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Abstract. We prove that there is no consistent polynomial quantization of the coordinate ring

of a nonnilpotent coadjoint orbit of a semisimple Lie group.
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1. Introduction

In a recent paper [1], we showed that there do not exist polynomial quantizations of the

coordinate ring PðMÞ of a semisimple coadjoint orbit M � slð2;RÞ
�. Here we extend

that result to any nonnilpotent coadjoint orbit of a general semisimple Lie group:

THEOREM 1. Let b be a finite-dimensional semisimple Lie algebra, and M a non-

nilpotent coadjoint orbit in b�. Then there are no polynomial quantizations of the

coordinate ring PðMÞ.

Consider the symmetric algebra SðbÞ, regarded as the ring of polynomials on b�.
The Lie bracket on b may be extended via the Leibniz rule to a Poisson bracket

on SðbÞ, so that the latter becomes a Poisson algebra. Let IðMÞ be the associative

ideal in SðbÞ consisting of all polynomials which vanish on M and set

PðMÞ ¼ SðbÞ=IðMÞ. Since M is an orbit IðMÞ is also a Lie ideal, hence a Poisson ideal,

so the coordinate ring PðMÞ of M inherits the structure of a Poisson algebra from

SðbÞ. We denote the Poisson brackets on both PðMÞ and SðbÞ by f�; �g.

Here we are interested in quantizing the coordinate ring PðMÞ. By a quantization of

PðMÞ we mean a Lie representation Q thereof by symmetric operators preserving a

fixed dense domain D in some separable Hilbert space H, such that Q +b is irreduci-
ble, integrable, and faithful. Let A be the associative operator algebra generated over

C by I and fQðbÞj b 2 bg. We say that a quantization Q of PðMÞ is polynomial if Q is

valued in A. We refer the reader to [2] for a detailed discussion of quantization.
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2. Proof of Theorem 1

Suppose to the contrary that Q were a polynomial quantization of PðMÞ in a dense

invariant domain D in a Hilbert space H. By extending Q to be complex linear, we

obtain a Lie representation QC of the Poisson algebra PðM;CÞ of complex-valued

polynomials on M in D.

By assumption the representation of b in D provided by Q may be integrated to a

strongly continuous unitary representation P of the 1-connected Lie group B with

Lie algebra b inH. LetBC be the universal complexification ofB; sinceB is simply con-

nected, BC can be identified with the 1-connected semisimple complex analytic group

with Lie algebra the complexification bC of b. (See [3], pp. 256–258 and 400–404 for
background on complexifications of Lie groups.) Since B is semisimple, B is a closed

subgroup of BC, and so we may use induction to obtain a strongly continuous unitary

representation PC of BC in a certain infinite-dimensional Hilbert space K.
Now let C be a compact real form of BC, and denote by G the restriction of PC to

C. As every strongly continuous unitary representation of a compact Lie group is

completely reducible, we may decompose K ¼
L^

i2I Ki for some index set I � Z,

where the finite-dimensional invariant subspaces Ki are the carriers of the irreducible

constituents Gi of G. Let c be the Lie algebra of C; then for each i 2 I, we have the

derived representation dGi of c in Ki. Set dG ¼
L

i2I dGi; this gives a representation

of c in the dense subspace DC ¼
L

i2I Ki.

Choose a basis fc1; . . . ; crg of c. Since cC ¼ bC and as by assumption Q is valued in

A, for every f 2 PðM;CÞ we may expand

QCð f Þ ¼
X

n1;...;nr

af
n1;...;nr

QCðc1Þ
n1 � � �QCðcrÞ

nr

for some coefficients a f
n1;...;nr

. By means of this formula we can extend the representa-

tion dG of c to a Lie representation g of PðM;CÞ in DC:

gð f Þ ¼
X

n1;...;nr

af
n1;...;nr

dGðc1Þ
n1 � � � dGðcrÞ

nr

with the same coefficients. As each subspace Ki is invariant, g restricts to a represen-
tation gi of PðM;CÞ in Ki. We will show that the existence of these representations gi

leads to a contradiction.

To this end we recall the following algebraic fact, the proof of which is given in [4].

LEMMA 2. If L is a finite-codimensional Lie ideal of an infinite-dimensional Poisson

algebra P with identity, then either L contains the derived ideal fP;Pg or there is a

maximal finite-codimensional associative ideal J of P such that fP;Pg � J.

We apply Lemma 2 to each Li ¼ ker gi which, as Ki is finite-dimensional, has finite

codimension in P ¼ PðM;CÞ. First suppose there is an i for which fP;Pg 6� Li. Then

there must exist a maximal finite-codimensional associative ideal Ji in P with
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fP;Pg � Ji: If r is the projection SðbCÞ ! P, then Ii ¼ r�1ðJiÞ is a maximal finite-codi-

mensional associative ideal in SðbCÞ with fSðbCÞ;SðbCÞg � Ii. Since by semisimplicity

bC ¼ fbC; bCg � fSðbCÞ;SðbCÞg � Ii;

and since 1 62 Ii (as Ii is proper), it follows that Ii is the associative ideal generated by

bC: (Actually, this shows that SðbCÞ ¼ C � Ii.)

Since the orbit M is not nilpotent, there is a nonzero Casimir O 2 SðbCÞ, i.e.

rðOÞ ¼ o for some constant o 6¼ 0: Since bC is semisimple it follows from the above

observations that O 2 Ii. But then O� o 62 Ii, which is a contradiction since

O� o 2 ker r � Ii.

Thus for every i it must be the case that fP;Pg � Li. Again semisimplicity gives

bC ¼ fbC; bCg � Li, and so g +bC ¼ 0. In particular, then, dG ¼ 0. Since c is a com-
pact real form of bC, the Cartan decomposition of bC implies that dPC ¼ 0. It fol-

lows from the induction construction that the original derived representation dP of

b in the domain D must be zero as well. But then Q +b ¼ 0, which contradicts the

requirement that a quantization represent b faithfully. This concludes the proof of
Theorem 1. &

We remark that Theorem 1 was already known when b is compact [4], in which
case the proof above simplifies greatly and provides an alternate means of establish-

ing Theorem 2 ibid. Notice also that when b is compact every quantization of PðMÞ is

necessarily polynomial; this follows from the observation that since Q +b is irreduci-
ble the representation spaceHmust be finite-dimensional together with a well known

fact about enveloping algebras (Prop. 2.6.5 in [5]).

3. Discussion

The key observation underlying Theorem 1 is that as M � b� is nonnilpotent, its
ideal IðMÞ is nonhomogeneous. If M is a nilpotent orbit, on the other hand, then

IðMÞ is homogeneous, and from Theorem 1.1 in [1] we know that there do exist poly-

nomial quantizations of PðMÞ. (Although it is not clear to what extent these are

‘nontrivial’ in general.) Taken together, these results serve to establish a conjecture

of Gotay [2] when b is semisimple: There exists a consistent polynomial quantization

of PðMÞ if and only if IðMÞ is homogeneous.
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