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Abstract. Thestructureof thereducedphasespacefor ahomogeneousYang-Mills
field on aspatially compactified(n+ 1) -dimensionalMinkowskispacetimeisstud-
ied. Usingthetheorydevelopedin [AGJJ,variousreductionsofthissystemareconsid-
eredandareshownto agree.Moreover,thereducedphasespaceis realizedas semi-
algebraicset whichcarriesa nondegeneratePoissonalgebra. For thegaugegroups
SU(2) or SQ(3) it is shownthat this systemis equivalentto that of n interact-
ingparticlesmovingin R

3 withzerototalangularmomentum.Theparticularcases
n= I and 2 arediscussedin detail.

I. INTRODUCTION

TheYang-Mills equationsprovideoneof themostimportantexamplesof a singular
constrainedsystem.Throughthe work of Arms, MarsdenandMoncriefone now hasa

detailedunderstandingof thestructureof the Yang-Mills constraintset. (1) Oneknows,
amongotherthings, wherethe singularitiesare,whatthey look like andhow they are
relatedto gaugesymmetries.

Lesswell understoodis thebehaviourof the reducedphasespacefor theYang-Mifis
equations.Althoughcertainsubspacesof its smoothsectorhavebeenstudiedin detail

[Mi], onehasat presentonly a local descriptionof its singularitystructure[Al, Mon].

Oneexpectsfrom generalprinciplesthat the reducedspacewill be a stratifiedmanifold
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(1) See[Al], [Mon] andreferencescited thereinfor Yang-Mills theoryperSe. Thegeneralfor-
malismregardingsingularitiesof momentummapsis containedin [AMM].Both [A 2] and[Ma
2] areusefulsurveys.
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(<<conesovercones>>),butglobal phenomenamaydistortthischaracterization.Thereare
otherfundamentalproblemsas well: To what extentis the reducedspacesymplectic?
How doesthedynamicsprojectto thereducedspaceandinwhatsenseis it Hamiltonian?

In this paperI examinetheseissuesin thecontextof a homogeneousYang-Mills
field propagatingon a spatiallycompactified (n + 1)-dimensionalMinkowski space-

time. The assumptionof homogeneityallows meto dispensewith infinite-dimensional
technicalitieswhile concentratingon the essenceof the problem,viz., thepresenceof
singularities.Thesesingularitiestremendouslycomplicatethe reductionprocess.In fact,

it is notatall clearpreciselywhatonemeansby <<reduction>>in the singularcase:thereis

no longera unique,muchlesspreferred,way to reducethesystem[AGJ].Whichpossi-
bilities <<work>>?If variousreductionsdiffer, how do theydiffer and whatis thephysical
significanceof this? Do thesereductionsyield symplecticstructures—oratleastPoisson

brackets— on thereducedspace?Theseareall globalquestions,and theirstudy requires
techniquesaltogetherdifferent than the usualones,which are basedon propertiesof
slicesfor thegaugegroupaction [AMM].

Thefoundationsfor sucha studyhavealreadybeenlaid in [AGJJ,andinvolve ideas

from C~realalgebraicgeometry. Applying this theory to the homogenizedYang-
Mills system,I find that the threemain methodsof reduction— a la Dirac,geometricand
grouptheoretical— arenotonly applicable,but in fact agree,providedthegaugegroup

is compact.I then showthat theresulting reducedphasespaceis a stratified symplectic
manifold which carriesa nondegeneratePoissonalgebra,and that it canbe realizedas
a semialgebraicset. Moreover,the reducedspacecoincideswith the moduli spaceof
homogeneousYang-Mills fields, aresultwhich iscertainlyexpectedon physicalgrounds

butneednot alwaysbe true.
To obtainsharperresults,I furthermoresupposethatthegaugegroupiseither SO(3)

or SU(2). Thenthe systemtakesthe form of n interactingparticlesmoving in R3

constrainedto havezerototal angularmomentum. In this caseI am ableto explicitly
constructthereducedspaceandits associatedPoissonalgebrausingclassicalinvariant

theory.
Thesefindingsindicatethat despitebeingsingular,theYang-Millssystemisrelatively

well-behaved.Thusit furnishesausefi.il<<laboratory>>fordiscussingquestionsrelatingto

thereductionof singularsystems.More importantly,this approachshouldprovidesome
insight into the infinite-dimensionalYang-Millscaseaswell asothersingularconstrained

field theories.

II. THE HAMILTONIAN STRUCTURE OF THE YANG-MILLS EQUATIONS

I first briefly sketchthestandardHamiltonianformulationof thevacuumYang-Mills
equationsfollowing [BFS].Seealso [Al], [Mi], [Mon] and[Sn2] for backgroundand

furtherdetails.
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Let C beaLie groupwhoseLie algebrag carriesanadjoint-invariantinnerproduct
), andconsidera Yang-Mills theorybasedon a trivial principal C-bundle P overan

(n+ 1)-dimensionalspacetimeX.
Fix a compactCauchysurface S C X, and denotethe restrictionof P to S by

Ps Then, relativeto S, the space+ time decomposedconfigurationspacefor the
Yang-Millssystemis theconnectionbundleAs of Ps~Thecorrespondingphasespace
is the L2-cotangentbundle T*A

5 with its canonicalsymplecticstructure. Elements

(A,B) E T*As consistof a connectionA on “s (viewed asa g-valued 1-form on
S) andits canonicallyconjugate<<electric>>field E (alsoviewedasa g-valued 1-form
on S). ThepairingbetweenA and E is givenby

(2.1) f(AA*E)

where* istheHodgestaroperatorof theinducedmetricon S, andthe symplecticform
is

w( (a, e), (a’, e’)) f( (a A *e’) — (a’ A *e)).

Finally, let

(2.2) P=dA+[AAA]

bethecurvatureof A, [1 beingthebracketon g. ThentheHamiltoniandensityis

(2.3) H(A,E)= ~-*(EA*E)+ ~-*(FA*F).

Considerthe group ~5 of automorphismsof P~which coverthe identity on 5,
thoughtof asmaps ço: S —> C. Its Lie algebrag5 canbeidentifiedwith the g-valued
functionson S. Now Q<~actson A5 by gaugetransformations:

(2.4) (~,A) A~+~o~d~

whereC is representedasamatrix groupon g. The inducedactionon thephasespace

T*As isthecotangentactionwithmomentummap J : T*A5 —‘ g,~givenby

(2.5) J(A,B)=~E+*[AA*E].

In this expression8 isthemetriccodifferentialandapairinganalogousto (2.1)hasbeen
usedto identify g5 with

The condition J = 0 arising from the gaugeinvarianceof thetheoryis aninitial

valueconstraint.Thatis, only thosepairs (A,B) E T*As satisfying6B+*[AA*E] =

0 constitute(formally) admissibleinitial datafor theYang-Mills equations.
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III. HOMOGENEOUS YANG-MILLS FIELDS AND A MECHANICAL ANAL-
OGY

Now supposethat the spacetimeis Minkowskian,X = T’~x R, andthat the Yang-
Mills field is spatiallyhomogenous.Then A and E are constanton S = T’~,(2) and

(2.2) reducesto

(3.1) F=[AAA].

Uponfixing a basepoint in A5, the connectionbundlemay then be identified with

R~®g ~ £(R’~,g) andthephasespacebecomesT.C(R’
1,g) with symplecticform

(3.2) w=*(dAA*dE).

Furthermore,from (2.4) the group ~
5 actson £( R’~,g) by

(3.3) (~,A)—~

wherenow ~ois also constant. Thus ~8 (and g8) may be identified with C (and

g), sothat (3.3) is the adjoint representationof C on the secondfactorof R’~® g.

Expression(2.5) for themomentummapreducesto

(3.4) J(A,E) = *[AA*E].

All this data,whencombinedwith the Hamiltonian (2.3) and the constraintJ = 0,
realizeshomogenizedYang-Mills theory as a finite-dimensionalconstraineddynamical

systemwith symmetry.
I now additionallypresumethat the gaugegroup G = SU(2) or SO(3). Under

theusual identificationsof (g, [ ]) with (R
3,x) and g with g*, (3) (3.4) takesthe

suggestiveform

J(A,E) = ~(A~ x Ei).

In fact, if oneviewsthecomponentsA~E R3 and E
1 E R

3 of A and E asbeingthe
position x~andmomentump

1 vectorsof aparticle,thenthis homogeneousSU(2) or

(2) Technically,this presupposesthatthetrivialization of Pg hasbeenchosento be T”-invariant.
Note that thereis somecontroversyin generalasto whether<<homogeneity>>requiresthegauge

potential A orratherjust the field strengthF to bespatiallyconstant[Mol].

(3) Sincethe adjointrepresentationsof SU(2) and SO(3) are thesame,I will henceforthnot
distinguishbetweenthesetwo possibilities andwill refer solely to therotationgroup.
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50(3) Yang-Millssystembecomesfomially identical to thatofa swarmofn inter-
actingparticlesmovingin R3 with zerototalangularmomentum:(4)

(3.5) J(z,p) = x p~)= 0.

The configurationspaceof the systemshouldnow be regardedas £(R~,R3) ~

R3~,in whichcontexttheaction(3.3)becomessimply thediagonalrepresentationof the
rotationgrouponn copiesofR3. ThephasespaceisthenR3~2xR3?~= (R3 xR3~~=

R6~,thesymplecticstructure(3.2) assumesthe usualform

(3.6) w=~dx~Adp
1

and,using(2.3) and (3.1),theHamiltonianbecomes

(3.7) H(x,p) = ~ + x zjII2).
j=1 j>i

This result is reminiscentof the relationsbetweenthe KdV equationand the Toda
lattice or the Calogerosystem[Mal]. It is significant in that it enablesoneto think

of the Yang-Mills systemin more familiar mechanicalterms,and therebydrawupon
variousresultswhoseapplicability would otherwisehaveremainedobscured.(5) In
particular,thereductionof this systemis alreadycompletelyunderstoodwhenthereis

only oneparticle [GB]; it correspondsto ahomogeneousYang-Mills theoryon a (1 +

1)-dimensionalspacetime.Now I analyzethis systemin detail.

IV. THE CONSTRAINT SET

First considertheconstraintset C = f~(0) in thegeneralcontextof § III, assum-

ing henceforththat C is compact. From [AMM] oneknows that C will havesingu-

larities exactlyat thosepoints admitting nontrivial (but nonminimal)isotropygroups.
Clearly, in view of (3.4), thesesingularitieswill beconical. Moreover,C stratifiesac-
cordingto symmetrytype:

(4.1) C=UC’~,

(4) A similar observation,in a slightly differentcontext,wasmadeby Patrick[F].
(~)This is notto saythat a systemof particleswith vanishingtotal angularmomentumis unin-
terestingin itself. In fact, this systemappearsin severalcontexts,notablycelestialmechanics(cf.
[AM]).
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whereC’~consistsof all pointswith isotropygroupsconjugatetothesubgroupK of C.
Eachstratumindividually is a smoothmanifold (conceivablywith severalcomponents

of differing dimension). Let ~(C) be the subvarietyof singularpointsof C and let

S(C) = C\Z(C) be theopensubsetof C consistingof smoothpoints.
Since theaction of C on TC(R’~,g) is lifted from the base,themain resultof

[AGW] yields,for any C whatsover,

THEOREM 1. C is coisotropic.(6)

Now specializeto thecasewhen C is the rotationgroup and supposethat n> 1.

(Thecase n = I is specialandwill be discussedseparatelyin § VII.) Then,viewing
J : R6~— R3, acomputationof the rank of J showsthat C~= J~1(0)is a (6n—

3)-dimensionalvariety. Theisotropygroupof a point (a,p) E C~canbe either0-, 1-

or3-dimensionaland theconstraintsetdecomposescorrespondingly:

(4.2) C~=C~UC~UC~.

The origin is the mostsingularpoint, asit is invariantunderthe entiregroup. Thus

{(0, 0)}. Theonly otherpoints with nontrivial isotropygroupsareof the form

(z,p) = (s
1è,...~ ,t~ê)

for anyconstantss~,t1 not all zero,where ~ is a unitvector. Suchpointsare invariant
underan S0(2) subgroupof rotationsaboutthe axis ê. ConsequentlyC,~ is diffeo-
morphic to the antipodalidentification R

2” x~
2~2 and fibers over RP

2 with fiber
~2n, wheretheprojection C~—~ RP2 is

(bracketsdenoteequivalenceclasses).
Thusfor n> I

= C~uC~

canberealizedasthe spaceformedby collapsingthezero sectionof the vectorbundle

R2~ —* R~-~x
2 S

2

.1.
RP2

(6) This resultis notentirely obvious.Certainlythecomponentsofthemomentummaparethem-
selvesfirst classconstraints,but it doesnotnecessarilyfollow thatal/constraintsarefirst class.
Thisphenomenon,which of coursenot occurin theregularcase,is discussedin both [AGW] and
§V of[AGJ].
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to a point. The smoothsector S(C~)is moredifficult to describe(the case n = 2

is treated in § VIII). In the remainder of this section I prove that C~is <<as nice as
possible>>.

THEOREM2. C~isirreducible.

Proof It sufficesto show that S(C~)is arc connected.(7) For n = 2, this can be

checkedusingthedescriptionof S(C2) givenin § VIII. I now proceedby induction

on n, assumingtheresultis truefor S(C~_1).‘Viewing C~1C C,, in theobviousway
(i.e. by setting z,, = 0,p,, = 0), I will showthat everypoint (z, p) e S(Cn) can be

joinedby anarc in S(C,,) to a point of S(C,,_1) (C S(C,,) for n> 2). As S(C,,_1)
is arcconnected,sothenis S(C,,).

Firstnotethat (z,p) E S(C,,) iff(3.5) is satisfiedand at leasttwo of the ; and p1

arelinearyindependent.
Therearetwo casesto consider,dependinguponwhetherx,, x p,, = 0. Begin by

supposingthat it is not,so that (x,,,p,,,e= x,, x p,,) is a frame for R
3. For i < n,

write

= a
1x,,+ b1p,, + c1e, p1 = r1x,, + ;p,, + t1e.

Thentheline segmentobtainedby simultaneouslyscalingeach c1 and t~to zero (while

leavingall othercomponentsunchanged)liesentirelywithin S(C,,) andconnects(x,p)

with a pointwhosee componentsvanish.
For such a point write

(4.3) f(x,p) = (~:kI+ I) e,

where; x p1 = k1e for i < n. Now fix a j for which k, ~ 0; byperturbing(z,p), if

necessary,one mayassumethat Ic3 ~ —1. For a E [0, 1] considerthe curve givenby

x1(cr) = (1 + a/k3)x1,

x,,(cr) ~/(l —a)x,,, p,,(a) = ~/(l —a)p,,,

whereall other; and p remainunchanged.From (4.3) J vanishesalongthis curve.

Furthermore,since k3 ~ —1 and both x,,( 1) and p,,(I) are zero,this curve lies in

S(C,,) and its endpointis in S(C,,_1).

(7) See,e.g.,thePropositionon p. 21 of [OH]. Althoughthe desiredresultanditsproofarestated
in thecontextofanalyticvarieties,theyremainvalid in therealcase(butnottheconverse!).Recall
alsothat,asthe S(C,,) are manifolds,connectednessis equivalentto arcconnectedness.
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Nowconsiderthecasewhenz,,xp,, = 0. Ifanytwoofthe; andp~for i < nare

linearly independent,the desiredresultfollows simply by scalingboth z,,,p~—~ 0. If
not, thepointin questionmustlook like

c1e, p1 = t1e, z,, = c,,f, p,, = t,,f

for all i < is, where e x f ~ 0. Again,onemay homotopesucha pointwithin S(C~)

to oneof theform

(4.4) z,,_1 = 0, p,,1 = e, x,, = f, p,, = 0

with all other; and p1 vanishing.Thenthe line segment

x1(a) = of, x,,(a) = (1 — a)f

(leavingall othervectorsunchanged)connectsthepoint (4.4) with one in S(C,,1). .

V. THE REDUCED PHASE SPACE

Thereare(at least)threewaysof constructinga reducedphasespaceC for theYang-
Mills system:alaDirac, geometricallyandgrouptheoretically([AGJ], [Sni], [MW]; see

also[ACG]). Whichmethodonechoosesdependsuponwhataspectof the formalismone

considersprimary. Forexample,theDirac approachcentersaroundtheconceptof <<ob-

servable>>,thegeometricmethodis moresymplecticin natureandthegroup theoretical
reductionis closely tied to thenotion of gaugeequivalence.Thesetypesof reduction
will usuallynotagree(althoughthey coincidewhenthe systemis regular). In view of

Theorem3 below,it is not necessaryto go into thedetailsof theseprocedureshere;see

instead[AGJ]foracomprehensiveexpositionalongwithnumerousexamples.Thelocal
theoryis discussedin [Al] and[Moni; cf. also § VII (c) of [AMMI.

Themain resultof t.his sectionis that all thesereductionsare<<equivalent>>,provided

thegaugegroupis compact

THEOREM 3. Considera homogeneousYang-Mills theory with compactconnected
gaugegroupC. Thenthe reducedphasespacesresultingfrom the threeabove-mentio-
nedmethodsare all isomorphic.

This follows directly from Prop. 5.5 of [AGJ]. Roughly speaking,it meansthat the
notionsof observableand gaugeequivalenceare tied to the symplecticstructureand

eachotherin the ~<conect>>— andexpected— way, despitethe presenceof singularities.

Sincethe grouptheoreticallyreducedspaceisjust theorbit spaceof C, onehasthat

(5.1) Ô~C/C.
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This implies that the reduced space is also a stratified manifold. Indeed, as C is compact

and each stratum CK of C consistsof points with the samesymmetry type, = CK/G
is a Hausdorif manifold (cf. exercise 4.IM in [AM]). Then the decomposition(4.1)
yields

(5.2) KCC

In addition the local theory (cf. § VII (c) of [AMMI guaranteesthat eachstratum CK ~f

C is actually symplectic.Thus

THEOREM4. Ô isa stratifiedsymplecticmanifold.

The identification (5.1) has three further consequences.

First, from general principles the geometricallyreducedspacecanbe interpretedas

the setof gauge equivalenceclassesof solutionsof thehomogeneousYang-Mills equa-
tions. (8), (9) Combining this observationwith (5.1), oneseesthat the reducedspace

coincideswith themodulispaceofhomogeneousYang-Millsfields.
Second, as the Dirac reduced space is completely regularin the topological sense

[Snl], it guarantees that the orbit space is reasonably well behaved.

Third, using a result of Schwarz [Sc]and Prop. 5.6 of [AGJ],it enables one to model

the reduced space as a semialgebraicvariety:

THEOREMS.Thereexistsa map p : C —* R~’forsomeN suchthat (~c~p(C).

When C isthe rotationgroupthis realizationmaybemadecompletelyexplicit using

classicalinvarianttheory. The standardreferencefor what follows is [WI, especially
§ IX and § XVII of Chapter2. It is helpful to introducesomenotation. Let ts,, 1 <
~ < 2n, bedefinedby u1 = ~ = p1 andset

/ Un . U~ ... U~,1 tL1~

U,:, U,:, = det :
U13 •.. U13

u,:, U~ ... U~

(8) Here<<gauge>>is to beunderstoodin thecontextof theDirac theory of contraints,not in the

Yang-Mills sense.
(9) Strictly speaking,thegeometricallyreducedspaceconsistsof gaugeequivalenceclassesof
admissibleinitial datafor theYang-Mills equations.Sincetheevolutiongeneratedby theHamil-
tonian(1.3) is complete(cf. p. 232of [AM]), this spacemaybe identifiedwith thesetof gauge
equivalenceclassesof solutionsto theYang-Mills equations.
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For thediagonalactionof therotationgroup on R6~= (R3~2,,, thebasicscalar

invariantsarethedotproductsU,:,~u

13 andthetriple scalarproductsEu,:,, ts13,u1]. These

invariantsare the components of the map p of Theorem 5. They are not all independent,
butare subjectto threetypesof relations:

(RI)

(R2) [U,,,U13,U1] [u~,u~,U~]—~ ~

and

(R3) ~ [U,:,,U13,U.y] (U6- UA) = 0,
(nj3,-r,6)

wherethe lastsumis cyclic. Theserelationsalso arenotall independent.Forlateruse,
observe that together (Rl) and(R2) imply that

2

(R4) Un U13 U.1 = U,, U13 U~ U,, U13 U5
U,, U13 U5 U,, U13 U1 U,, U13 U5

Furthermore,therearevariousinequalitiesthat must be satisfied;theseare

(II) IIt~cylI2� 0

and

(12) 11Un112 lU II2 — (u,, . U13)2 ~ 0.

Now the constraintJ = 0 givesrise to furtherscalarconditionsof the form

(Jl) U,,~J0

and

(J2) [U,:,,U13,J]0.

Theseconstraintsarenot independenteitheramongthemselvesor in conjunctionwith
(Rl )-(R3).

All told, then,if N is the total numberof invariantslisted above,the reducedspace
may beidentified with the semialgebraicsetin RN determinedby the aboverelations,
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inequalitiesand constraints.Sincethedimensionof a genericorbiton C,, is three,(5.1)

implies that the dimension of the reduced space will be 6 is— 6.
Thischaracterizationiscomplicatedandunwieldy,but it doesenableoneto construct

the reduced spacewithout having to computea quotient. Of course, substantial simpli-
ficationscanbemadefor specific small n. The details for n = I and 2 will begiven
in § VII and § VIII, respectively.

Forthe rotationgroup,(4.2) and(5.2) yeld the symplecticstratification

(5.3) C,, = C~uC,~,uC~,

whereC~is the vertex of C,~~ R2”/Z
2. Thesetwo stratafit togetherto form ahalf-cone

over which C,,°lies. This description clearly indicates the <<cones over cones>> singularity
structure of the reduced space. In the Yang-Mills context [Al], the <<0>>, <<1>>, and <<3>>

stratarepresentgaugeequivalenceclassesof irreducible SU( 2) or SO(3) solutions,
<<electromagnetic>>U( 1) or SO(2) solutionsand the trivial solution, respectively.

VI. THE REDUCED POISSONALGEBRA

Dueto singularitiesin boththeconstraintsetandthe reduced space, one cannotexpect
the symplecticstructureon phasespaceto projectdirectly to C although,as Theorem
4 shows,it doesprojectto eachstratum C” of C. Instead,oneshouldtry to reducethe

symplectic structure algebraically,that is, use the Poissonbracket{ } associated to (3.2)
to induce a Poisson bracket on C.

This mayor maynotbepossiblewith the reductiontechniquesdiscussedaboveand,

evenwhenit is, the resulting reducedPoissonalgebrasneednot beisomorphic and/or
nondegenerate[AGJ].Fortunately,in thecaseconsideredhere,suchpathologiesdonot

arise.

THEOREM 6. Considera homogeneousYang-Mills theorywith compactconnected
gaugegroup C. Then reductiongivesrise to a nondegeneratePoissonbracketon

O00(C).

Here, the <<smooth>> structure on C is defined as follows. A function J on C is

smooth,f E C°°((),if it is the projection of a Whitney smoothfunction on C, i.e.,
Jo ir = f for some f E W~(C), where ir : C — C is the reduction. (10)

(10) A function f on C is Whitneysmooth,f E W°°(C)provided f is therestrictionto C of a
smoothfunctionon theambientmanifold.
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Proof I will showthat thethree reductiontechniquesconsideredin §V definethesame

Poissonbracketon the reducedspace. All referencesare to [AGJ] unlessotherwise

noted.
Thegeometricallyreducedbracketexistsby Prop. 5.7. Since by Theorem I aboveC

is coisotropic, Prop. 3.1 guarantees that the Dirac reduced bracket is well-defined. These
two reduced Poisson algebras then coincideby Cor. 5.8. On the other hand, Lemma5.4

shows that the group theoretical and Dirac reductions are the same.
Finally, nondegeneracy is a consequenceof Prop.5.9.

ThePoissonbracketon Cc~z~(C)effectivelygluesthe individual symplecticformson

the strata ~K togetherinto a global geometricstructureon thereducedspace.Because
the reduced Poisson algebraby constructionincorporatesthe <<compatibility>>conditions
whicharisewhenstratajoin, it is actuallymoreappropriateto regard C as a spacewith

a Poisson bracket than as a stratified symplecticmanifold. (11)

It is possible to explicitly realizethe reducedPoissonalgebraasfollows. Recallfrom

Theorem3 that C ~ C/C. ThenO°°(C)c~W°°(C)°,theC-invariantWhitneysmooth
functions on C. For J, ~ E W00(C)~,the reducedPoissonbracketis

(6.1) [f,~] = {f,g}IC,

wheref, g areanyextensionsof J, ~ toall of T’L( R~,g). Thusonemayalsoconstruct

thereducedPoissonalgebrawithouthavingto computeany quotients. UsingTheorem
5 and the resultsof Schwarz[Sc]this maybe pushedonestep further,yielding

C~(Ck)c~W~(p(C)).

It should be mentionedthatthereare(at least)two otherwaysof reducingasingular

constrainedsystemwith symmetrywhicharepurelyalgebraicin character.Theseproce-

duresconstructreducedPoissonalgebrasbutnot reducedspaces.I now briefly consider
these,showingthat they give resultsequivalentto thoseobtainedabove,at leastwhen

C is the rotation group.

(11) Onereasonfor this is thefollowing. Thebracketassociatedto thereducedsymplecticstructure
on themanifoldc’~is definedon all ofC( C’~),whereasthebracketinducedon CK by thaton C
isdefinedonlyonCOO(CK) c COO(CK). (ThisisbecauseW(C”) c C00(C~o); theinclusions
areusually strict asCK is not necessarilyclosed.)The <<compatibility>>conditionsreferredto in
thetext compriseexactlythis cutting downfrom C(C’~)to C~~(CK).For an examplesee[G].
As aconsequence,it is probablybestnot to think of CK asasymplecticmanifoldasis oftendone
[AMM, Mon], sincethis appearsto leadto incorrectresults . (Thiscanbeseenevenin the n =

examplein § VII; seealso[GB].)These matterswill bediscussedin moredetailelsewhere.
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The first algebraicreductionprocedure,due to SniatyckiandWeinstein[SW], pro-
vides aPoissonbracketon thefunctionspace [C00(R

6n)/J]G, where 5 is the ideal
in C°°(R6~)generatedby the componentsof themomentummap J.Theother, which
is discussedin [AGJ],centersinsteadon ~ By virtue of Prop. 5.12 of
[AGJ], thesetwo procedures coincide when C is compact,soI restrictattentionto the

former.

THEOREM7. WhenC is the rotationgroup, theSniatycki-WeinsteinreducedPoisson
algebrais isomorphicto thatgivenby Theorem6.

Proof Since W00(CY = [C00(Rs~~)/I(C,,)I~, it sufficies to establish that I(C,,) =

5, where I(C,,) is the ideal of C,, (cf. lThm. 6.1 of [AGJD. As S is generated by
polynomials, Thm. 6.3 of [AGJ] reducesthe problem to showing that U is a real ideal

of the polynomial ring R[ x,p]. Forthis it is useful to complexify.
Let U~= U®RC, anidealin C[x,p], andletC~C C6~bethevarietydetennined

by
5C Clearly dimcC,,C= dim~C,,.Now Theorem2 — with obvious modifications—

holds in the complexcaseaswell, with the result that C,,c is irreducible; therefore 5C

is prime. By a theorem in commutative algebra (6.5 in [AGJ]), 5 is real.

Finally, a brief word aboutdynamics.Sinceit is gauge invariant, the Hamiltonian

(2.3) projects to a function ft on C. In terms of this reduced Hamilionianandthereduced
Poisson bracket, anobservableJ eO°°(C)evolvesin theusualway:

In this sense the evolution on the reduced space is Hamiltonian.

VII. THE CASE n =

Consider now the special case of oneparticlewith zero angularmomentum. This
systemissimplerthantheothersand doesnot fit thepatternestablishedfor n> 1. The

basicreferencehere is [AGJ];a differentapproachis pursuedin [GB].
The main differencebetweenone and severalparticlesis that C~is empty. Conse-

quently,pointsof C~arenonsingularand E (C1) = {( 0,0)). Now S(C1) = C~canbe
identifiedwith 1~2x~2S

2, and from this descriptiofiit is obviousthat S(C
1) is con-

nected. ThereforeC1 is irreducible.MoreoverC1 in its entiretyforms a complexcone

over RP
2 [GB].

I next construct the reduced space via invariant theory. The basic list of invariants is

(droppingthe subscripts<<I>>):

I1x112,z -p,IJpI!2-
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Thus N = 3. Thereare no relationsof types (Rl)-(R3) in this instance,andtheonly

nontrivial constraintis of type (J2), viz.,

[x,p,J] = 0.

As J = x x p, this reducesto

lIx112 IpII2 ~ .p)2 = 0

Taking this into account,the inequality (12) becomesvacuous,and the remainingin-

equalities(II) are

I1zIl2 �0, I1p112 �°.

Defining p: C
1 —* R

3 by

p(x,p) = (IIx112, ~.p, IlpI(2),

onethenhas the reducedspaceC
1 realizedasthehalf-cone

p(C1) = {p E R
3I (P2)2 = P1P3 andp

1,p3 � 0).

Topologically C1 ~ R
2 /Z

2.
The reducedPoissonbracket(6.1)onW°°(p(C1))works out to be

= 2{f,g}12p1 +
4{f,9}t3 132 + 2{f,g}

23 p3,

where

:= (of/ap0) (Og/ap~) — (og/ap,,) (af/a~~),

andthe reducedHamiltonian(3.7) is ft( p) = ~p3.

VIII. THE CASE n = 2

First I give an explicit descriptionof S(C2). Let (x1 , Pt , ‘P2) E C2, in which

casethesefour vectorsmustbecoplanarby (3.5). If (z1 ~2 ,P2) E S(C2) then,
sinceat leasttwo — andhenceexactlytwo — of thesevectorsare linearly independent,

this planeis uniquelydetermined.Let e andf be abasisfor this plane.Expandingthe

x1 andthe p~in this basis,one has in matrix terms that

(~I Pi ~2 P2) = (e f)(EIF),
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where E and F are 2 x 2 matricessuchthat

(i) rk(EIF) = 2

and

(ii) detE+detF=0.

Denoteby C2(R
3) the Grassmannmanifold of 2-planesin R3. Thentheabove

showsthat S(C
2) is abundleover C2( R

3) with 7-dimensionalfiber M consistingof

all 2 x 4 matrices(ElF) satisfying(i) and (ii). Usingthis description, it is straight-
forwardto checkthat S(C

2) is arcconnected.
Now considerthe two-particlereducedspace.Thereare 14 basicinvariants: 10 dot

productsand 4 triple scalarproducts.In view of (3.5), thefour constraintsof type (Jl)
forceall thetriple scalarproductsto vanish;this in turn vacatesthe relations(R3) alto-
gether.Thetenrelations(R2) thencollapseto

(8.1) = 0.

However,a calculationrevealsthat

u~ U13 U1~ [U,,,U13,J](u7.u1)

U,, U13 U7

+ [u1,U,:,,J] (U13- u1) + [U13,U1,J](u,, - is1).

The vanishingof theseparticulardeterminantsis thereforean automaticconsequence
of the constraints(J2) and so, taking the subsidiaryrelations(R4) into account,all the

relations(8.1) are redundant.Finally, thereisonly onenontrivial relationof type (Ri);

itis

(8.2) U1 U2 U3 154 = 0.
U1 U~ U3 U4

A cofactorexpansionof this 4 x 4 determinantshowsthat(8.2) isautomaticallysatisfied

by virtueof(8.l), these3 x 3 determinantsbeingthe minorsof the 4 x 4.
Thus there are justtheten dotproductinvariantsleft, subjectonly to the constraints

(J2). Of thesesix constraintsanothercomputationrevealsthat only four are indepen-

dent. It follows that the reducedspaceis the 6-dimensionalsemialgebraicsetin R’°
determinedby theconditions [u,,, U13,J] = 0 and the inequalities(11) and (12).

Thetwo-particlereducedspacestratifiesas in (5.3). Fromthedescriptionsof C~and

C~givenin §V it follows that E (C2) r~R
4 /Z

2. Usingthe characterizationof C~asa
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bundleover C2( R
3), S(C

2) = canberealizedtopologically as M/SO(2), where

SO(2) is thesubgroupof SO(3) whichcoverstheidentity on C2 ( R
3). To beprecise,

theactionis

(O,(EIF)) —~(ER(G)lFR(O))

wherethe matricesR(0) representrotations aboutthe axis e x f (the <<rest>> of the
rotationgroup actstransitivelyonthebase).
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