $\Pi_{\mathbb{C}}$ to C. As every strongly continuous unitary representation of a compact Lie group is completely reducible, we may decompose $\mathcal{K} = \bigoplus_{i \in I}^{\wedge} \mathcal{K}_i$ for some index set $I \subset \mathbb{Z}$, where the finite-dimensional invariant subspaces \mathcal{K}_i are the carriers of the irreducible constituents Γ_i of Γ . Let \mathfrak{c} be the Lie algebra of C; then for each $i \in I$, we have the derived representation $d\Gamma_i$ of \mathfrak{c} in \mathcal{K}_i . Set $d\Gamma = \bigoplus_{i \in I} d\Gamma_i$; this gives a representation of \mathfrak{c} in the dense subspace $D_C = \bigoplus_{i \in I} \mathcal{K}_i$.

Choose a basis $\{c_1, \ldots, c_r\}$ of c. Since $c_{\mathbb{C}} = \mathfrak{b}_{\mathbb{C}}$ and as by assumption \mathcal{Q} is valued in \mathcal{A} , for every $f \in P(M, \mathbb{C})$ we may expand

$$\mathcal{Q}_{\mathbb{C}}(f) = \sum_{n_1, \dots, n_r} a^f_{n_1, \dots, n_r} \mathcal{Q}_{\mathbb{C}}(c_1)^{n_1} \cdots \mathcal{Q}_{\mathbb{C}}(c_r)^{n_r}$$

for some coefficients a_{n_1,\dots,n_r}^f . By means of this formula we can extend the representation $d\Gamma$ of \mathfrak{c} to a Lie representation γ of $P(M,\mathbb{C})$ in D_C :

$$\gamma(f) = \sum_{n_1,\dots,n_r} a^f_{n_1,\dots,n_r} d\Gamma(c_1)^{n_1} \cdots d\Gamma(c_r)^{n_r}$$

with the *same* coefficients. As each subspace K_i is invariant, γ restricts to a representation γ_i of $P(M, \mathbb{C})$ in K_i . We will show that the existence of these representations γ_i leads to a contradiction.

To this end we recall the following algebraic fact, the proof of which is given in [4].

LEMMA 2. If L is a finite-codimensional Lie ideal of an infinite-dimensional Poisson algebra P with identity, then either L contains the derived ideal $\{P, P\}$ or there is a maximal finite-codimensional associative ideal J of P such that $\{P, P\} \subset J$.

We apply Lemma 2 to each $L_i = \ker \gamma_i$ which, as \mathcal{K}_i is finite-dimensional, has finite codimension in $P = P(M, \mathbb{C})$. First suppose there is an i for which $\{P, P\} \not\subset L_i$. Then there must exist a maximal finite-codimensional associative ideal J_i in P with

 $\{P, P\} \subset J_i$. If ρ is the projection $S(\mathfrak{b}_{\mathbb{C}}) \to P$, then $I_i = \rho^{-1}(J_i)$ is a maximal finite-codimensional associative ideal in $S(\mathfrak{b}_{\mathbb{C}})$ with $\{S(\mathfrak{b}_{\mathbb{C}}), S(\mathfrak{b}_{\mathbb{C}})\} \subset I_i$. Since by semisimplicity

$$\mathfrak{b}_{\mathbb{C}} = {\mathfrak{b}_{\mathbb{C}}, \mathfrak{b}_{\mathbb{C}}} \subset {S(\mathfrak{b}_{\mathbb{C}}), S(\mathfrak{b}_{\mathbb{C}})} \subset I_i,$$

and since $1 \notin I_i$ (as I_i is proper), it follows that I_i is the associative ideal generated by $\mathfrak{b}_{\mathbb{C}}$. (Actually, this shows that $S(\mathfrak{b}_{\mathbb{C}}) = \mathbb{C} \oplus I_i$.)

Since the orbit M is not nilpotent, there is a nonzero Casimir $\Omega \in S(\mathfrak{b}_{\mathbb{C}})$, i.e. $\rho(\Omega) = \omega$ for some constant $\omega \neq 0$. Since $\mathfrak{b}_{\mathbb{C}}$ is semisimple it follows from the above observations that $\Omega \in I_i$. But then $\Omega - \omega \notin I_i$, which is a contradiction since $\Omega - \omega \in \ker \rho \subset I_i$.

Thus for *every i* it must be the case that $\{P,P\} \subset L_i$. Again semisimplicity gives $\mathfrak{b}_{\mathbb{C}} = \{\mathfrak{b}_{\mathbb{C}}, \mathfrak{b}_{\mathbb{C}}\} \subset L_i$, and so $\gamma \upharpoonright \mathfrak{b}_{\mathbb{C}} = 0$. In particular, then, $\mathrm{d}\Gamma = 0$. Since \mathfrak{c} is a compact real form of $\mathfrak{b}_{\mathbb{C}}$, the Cartan decomposition of $\mathfrak{b}_{\mathbb{C}}$ implies that $\mathrm{d}\Pi_{\mathbb{C}} = 0$. It follows from the induction construction that the original derived representation $\mathrm{d}\Pi$ of \mathfrak{b} in the domain D must be zero as well. But then $\mathcal{Q} \upharpoonright \mathfrak{b} = 0$, which contradicts the requirement that a quantization represent \mathfrak{b} faithfully. This concludes the proof of Theorem 1.

We remark that Theorem 1 was already known when $\mathfrak b$ is compact [4], in which case the proof above simplifies greatly and provides an alternate means of establishing Theorem 2 *ibid*. Notice also that when $\mathfrak b$ is compact every quantization of P(M) is necessarily polynomial; this follows from the observation that since $Q \upharpoonright \mathfrak b$ is irreducible the representation space $\mathcal H$ must be finite-dimensional together with a well known fact about enveloping algebras (Prop. 2.6.5 in [5]).

3. Discussion

The key observation underlying Theorem 1 is that as $M \subset \mathfrak{b}^*$ is nonnilpotent, its ideal I(M) is nonhomogeneous. If M is a nilpotent orbit, on the other hand, then I(M) is homogeneous, and from Theorem 1.1 in [1] we know that there do exist polynomial quantizations of P(M). (Although it is not clear to what extent these are 'nontrivial' in general.) Taken together, these results serve to establish a conjecture of Gotay [2] when $\mathfrak b$ is semisimple: There exists a consistent polynomial quantization of P(M) if and only if I(M) is homogeneous.

References

- 1. Gotay M. J.: On quantizing semisimple basic algebras, I: sl(2, ℝ), In: P. Holmes, P. Newton, and A. Weinstein (eds), *Geometry, Mechanics, and Dynamics: Volume in Honor of the 60th Birthday of J. E. Marsden*, Springer, New York, 2002, pp. 523–536.
- 2. Gotay, M. J.: Obstructions to quantization, In: J. Nonlinear Sci. (eds), *Mechanics: From Theory to Computation (Essays in Honor of Juan-Carlos Simo*), Springer, New York, 2000, pp. 171–216.

50 MARK J. GOTAY

3. Varadarajan, V. S.: Lie Groups, Lie Algebras, and their Representations, Springer, New York, 1984.

- 4. Gotay, M. J., Grabowski, J., and Grundling, H. B.: An obstruction to quantizing compact symplectic manifolds, *Proc. Amer. Math. Soc.* **28** (2000), 237–243.
- 5. Dixmier, J.: Enveloping Algebras, North-Holland, Amsterdam, 1977.