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Reduction of homogeneous Yang-Mills fields
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Abstract. The structure of the reduced phase space for a homogeneous Yang-Mills
field on a spatially compactified (n+ 1) -dimensional Minkowski spacetime is stud-
ied. Using the theory developed in [AGJ], various reductions of this system are consid-
ered and are shown to agree. Moreover, the reduced phase space is realized as semi-
algebraic set which carries a nondegenerate Poisson algebra. For the gauge groups
SU(2) or SO(3) itis shown that this system is equivalent to that of n interact-
ing particles moving in R® with zero fotal angular momentum. The particular cases
n=1 and 2 are discussed in detail.

L. INTRODUCTION

The Yang-Mills equations provide one of the most important examples of a singular
constrained system. Through the work of Arms, Marsden and Moncrief one now has a
detailed understanding of the structure of the Yang-Mills constraint set. (1) One knows,
among other things, where the singularities are, what they look like and how they are
related to gauge symmetries.

Less well understood is the behaviour of the reduced phase space for the Yang-Mills
equations. Although certain subspaces of its smooth sector have been studied in detail
[Mi], one has at present only a local description of its singularity structure [Al, Mon).
One expects from general principles that the reduced space will be a stratified manifold
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(1) See [Al], [Mon] and references cited therein for Yang-Mills theory per se. The general for-
malism regarding singularities of momentum maps is contained in [AMM]. Both [A 2] and [Ma
2] are useful surveys.
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(«cones over cones»), but global phenomena may distort this characterization. There arc
other fundamental problems as well: To what extent is the reduced space symplectic?
How does the dynamics project to the reduced space and in what sense is it Hamiltonian?

In this paper I examine these issues in the context of a homogeneous Yang-Mills
field propagating on a spatially compactified (n+ 1)-dimensional Minkowski spacc-
time. The assumption of homogeneity allows me to dispense with infinite-dimensional
technicalities while concentrating on the essence of the problem, viz., the presence of
singularities. These singularities tremendously complicate the reduction process. In fact,
it is not at all clear precisely what one means by «reduction» in the singular case: there is
no longer a unique, much less preferred, way to reduce the system [AGJ]. Which possi-
bilities «work»? If various reductions differ, how do they differ and what is the physical
significance of this? Do these reductions yield symplectic structures — or at least Poisson
brackets — on the reduced space? These are all global questions, and their study requires
techniques altogether different than the usual ones, which are based on properties of
slices for the gauge group action [AMM].

The foundations for such a study have already been laid in [AGIJ], and involve ideas
from C* real algebraic geometry. Applying this theory to the homogenized Yang-
Mills system, I find that the three main methods of reduction — & Ia Dirac, geometric and
group theoretical - are not only applicable, but in fact agree, provided the gauge group
is compact. I then show that the resulting reduced phase space is a stratified symplectic
manifold which carries a nondegenerate Poisson algebra, and that it can be realized as
a semialgebraic set. Moreover, the reduced space coincides with the moduli space of
homogeneous Yang-Mills fields, a result which is certainly expected on physical grounds
but need not always be true.

To obtain sharper results, I furthermore suppose that the gauge group is either SO(3)
or SU(2). Then the system takes the form of n interacting particles moving in R?
constrained to have zero total angular momentum. In this case I am able to explicitly
construct the reduced space and its associated Poisson algebra using classical invariant
theory.

These findings indicate that despite being singular, the Yang-Mills system is relatively
well-behaved. Thus it furnishes a useful «laboratory» for discussing questions relating (o
the reduction of singular systems. More importantly, this approach should provide some
insight into the infinite-dimensional Yang-Mills case as well as other singular constrained
field theories.

II. THE HAMILTONIAN STRUCTURE OF THE YANG-MILLS EQUATIONS

1 first briefly sketch the standard Hamiltonian formulation of the vacuum Yang-Mills
equations following [BFS]. See also [Al}, {Mi], [Mon] and [Sn2] for background and
further details.
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Let G be aLie group whose Lie algebra g carries an adjoint-invariant inner product
( ), and consider a Yang-Mills theory based on a trivial principal G-bundle P overan
(n+ 1)-dimensional spacetime X.

Fix a compact Cauchy surface § C X, and denote the restriction of P to S by
Pg. Then, relative to S, the space + time decomposed configuration space for the
Yang-Mills system is the connection bundle Ag of Pg. The corresponding phase space
is the L?-cotangent bundle T*Ag with its canonical symplectic structure. Elements
(A, E) € T*Ag consist of a connection A on Pg (viewed as a g-valued 1-form on
S) and its canonically conjugate «electric» field E (also viewed as a g-valued 1-form
on §). The pairing between A and F is given by

@2.1) /S (AA*E)

where x is the Hodge star operator of the induced metricon S, and the symplectic form
is

w((8,0), (€)= [ ((a Axe') = (o Axe)).
S
Finally, let
2.2) F=dA+[AAA]

be the curvature of A,[ ] being the bracket on g. Then the Hamiltonian density is
1 1
2.3) H(A,E)=E*(E/\*E)+ 4—*(F/\*F).

Consider the group Gg of automorphisms of Pg which cover the identity on S,
thought of as maps ¢ : § — G. Its Lie algebra gy can be identified with the g-valued
functions on §. Now G actson Ag by gauge transformations:

(2.4) (p,A) > o' Ap+pldyp

where G is represented as a matrix group on g. The induced action on the phase space
T*Ag is the cotangent action with momentum map J : T*Ag — g5 given by

2.5) J(A E) =86E+ [ ANXE].

In this expression § is the metric codiffcrential and a pairing analogous to (2.1) has been
used to identify gg with gg.

The condition J = O arising from the gauge invariance of the theory is an initial
value constraint. That is, only those pairs (A, E) € T*Ag satisfying 8 E+x[ AAxE] =
0 constitute (formally) admissible initial data for the Yang-Mills equations.
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III. HOMOGENEOUS YANG-MILLS FIELDS AND A MECHANICAL ANAL-
OGY

Now suppose that the spacetime is Minkowskian, X = T x R, and that the Yang-
Mills field is spatially homogenous. Then A and E are constanton S = T™, (2) and
(2.2) reduces to

3.1 F=[AANA]L

Upon fixing a base point in Ag, the connection bundle may then be identified with
R™ @ g~ L(R",g) and the phase space becomes T*L(R",g) with symplectic form

(3.2) w=x(dAA+dE).
Furthermore, from (2.4) the group G, acts on L(R",g) by
(3.3) (p,A) = ' Ap

where now ¢ is also constant. Thus Gg (and go) may be identified with G (and
g), so that (3.3) is the adjoint representation of G on the second factor of R™ ® g.
Expression (2.5) for the momentum map reduces to

(3.4) J(A E) = x[AAXE].

All this data, when combined with the Hamiltonian (2.3) and the constraint J = 0,
realizes homogenized Yang-Mills theory as a finite-dimensional constrained dynamical
system with symmetry.

I now additionally presume that the gauge group G = SU(2) or SO(3). Under
the usual identifications of (g,[ ]) with (R?,x) and g with ¢g*, (3) (3.4) takes the
suggestive form

J(A,E)= (A;x E).

1=1

In fact, if one views the components A, € R® and E; € R® of A and E asbeing the
position x; and momentum p; vectors of a particlc, then this homogeneous SU(2) or

(2) Technically, this presupposes that the trivialization of Pg has been chosen tobe T™-invariant.
Note that there is some controversy in general as to whether «<homogeneity» requires the gauge
potential A or rather just the field strength F to be spatially constant {Mol].

(3) Since the adjoint representations of SU(2) and SO(3) are the same, I will henceforth not
distinguish between these two possibilities and will refer solely to the rotation group.
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SO(3) Yang-Mills system becomes formally identical to that of a swarm of n inter-
acting particles moving in R® with zero total angular momentum: (%)

(3.5) J(z,p) =) (z;xp) =0.

1=1

The configuration space of the system should now be regarded as L(R", R3) ~
R3", in which context the action (3.3) becomes simply the diagonal representation of the
rotation group on n copies of R>. The phase spaceisthen R3*x R3* = (R*x R*)" =
R®™, the symplectic structure (3.2) assumes the usual form

n
(36) w=) dzAdp,
i=1

and, using (2.3) and (3.1), the Hamiltonian becomes

1 n
3.7) H(z,p) = 5E<HPJI2+EII%X%HZ)~
=1

J>i

This result is reminiscent of the relations between the KdV equation and the Toda
lattice or the Calogero system [Mal]. It is significant in that it enables one to think
of the Yang-Mills system in more familiar mechanical terms, and thereby draw upon
various results whose applicability would otherwise have remained obscured. (5) In
particular, the reduction of this system is already completely understood when there is
only one particle [GB]; it corresponds to a homogeneous Yang-Mills theoryona (1 +
1) -dimensional spacetime. Now I analyze this system in detail.

IV. THE CONSTRAINT SET

First consider the constraint set C = J~'(0) in the general context of §1II, assum-
ing henceforth that G is compact. From [AMM] one knows that C will have singu-
larities exactly at those points admitting nontrivial (but nonminimal) isotropy groups.
Clearly, in view of (3.4), these singularitics will be conical. Moreover, C stratifies ac-
cording to symmetry type:

— K
4.1 C= 9,0

(4) A similar observation, in a slightly different context, was made by Patrick [P].
(5) This is not to say that a system of particles with vanishing total angular momentum is unin-

teresting in itself. In fact, this system appears in several contexts, notably celestial mechanics (cf.
[AMD).



354 MARK J. GOTAY

where C consists of all points with isotropy groups conjugate to the subgroup K of G.
Each stratum individually is a smooth manifold (conceivably with several components
of differing dimension). Let Z(C) be the subvariety of singular points of C and let
S(C) = C\X(C) be the open subset of C consisting of smooth points.

Since the action of G on T*L(R",g) is lifted from the base, the main result of
[AGW] yields, for any G whatsover,

THEOREM 1. C is coisotropic. (6)

Now specialize to the case when G is the rotation group and suppose that n > 1.
(The case n =1 is special and will be discussed separately in § VIL.) Then, viewing
J : R®® — R3, a computation of the rank of J shows that C, = J~1(0) isa (6n—
3) -dimensional variety. The isotropy group of a point (z,p) € C, can be either 0-,1-
or 3-dimensional and the constraint set decomposes correspondingly:

4.2) c,=ClucC,ucC,.
The origin is the most singular point, as it is invariant under the entire group. Thus
C3 = {(0,0)}. The only other points with nontrivial isotropy groups are of the form
(z,p) = (5,8,...,5,8,1,€,...,1.8)

for any constants s;,t; not all zero, where & is a unit vector. Such points are invariant
under an SO(2) subgroup of rotations about the axis &. Consequently C! is diffeo-
morphic to the antipodal identification R2™ x 2 S? and fibers over RP? with fiber

R?", where the projection C} — RP? is
[((sl!"'anytll"'ytn))é)] _'[é]

(brackets denote equivalence classes).
Thus for n > 1

() =cluc

can be realized as the space formed by collapsing the zero section of the vector bundlc

R2n N R2n XZZ 82

|

RP?

() This result is not entirely obvious. Certainly the components of the momentum map are them-
selves first class constraints, but it does nof necessarily follow that all consiraints are first class.
This phenomenon, which of course not occur in the regular case, is discussed in both [AGW] and
§V of [AGIL
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to a point. The smooth sector S(C,) is more difficult to describe (the case n = 2
is treated in § VIIT). In the remainder of this section I prove that C, is «as nice as
possible».

THEOREM 2. C, is irreducible.

Proof. 1t suffices to show that S(C,) is arc connected. (7) For n = 2, this can be
checked using the description of S(C,) givenin § VIII. I now proceed by induction
on n, assuming the result is true for S(C,_,). Viewing C,_, C C, inthe obvious way
(i.e. by setting z, = 0,p, = 0), I will show that every point (z,p) € S(C,) canbe
joined by an arc in S(C,) to apointof S(C, ;) (C S(C,) for n>2). As §(C,_,)
is arc connected, so thenis S(C,).

First note that (z,p) € S(C,) iff (3.5) is satisfied and at least two of the z; and p;
are lineary independent.

There are two cases to consider, depending upon whether z, x p, = 0. Begin by
supposing that it is not, so that (z,,p,,e = z, X p,) is a frame for R3. For i < n,
wrlte

z, = a,x, + bp, + ce, p, = 1,3, + 8,p, + Le.

Then the line segment obtained by simultaneously scaling each ¢, and t; to zero (while
leaving all other components unchanged) lies entirely within S(C,) and connects (z, p)
with a point whose e components vanish.

For such a point write

n-1
4.3) J(z,p) = (E k; + 1) e,

i=1
where z; X p; = k;e for 1 < n. Now fix a j for which k; # 0; by perturbing (z, p), if
necessary, one may assume that k; # —1. For o € [0, 1] consider the curve given by

z;(0) =(1+ a/lcj)zj,

z,(0) = (1 -z, p,(0) =(1 —a)p,,

where all other z; and p; remain unchanged. From (4.3) J vanishes along this curve.
Furthermore, since k; # —1 and both z (1) and p,(1) are zero, this curve lies in
S(C,) and its endpoint is in S(C,_,).

(7) See, e.g., the Proposition on p. 21 of [GH]. Although the desired result and its proof are stated
in the context of analytic varicties, they remain valid in the real case (but not the converse!). Recall
also that, as the S(C,) are manifolds, connectedness is equivalent to arc connectedness.
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Now consider the case when x, x p, = 0. If any two of the z; and p; for i < n are
linearly independent, the desired result follows simply by scaling both z,,,p, — 0. If
not, the point in question must look like

z,=ce, p;=te, z,=c.f,p,=t.f

forall i+ < m, where e x f # 0. Again, one may homotope such a point within S(C,)
to one of the form

(44) zn_l =O7pn41 =€, In:f) pn=0
with all other z; and p, vanishing. Then the line segment

(o) =0of, z,(0)=(l-0)f

(leaving all other vectors unchanged) connects the point (4.4) withone in S(C, ;). =

V. THE REDUCED PHASE SPACE

There are (at least) three ways of constructing a reduced phase space € for the Yang-
Mills system: ala Dirac, geometrically and group theoretically ((AGJ], [Snl], [MW]; see
also [ACG]). Which method one chooses depends upon what aspect of the formalism one
considers primary. For example, the Dirac approach centers around the concept of «ob-
servable», the geometric method is more symplectic in nature and the group theoretical
reduction is closely tied to the notion of gauge equivalence. These types of reduction
will usually not agree (although they coincide when the system is regular). In view of
Theorem 3 below, it is not necessary to go into the details of these procedures here; see
instead [AGJ] for a comprehensive exposition along with numerous examples. The local
theory is discussed in [Al] and {Mon]; cf. also § VII (c) of [AMM].

The main result of this section is that all these reductions are «equivalent», provided
the gauge group is compact.

THEOREM 3. Consider a homogenecous Yang-Mills theory with compact connected
gauge group G. Then the reduced phase spaces resulting from the three above-mentio-
ned methods are all isomorphic.

This follows directly from Prop. 5.5 of [AGJ]. Roughly spcaking, it mcans that the
notions of observable and gauge equivalence are tied to the symplectic structurc and
each other in the «correct» — and expected — way, despite the presence of singularitics.

Since the group theoretically reduced space is just the orbit space of C, one has that

(5.1) C~C/G.
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This implies that the reduced space is also a stratified manifold. Indeed, as G is compact
and each stratum CX of C consists of points with the same symmetry type, CK =K /G
is a Hausdorff manifold (cf. exercise 4.1M in [AM]). Then the decomposition (4.1)
yields

A _ AK
6n  Cm et

In addition the local theory (cf. § VII (c) of [AMM] guarantees that each stratum CK of
C is actually symplectic. Thus

THEOREM 4. C is a stratified symplectic manifold.

The identification (5.1) has three further consequences.

First, from general principles the geometrically reduced space can be interpreted as
the set of gauge equivalence classes of solutions of the homogeneous Yang-Mills equa-
tions. (3), (%) Combining this observation with (5.1), one sees that the reduced space
coincides with the moduli space of homogeneous Yang-Mills fields.

Second, as the Dirac reduced space is completely regular in the topological sense
[Sn1], it guarantees that the orbit space is reasonably well behaved.

Third, using a result of Schwarz [Sc] and Prop. 5.6 of [AG]J], it enables one to model
the reduced space as a semialgebraic variety:

THEOREM 5. There exists amap p: C — RN forsome N such that C ~ p(C).
When G is the rotation group this realization may be made completely explicit using

classical invariant theory. The standard reference for what follows is [W], especially
§1X and §XVII of Chapter 2. It is helpful to introduce some notation. Let u_,1 <

a < 2n, be defined by u; = z,,u,,; = p;, and set
Ug, g oo Uy " Ug
ual cee uak _ de[
uﬁl uﬂk
uak 'Uﬂ] 'U:ak .uﬁk

(8) Here «gauge» is to be understood in the context of the Dirac theory of contraints, not in the
Yang-Mills sense.

(%) Strictly speaking, the geometrically reduced space consists of gauge equivalence classes of
admissible initial data for the Yang-Mills equations. Since the evolution generated by the Hamil-
tonian (1.3) is complete (cf. p. 232 of {[AM]), this space may be identified with the set of gauge
equivalence classes of solutions to the Yang-Mills equations.
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For the diagonal action of the rotation group on R®™ = (R?)2", the basic scalar
invariants are the dot products v, - u s and the triple scalar products [u,, u 5 U] . These
invariants are the components of the map p of Theorem 5. They are not all independent,
but are subject to three types of relations:

(Rl) 'U«al ua4 - 0’
'U-ﬁl U.ﬂ4
(R2) [ua,uﬂ,uv] [u)\’uu’uu] . Uy uﬁ U«‘1 = 0’
UA u# U:U
and
(R3) Z [u‘ayuﬂ)uq] (u6 - U)\) = O,
(a,8,7,6)

where the last sum is cyclic. These relations also are not all independent. For later use,
observe that together (R1) and (R2) imply that

ua U‘E U,Y ua uﬁ U;,,, U, Uﬁ Ug

u, ‘U.ﬁ Ug

R4)

u

ua U.ﬁ Uz,., o Uﬂ Ug

Furthermore, there are various inequalities that must be satisfied; these are

an llugl* >0
and
1) gl gl = (ug - up)? > 0.

Now the constraint J = 0 gives rise to further scalar conditions of the form

an tu,-J =0
and
Jz2) [umuﬂ,J] =0.

These constraints are not independent either among themselves or in conjunction with
RI)-(R3).

All told, then, if N is the total number of invariants listed above, the reduced space
may be identified with the semialgebraic set in RV determined by the above relations,
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inequalities and constraints. Since the dimension of a generic orbit on C,, is three, (5.1)
implies that the dimension of the reduced space willbe 6n— 6.

This characterization is complicated and unwicldy, but it does enable one to construct
the reduced space without having to compute a quotient. Of course, substantial simpli-
fications can be made for specific small n. The details for n= 1 and 2 will be given
in § VII and § VIII | respectively.

For the rotation group, (4.2) and (5.2) yeld the symplectic stratification

~

(5.3) C,=C°ullul?,

where €2 is the vertex of G} ~ R?"/Z,. These two strata fit together to form a half-cone
over which ég lies. This description clearly indicates the «cones over cones» singularity
structure of the reduced space. In the Yang-Mills context [A1], the «0», «1», and «3»
strata represent gauge equivalence classes of irreducible SU(2) or SO(3) solutions,
«electromagnetic» U(1) or SO(2) solutions and the trivial solution, respectively.

VI. THE REDUCED POISSON ALGEBRA

Due to singularities in both the constraint set and the reduced space, one cannot expect
the symplectic structure on phase space to project directly to € although, as Theorem
4 shows, it does project to each stratum CX of €. Instead, one should try to reduce the
symplectic structure algebraically, that is, use the Poisson bracket { } associated to (3.2)
to induce a Poisson bracket on C.

This may or may not be posstble with the reduction techniques discussed above and,
even when it is, the resulting reduced Poisson algebras need not be isomorphic and/or
nondegencrate [AGJ]. Fortunately, in the case considered here, such pathologies do not
arise.

THEOREM 6. Consider a homogencous Yang-Mills theory with compact connected
gauge group G. Then reduction gives rise to a nondegenerate Poisson bracket on

G (0).

Here, the «smooth» structure on C is defined as follows. A function f on € is
smooth, f e C=(6), ifitis the projection of a Whitney smooth function on C, i.e.,
fo w = f forsome f € W*(C), where n : C — ¢ is the reduction. (10)

(10) A function f on C is Whitney smooth, f € W(C) ,provided f is the restrictionto C of a
smooth function on the ambient manifold.
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Proof. 1 will show that the three reduction techniques considered in §V define the same
Poisson bracket on the reduced space. All references are 1o [AGJ] unless otherwisc
noted.

The geometrically reduced bracket exists by Prop. 5.7. Since by Theorem 1 above C
is coisotropic, Prop. 3.1 guarantees that the Dirac reduced bracket is well-defined. These
two reduced Poisson algebras then coincide by Cor. 5.8. On the other hand, Lemma 5.4
shows that the group theoretical and Dirac reductions are the same.

Finally, nondegeneracy is a consequence of Prop. 5.9. n

The Poisson bracket on () effectively glues the individual symplectic forms on
the strata CX together into a global geometric structure on the reduced space. Because
the reduced Poisson algebra by construction incorporates the «compatibility» conditions
which arise when strata join, it is actually more appropriate to regard € as a space with
a Poisson bracket than as a stratified symplectic manifold. (11)

It is possible to explicitly realize the reduced Poisson algebra as follows. Recall from
Theorem 3 that € ~ C/G. Then C=(6) ~ W*(C)¢, the G-invariant Whitney smooth
functions on C. For f,f; € W>(C)?, the reduced Poisson bracket is

6.1) (f,81 = {f9}IC,

where f, g are any extensions of f, g toallof T*L(R"™, g). Thus one may also construct
the reduced Poisson algebra without having to compute any quotients. Using Theorem
5 and the results of Schwarz [Sc] this may be pushed one step further, yielding

C=(CF) ~ W(p(0)).

It should be mentioned that there are (at least) two other ways of reducing a singular
constrained system with symmetry which are purely algebraic in character. These proce-
dures construct reduced Poisson algebras but not reduced spaces. I now briefly consider
these, showing that they give results equivalent to those obtained above, at least when
G is the rotation group.

(11) One reason for this is the following. The bracket associated to the reduced symplectic structure
on the manifold C¥ is defined on all of C*({X), whereas the bracket induced on C¥ by thaton ¢
is defined only on C*°(C¥) C C=(C¥). (This is because W=(CX) C C=(CX); the inclusions
are usually strict as C¥ is not necessarily closed.) The «compatibility» conditions referred to in
the text comprise exactly this cutting down from C=(CX) 1o C=(CX). For an example sce [G].
As a consequence, it is probably best not fo think of C¥ as a symplectic manifold as is often done
{AMM, Mon]}, since this appears to lead to incorrect results . (This can be seen eveninthe n=1

example in § VII; see also [GB].) These matters will be discussed in more detail elscwherc.
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The first algebraic reduction procedure, due to Sniatycki and Weinstein [SW], pro-
vides a Poisson bracket on the function space [ C®( R®™) /T 1€, where T is the ideal
in C( R®™) generated by the components of the momentum map J. The other, which
is discussed in [AGJ], centers instead on C*°( R%")¢/JC. By virtue of Prop. 5.12 of
[AGJ], these two procedures coincide when G is compact, so I restrict attention to the
former.

THEOREM 7. When G is the rotation group, the Sniatycki- Weinstein reduced Poisson
algebra is isomorphic to that given by Theorem 6.

Proof. Since W*=(C)¢ = [C*™(R®")/I(C,)]¢, it sufficies to establish that I(C,) =
T, where I(C,) is the ideal of C, (cf. Thm. 6.1 of [AGI]). As TJ is generated by
polynomials, Thm. 6.3 of [AGJ] reduces the problem to showing that J is a real ideal
of the polynomial ring R[ z,p]. For this it is useful to complexify.

Let JC = J®{C, anideal in C[ z,p), andlet C¢ C C°" be the variety determined
by JC. Clearly dimCS = dimgC,. Now Theorem 2 — with obvious modifications —
holds in the complex case as well, with the result that CC is irreducible; therefore J€
is prime. By a theorem in commutative algebra (6.5 in [AGJ]), T is real. ]

Finally, a brief word about dynamics. Since it is gauge invariant, the Hamiltonian
(2.3) projects to a function & on €. Interms of this reduced Hamiltonian and the reduced
Poisson bracket, an observable f € C>=(C) evolves in the usual way:

df
dt

In this sense the evolution on the reduced space is Hamiltonian.

(7, 8.

VII. THE CASE n =1

Consider now the special case of one particle with zero angular momentum. This
system is simpler than the others and does not fit the pattern established for n > 1. The
basic reference here is [AGJ]; a different approach is pursued in [GB].

The main difference between one and several particles is that C? is empty. Conse-
quently, points of C} are nonsingularand £(C,) = {(0,0)}. Now S(C,) = C] canbe
identified with £* x ; S2, and from this description it is obvious that §(C,) is con-
nected. Therefore €, is irreducible. Moreover C, in its entirety forms a complex cone
over RP? [GB].

I next construct the reduced space via invariant theory. The basic list of invaniants is
(dropping the subscripts «1»):

1211, 2 - o, |Ipll*-
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Thus N = 3. There are no relations of types (R1)-(R3) in this instance, and the only
nontrivial constraint is of type (J2), viz.,

[z,p,J]1=0.
As J = z x p, this redﬁces to
llzll” IIpll* = (z-p)* = 0.

Taking this into account, the inequality (I12) becomes vacuous, and the remaining in-
equalities (I1) are

llzl[* > 0, lpl* > 0.
Defining p : C; — R> by
p(z,p) = (||=l1?, z-p, lIpl?)
one then has the reduced space él realized as the half-cone
p(C) = {p € R’| (py)* = p1ps andp;, p3 > 0}.

Topologically €, ~ R?/Z,.
The reduced Poisson bracket (6.1) on W*(p(C,)) works out to be

[f:g] = 2{fvg}1,2pl + 4{f:g}l,3 %] +2{f)g}2,3 Ps3,

where

{f,9}ap = (0f/0p,) (89/0p,) — (89/Bp,) (8f/0p,),

and the reduced Hamiltonian (3.7) is H(p) = 1p;.

VIIL. THE CASE n=2

First I give an explicit description of S(C,). Let (z,,p,;,%,,p,) € C,, in which
case these four vectors must be coplanar by (3.5). If (z,,p,,2;,p;) € S(C,;) then,
since at least two — and hence exactly two — of these vectors are linearly independent,
this plane is uniquely determined. Let e and f be a basis for this plane. Expanding the
z; and the p; in this basis, one has in matrix terms that

(z)p1 7, 12) = (e NH(E|F),
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where FE and F are 2 x 2 matrices such that

@) rk(E|F) =2
and
(ii) det E+det F=0.

Denote by G,(R?) the Grassmann manifold of 2-planes in R3?. Then the above
shows that S(C,) is abundle over G,( R?) with 7-dimensional fiber M consisting of
all 2 x 4 matrices ( E|F) satisfying (i) and (ii). Using this description, it is straight-
forward to check that S(C,) is arc connected.

Now consider the two-particle reduced space. There are 14 basic invariants: 10 dot
products and 4 triple scalar products. In view of (3.5), the four constraints of type (J1)
force all the triple scalar products to vanish; this in turn vacates the relations (R3) alto-
gether. The ten relations (R2) then collapse to
u“l uﬂz u“:

ug, Ug, Ug,

(8.1) =0.

However, a calculation reveals that

U, uﬁ U,,y

= [ua,uﬂ,J](u,,-u,y)

U, Ug U,

+ [u,,,ua,J](uﬂ-u,Y) + [uﬂ,u,y,J](ua~u,7).

The vanishing of these particular determinants is therefore an automatic consequence
of the constraints (J2) and so, taking the subsidiary relations (R4) into account, all the
relations (8.1) are redundant. Finally, there is only one nontnivial relation of type (R1);
itis
(8.2) Ut ot

U Uy Uy Uy
A cofactor expansion of this 4 x4 determinant shows that (8.2) is automatically satisfied
by virtue of (8.1), these 3 x 3 determinants being the minors of the 4 x 4.

Thus there are just the ten dot product invariants left, subject only to the constraints
(J2). Of these six constraints another computation reveals that only four are indepen-
dent. It follows that the reduced space is the 6-dimensional semialgebraic set in R
determined by the conditions [u,, ug, J] = 0 and the inequalities (11) and (12).

The two-particle reduced space stratifies as in (5.3). From the descriptions of é% and
C3 givenin §V it follows that £(C,) ~ R*/Z,. Using the characterization of CJ asa
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bundle over G,(R*), S(C,) = ) can be realized topologically as M/SO(2), where
S§0(2) is the subgroup of SO(3) which covers the identity on G, ( R®). Tobe precisc,
the action is

(6,(E|F)) — (ER(8)|FR(6))

where the matrices R(8) represent rotations about the axis e x f (the «rest» of the
rotation group acts transitively on the base).
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