Poisson reduction and quantization for the n + 1 photon
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For a dynamical system in which the constraints are given by the vanishing of a singular
momentum map J, reduction in the usual group-theoretic sense may not be possible. Nonetheless,
one may still “reduce” J ~'(0), at least on the level of Poisson algebras. An example of such a
singular constrained system is the “‘n + 1 photon,” that is, a massless, spinless particle in (n + 1}-
dimensional Minkowski space-time. We apply the generalized reduction procedure to the » + 1
photon, explicitly constructing the Poisson algebra of gauge invariant observables. This technique
also enables us to completely analyze the effects of the singularities in J ~'(0) on the system. We
then quantize, obtaining results which are in agreement with a quantization of the extended phase

space and the subsequent imposition of the constraint.

PACS numbers: 02.40. + m, 03.20. 4 i

I. INTRODUCTION

Let (X,w) be a symplectic manifold and let G be a con-
nected Lie group with Lie algebra g. Assume that there is a
Hamiltonian action of G on (X,w) with a G-equivariant mo-
mentum map J: X—g*. If Ocg* is a regular value of J and if
the action of G on J ~(0) is sufficiently nice, then the Mars-
den—Weinstein reduced space J ~'(0)/G will be a symplectic
manifold.’

These constructs are particularly relevant to physics. In
this context, (X,w) represents the extended phase space of a
dynamical system, G is the gauge group, and, typically, the
constraints are given by J = 0.> The reduced phase space
J ~1(0)/G is then interpreted as the space of gauge invariant
states of the system.

In many interesting situations, however, this group-
theoretical reduction procedure does not work. For in-
stance, it may happen that O is not a regular value of J as in
gravity and Yang-Mills theory. Moreover, even if J ~'(0) is
smooth,J ~!(0)/G need not exist as a symplectic manifold. In
either case J is said to be “singular.”

For systems with singular momentum maps, then, re-
duction in the usual sense often cannot be carried out. None-
theless, Sniatycki and Weinstein® have recently pointed out
that it is still possible to “reduce” J ~'(0), at least on the level
of Poisson algebras. This generalized reduction procedure
allows one to determine the effects of the singularities of J on
the structure of the system as well as uncover certain dynam-
ical features which would otherwise remain inaccessible. In
particular, it identifies the gauge-invariant observables and
equips them with the structure of a Poisson algebra. This is
very useful when quantizing such a system.

Under sufficiently regular conditions, one may quan-
tize a constrained system in two equivalent ways. The first is
to quantize the extended phase space (X,w) and then impose
the constraints J = 0 on the quantum wave functions; this
ensures that the physically admissible states are gauge invar-
iant.*> Alternatively, one may quantize the reduced phase
spaceJ ~'(0)/G,>® in which case gauge invariance is directly
incorporated. When J is singular the latter technique is, of
course, no longer applicable. But then the reduction proce-
dure of éniatycki and Weinstein enables one to do the next
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best thing, viz., to quantize the Poisson algebra of gauge-
invariant observables.

Probably the simplest physically interesting example of
a singular constrained system is that of a massless, spinless
relativistic particle in (n + 1}-dimensional Minkowski
space-time, which we refer to as the “n + 1 photon.” The
extended phase space is R*” *? with coordinates (p,p, ,x,?)
and symplectic form

w=dp, Ndt + Y dp; Ndx,.
i=1

The gauge group is R with momentum map

J(ppoxt)=p; —|Ipll’.

Since the particle is massless, J must vanish. The constraint
set is thus

J-l(o) —_ CnXRn+ 1 ,
where C" is the null cone in R** ' In this paper we reduce
J ~1(0) on the Poisson algebra level and then quantize, ob-
taining results which are in exact agreement with the quanti-
zation of the extended phase space (R*” ™% ,w) and the subse-
quent imposition of the constraint J = 0.

This example serves three purposes: First, it illustrates
the usefulness and essential correctness, at least in this in-
stance, of the generalized reduction procedure. Second, it is
simple enough that we can both identify and completely ana-
lyze the effects of the singularities inJ ~'(0) on this system. In
this regard, our presentation seems to be the first which
treats the singularities seriously (compare with standard dis-
cussions of the 3 + 1 photon, e.g., that given in Ref. 7). Final-
ly, Arms, Marsden, and Moncrief 8 have shown that singular
momentum mappings typically have quadratic singularities
so that J ~!(0) is always a “cone.” Since the n + 1 photon is
an elementary, and in some sense canonical, example of this
phenomenon, its elucidation is essential for further progress
in understanding the structure of singular constrained sys-
tems.

In the next section we briefly recall the basic features of
the éniatycki—Weinstein reduction procedure. The details
for the 1 + 1 photon are then worked out in Sec. III. The
n = 1 case is done separately, since it is rather “special” and
technically much easier than the n > 1 case, which is elabor-
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ated upon in Sec. IV. The physical interpretation of these
results is discussed in the last section.

{I. POISSON ALGEBRAS, REDUCTION AND
QUANTIZATION

Let % be a commutative algebra over R. If [-,]] is a
bracket operation on . such that (i) the pair (% ,[-,-])is a Lie
algebra and (ii) the Leibniz rule

[AAL)=AALL+ LA LA

holds, then (% ,[.,-]} is called a Poisson algebra. The basic
example of a Poisson algebra is C* (X'}, where (X,0) is sym-
plectic and the Poisson bracket is given by

(fg} = — w5, &)

Here £, the Hamiltonian vector field of f, is defined via

I o= — df.

Now let (X,w), G, and J be as in the Introduction. For
each aeg define the functionJ, on X by J, (x) = (J (x},a), and
denote by # the ideal (relative to the associative algebra
structure)in C* (X ) generated by theJ, . Since J is G-equivar-
iant, the action of G on C* (X') induces an action of G on
C= (X)/ £ insuchaway that the projection homomorphism
J: C= (X)—»C= (X)/ # is G-equivariant. Let .¥ be the space
of G-invariant elements of C~ (X')/_#, that is, the collection
of all equivalence classes jf for whichj{{ £, # }}) = 0. Againby
equivariance, the Poisson bracket {-,-} on C* (X') descends to
a bracket [-,] on ¥ given by

Lif. gl =/{ f.&})- (2.1)
The pair (#,[-,-]) is the reduced Poisson algebra of the con-
strained system under consideration.

If O is a regular value of J, then C* (X )/ ¢

= C= {J ~'(0)). Furthermore, if J ~'(0)/Gis a quotient mani-
fold of J ~'(0), then the reduced Poisson algebra % is canoni-
cally isomorphic to the Poisson algebra of the reduced sym-
plectic space J ~'(0)/G. Under sufficiently regular
conditions, then, this generalized reduction procedure is
consistent with the Marsden-Weinstein technique, and we
may therefore interpret (#,[-,-]) as the Poisson algebra of
gauge-invariant observables. It is important to note, how-
ever, that in the singular case ¥ need not be the Poisson
algebra of any symplectic manifold nor must it be nondegen-
erate (in the sense that the only elements of % which Poisson
commute with everything are “constant”®).

We close this section with some remarks concerning the
quantization of a Poisson algebra (% ,[-,-]). The problem is to
construct the quantum state space from a knowledge of this
Poisson algebra. This is fairly straightforward, using the
techniques of geometric quantization theory,” when .7 is
associated with a symplectic manifold. In the singular case it
is necessary to proceed by analogy; briefly, this works as
follows.?

Let I’ = % & C be the complexification of 7 ; elements
oel” are the algebraic counterparts of sections of the pre-
quantization line bundle (which we take to be trivial). Given
aderivation £ of ¥, we may compute the “covariant deriva-
tive” V.o of a section o once a connection V on I has been
specified. A polarization 7 is a maximal commuting subal-
gebra of (#,[-,+]). A section el is said to be “polarized”
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provided V, o =0 for all feZ, where £ is the derivation
g—[g.f] corresponding to the Hamiltonian vector field of /.
The quantum state space relative to this data is then defined
to be the set of all linear functionals on the space of polarized
sections in I

For our purposes we may choose a connection V such
that

Veo=[o0,f]

for all feZ?. Then the space of polarized sections in I" is
precisely 7 @ C, and the quantum wave functions are ele-
ments of the dual (#Z & C)'.

Turning now to the example, we compute the reduced
Poisson algebra for the # + 1 photon and quantize it.

lIl. THE 1 + 1 PHOTON

The analysis of the n 4+ 1 photon is considerably easier
when n = 1, for then the constraint J = O factors. This cir-
cumstance simplifies the algebraic computations required
for the construction of the reduced Poisson algebra as well as
its presentation. This simplicity is also reflected in the struc-
ture of the constraint set J ~!(0) = C* X R** !, which is es-
sentially trivial when n = 1.

We begin by changing to null coordinates

u=t—x, v=t+x,
and their corresponding momenta
/L=pl _px’ 'Vzpr +px

The symplectic form on R* is then
o = VduANdu + dv \dv)
and the momentum map becomes
J (e, v,u,) = pv.
The ideal # of C= (R is thus generated by the product uv.
Define j: C* (R*)—C= (R*) X C= (R?) by
I = (f(,0,u,0), £(0,v,u,v)). (3.1)
Proposition 3.1: The quotient C* (R*)/_# may be identi-
fied with the image of C* (R*) in C* (R?) X C* (R?) under .
Proof: If fe ¢, then clearly jf = 0. On the other hand,
suppose that jf = 0. Then f(u,0,4,0) = 0 which, by Hada-
mard’s lemma, implies that fis divisible by v. Thus f = vk for
some smooth /. Then f(0,v,u,v) = 0 yields 4 (0,v,u,v) = 0,
which similarly implies that # is divisible by 1 and so fe 7.
Thus ker j = _# and the claim follows. Q.E.D.
Now jfe Fiff j{{ f, J }) = 0. From (3.1) this will be the
case iff

a—f(,u,O,u,v) =0= i(O,V,u,v),

dv du

so that the invariant elements of C* (R*)/_# are of the form
(f‘/-‘90’“’0)’f(0"’»0’v))

with f(0,0,u,v) constant. We may thus regard ¥ as consisting
of pairs of functions

(Plu,u), ¢ (v,v)) € C* (R?) X C= (R?)
subject to the compatibility conditions

HO0,u) = ¢ (O,v) (= const). (3.2)
In these terms, a direct calculation shows that the in-
duced Poisson bracket (2.1) on .Z is given by
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[(@161)s (@2s82)] = 2[¥1¥2)0 5 2[1,82)00),
where

[Yutnl,, =2 _ 930,

(3.3)

denotes the ordinary Poisson bracket with respect to the pair
u, p etc. It is straightforward to check that [-,-] is nondegen-
erate.

In view of (3.3), the reduced Poisson algebra % is close-
ly related to the Poisson algebra C= (R?) X C* (R?) of the
symplectic manifold consisting of two disjoint copies of R”.
Due to the compatibility conditions (3.2), however, ¥ is
strictly a subalgebra of this Poisson algebra, and so is not the
Poisson algebra of any symplectic manifold. These condi-
tions therefore express the influence of the singularities in
J ~!(0) upon the system. In fact, a correlation between these
two Poisson algebras might have been expected from a
consideration of the case when the photon has a mass m.
Then the constraint set J ~'(m?) is nonsingular, but discon-
nected, and the reduced phase space is symplectomorphic to
R?UR2 It follows that the reduced Poisson algebra for a mas-
sive particle is exactly C* (R%) X C* (R?). The effect of letting
m~>{Q is thus to reduce the number of gauge-invariant obser-
vables. We shall have more to say about the physical inter-
pretation of this phenomenon, and its relationship to the
singular space J ~'(0)/R, in Sec. V.

To construct the quantum state space, we must choose a
polarization & of .. Noting that the horizontal polariza-
tion P on R* spanned by the vector fields £, and &, projects
onto J ~'(0), a natural choice for & is

Z = {(Yw), ¢ V)|¥(0) = ¢ (0}}. (3-4)
According to general considerations, then, the quantum
wave functions are elements of (¥ ¢ C)'.

To represent these states, we need the following result:
Consider R? with coordinates u and v, and let / be the ideal
in C* (R?,C) generated by the product uv.

Lemma: C* (R,C)/ 7 = 7 oC.

Proof: Mimicking the proof of Proposition 3.1, we have
that C* (R)/ 7 may be identified with the image of C* (R?)
in C* (R) X C~ (R) under the map f~{ f(x,0), f(0,v)). Com-
parison with (3.4) and complexification then yields the de-
sired result. Q.E.D.

With this in hand, we now establish:

Proposition 3.2: (% & C)' is isomorphic to the space of
all complex-valued distributions @ on R? satisfying

pv®@ =0. (3.5)

Proof: Let @ be such a distribution, in which case @
annihilates all functions which are divisible by uv. Then &
induces a linear functional donC> (R%,C)/ / so that, by the
Lemma, 456(5” ® C)'. Conversely, every linear functional on

ZeC=C"(R%L0)/ / can be lifted to a distribution on R?
satisfying (3.5). Q.E.D.

These distributions @ take the form

D () =4 )@ S ) + Sl ox (v,
where A and y are distributions on R. Then for f € C* (R%,C),

(D,1) = (A (), f,0)) + {x(v), £OV)),
from which we obtain the explicit representation

@ (v) = (A w)xv)
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of @ as a linear functional on Z ® C.

Proposition 3.2 is the main result of this section. Not
surprisingly, it shows that the gauge invariant wave func-
tions must satisfy the 1 + 1 wave equation, which is just the
Fourier transform of (3.5). It also guarantees that this quan-
tization is equivalent to that of the extended phase space
(R*,@). In fact, quantizing in the momentum representation
defined by the polarization P, we find that the quantum Hil-
bert spaceis L %(R?)and that the quantum operator 2J corre-
sponding to J is given by

2I[@] = uved.

Thus, from this point of view as well, the physically admissi-
ble photon states must coincide with the distributional solu-
tions of (3.5).

Finally, note the crucial role of the compatibility condi-
tions (3.2), in the guise of (3.4), in Proposition 3.2. Without
them (3.5) would not follow and the correlation with the
wave equation would be lost.

IV. THE n + 1 PHOTON

For the 1 4+ 1 photon the constraint set consists simply
of two intersecting hyperplanes in R*. This enabled us to
compute directly on J ~'(0); in effect, we worked on each of
the two hyperplanes and then “glued” along their intersec-
tion by means of the compatibility conditions. For n > 1,

J ~'(0) is more complicated and we can no longer proceed in
this straightforward manner. In particular, it is now neces-
sary to “resolve” the singularity.

Our first task is to construct the quotient
C= (R* *?)/ # . The following result is the higher-dimen-
sional analog of Proposition 3.1. Let feC= (R*" * 2).

Proposition 4.1: fe # it f|J ~'(0)=0

Proof: The obverse is apparent. For the converse, it is
clear from the structure of the constraint set
J 7'0)=C" xR"*" that the configuration variables (x,?)
are largely irrelevant and may accordingly be factored out.
We are thus effectively reduced to proving that if
g: R" "' —>Ris such that g|C" = 0, then g is globally divisi-
ble by p; — ||pl/*.

There is no problem off C*. On either of the regular
components of C*, this follows from the inverse function
theorem and Hadamard’s lemma. It remains only to demon-
strate that g is divisible by p? — ||p||? at the vertex of C", and
for this it suffices (Ref. 10, p. 72) to show that the formal
Taylor series of g at the origin is divisible by p? — ||p||>. We
now establish this for n = 2; this case is prototypical, and the
generalization to arbitrary » is immediate.

Thus let

, I

Teg= ,H;ﬁ Tk —BPPLP
be the homogeneous part of the rth Taylor polynomial of g at
the origin of R?, where

ai +i+k g ( )
opiapapt
In (4.1) view all variables other than p, as parameters. Then
to say that T'5g is divisible by p? — (p% + p}) is equivalent to
requiring that both p, = + (p2 + p?)'/* be roots of T ;g
Substituting these values for p, into (4.1), decomposing the

4.1)

K
8ij =
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sum into even and odd powers of (p2 + pZ)'/?, expanding
these powers in a binomial series and reorganizing gives

( S amp;"p;')

m+n=r

+ (P +p§)”2( > bm,.p;"p;‘), (4.2)
m+n=r—1
where
[m/2) (/2 + 1) .
Crn = > (i)
I=0 k=1
1 k
" ,(4.3
><(m—21)!(n—2k+21)!(2k)!gf"‘z" w2 (43)
[m/2] [n/2 + 1] X
b = Z >
I=0 k=1

1
X (m — 21 )Mn — 2k + 202k + 1)!

g2k+1
m~—-2Ln—2k + 21>

(4.4)

and [k ] denotes the greatest integer less than or equal to k.

From (4.2)it follows thatp, = + (p2 + p2)"/? will be roots of
T, g iff the coefficients a,,, and b,,, vanish.

Now let v be a vector at the origin which points along a

generator of the cone, and consider the rth derivative of g in

the direction v:
D’ g(0,0,0 =[(vx +v, L 4y, —-—) Jo,o,o.
£(0,0,0) . " 5, F £](0,0,0)

Another lengthy calculation, consisting of expanding this
expression out, separating into even and odd powers of v,,
and then using the fact that v = v2 + v2, yields

mn.
S 4V v;)

m+n=r

d d d

D’g0,0,0)= ﬂ.(

L=+ S b))
m+n=r—1

wherea,,, and b,,, are given by (4.3) and (4.4), respectively.

But by assumption g|C" = 0 so that D’ g(0,0,0) = 0 for all

such v. This implies that a,,, = 0and b,,, = 0, and we are

finished. Q.E.D.

This proposition shows that

C=(R**2)/ 7 =C=(J ~'(0)),
the smooth functions on J ~'(0) in the sense of Whitney."!
Unfortunately, C= (J ~(0)) is rather difficult to handle. To
obtain a more tractable representation of C* (R** +2)/ ¢,
we “resolve” the singularity by means of the map
¢: R2n +2 ~—>R2" +2 given by

é (m,p,, X,t) = {p,mp, x,t ).

Note that now the physical momenta are given by p, and
p =p,w. If we define K: R>"+ % R via

K(mp,xt)=1~ |||’
then K 7'(0)=(S""' XR)XR"*! and
¢ (K ~'(0)) = J ~}(0). Let ¢ be the restriction of ¢ to X ~'(0).
Note that ¢ is a local diffeomorphism away from the “equa-
tor” p, = 0 and collapses the equator (S" ~' X {0}) X R"*!
onto the singular set S = {(0,0)} X R"*} in J ~1(0).

We think of X ~'(0) as being a “covering manifold” of
the singular space J ~'(0); using @, we pull the entire formal-
ism onJ ~'(0) back to X ~'(0). The advantages of this proce-
dureare (i) K ~'(0) is a manifold and (i) we can dispense with
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C= (J ~'(0)) directly and work instead with its more man-
ageable isomorph ¢ *C> (J ~'(0))CC> (K ~'(0)). The key
fact which makes this possibleis that ¢ *C= (J ~!(0)) admits a
relatively simple characterization in C* (K ~!(0)) in terms of
formal Taylor series.!?
Proposition 4.2: Let FeC= (K ~(0)). Then
Feg *C= (J ~1(0))iff for each scS there exists a formal power
series /, at s such that
T,F=/oT,$
for all geg ~'(s).
Proof: Supposethat F = fo¢ forsomefeC* (J ~(0)). Let
fbe any extension of f to R?" +2; then £ =T.fwilldoin
{4.5). The reverse implication follows from the inverse func-
tion theorem and Theorem 3.2 of Ref. 12. Q.E.D.
Note that (4.5) is a very strong condition: for a smooth
function Fon K ~'(0) to liein ¢ *C> (J ~1(0)), it does not suf-
fice for F simply to factor through #. Rather, (4.5) requires
that F and all its formal Taylor series 7, F' factor through ¢.
In summary, we henceforth work on K ~*(0) and identi-

(4.5)

fy

C= (R *2)/ 7 =¢*C=(J ~0)).

From this standpoint, the conditions (4.5) reflect the pres-
ence of the singularities in J ~'(0).'> With these consider-
ations out of the way, we are now ready to construct the
reduced Poisson algebra.

Let Feg *C= (J ~!(0)) so that there exists a smooth func-
tion fon R* *2 with F = fod. Then F will be invariant pro-
vided {f,J }o¢ = 0 which, on K ~ '(0), translates into

E -3 T; E =0.

at i=1 Ox;
Setting w = x + ¢, this implies that F = F (w,p,,w) only.
Since F must also factor through ¢, it follows (with a slight
abuse of notation) that

F = (Fep *C* (J "0)|F = Flp,mp,p,w)}.  (4.6)
Now if Fand G are two elements of & with F = fog and
G = go¢, then the induced Poisson bracket (2.1) on % is
[F,G] = {f,g]}o4. After making the coordinate change
(D, X, )—>{m,p,,w,tJonK ~1(0), astraightforward computa-
tion yields
(FG]= 3 [FGl,,m +— 3 [FG],,, 6,

i=1 =1

— 7).
4.7)

Although this expression would appear to be singular when
p. =0, in fact it is not because of (4.6).

We show that (4.7) is nondegenerate. Indeed, suppose
that [F,G] = O for all G in .%. Take G = p,w, . Then
[F,p,w,] = 0 reduces to

77';(([7, a__‘ 277:‘ 5‘;) +

t i=1

JdF
dmy

=0.

Multiply this by 7, and sum; since ||| = 1, it follows that
0F /dp, = 0. But then, by (4.6), F(p,m,p, p, w) = F(0,0,0) is
constant and nondegeneracy is proven.

The quantization of the n + 1 photon is patterned after
that of the 1 + 1 photon given in Sec. III. The analog of the
horizontal polarization P on R*" +2 spanned by the vector
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fields §Pl and §pi, i=1,..,
algebra

P = (FeF |F=Fp,mp,)) 4.8)

of #. We now construct the quantum state space (Z ® C)'.

Let J and K be the restrictions of J and K to the first
factor of R *! in R+ 2, and denote by 7~ the ideal in
C= (R"*!) generated by J From the proof of Proposition
4.1 we see that

C=R**Y)/ 7 =C=(C").
Letting ¢ be the restriction of 4 to K ~(0), we may then
identify C= (R"*+')/ # with the subalgebra ¢ *C*= (C") of
C=(§"~' XR). From (4.8), (4.5), and the analog of Proposi-
tion 4.2 applied to ¢ *C= (C")CC= (S"~' XR), it follows
that¢ *C= (C")isisomorphicto . Upon complexifying, we
finally obtain

C*R*,O/F =P eC.

Imitating the proof of Proposition 3.2, this last result yields:

Proposition 4.3: (Z & C)' is isomorphic to the space of
all complex-valued distributions @ on R" ™' satisfying

p; — |Ip||)® =0.

Thus, as before, the physically admissible photon states
must satisfy the Fourier transformed n + 1 wave equation.
As expected, this is consistent with the quantization of the
extended phase space (R*" * ?,w) in the polarization P. In-
deed, we compute

2J[@] =i - |Ipl)®
on L 3R"* ') and gauge invariance demands 2J[¢] =0

n, is the maximal commuting sub-

V. DISCUSSION

We spend a moment correlating our results with the
structure of the singular reduced space J ~'(0)/R. This will
incidentally help clarify the physical significance of the com-
patibility conditions (3.2) and their higher-dimensional ana-
logs (4.6) which arise both from the presence of singularities
and the requirements of gauge invariance.

The action of the gauge group R on R*" *? is given by

(’l;D’P:’X’t)'"’(P:P: X — 24p,t + Mpl)‘

OnJ ~'{0) = C" XR"*! this action fixes every point of the
singular set S and is otherwise free. We may therefore sche-
matically representJ ~'(0)/R as shown in Fig. 1. The trouble
with J ~'(0)/R, aside from the expected conical singularity,
stems from the anomalous factor of R” *' associated with
the vertex. This is actually a remnant of a slight defect in the
extended phase space description of the n + 1 photon con-
cerning the physical interpretation of states in the singular
set SCJ ~(0). Such astate (0,0,x,? ) represents a photon with

R”
n+1 FIG. 1. The singular reduced
R space J ~'(0)/R.
]R”
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vanishing momentum located at (x,? ), that is, a vacuum state.
But presumably there is only a single vacuum state, not one
located at every space-time point. It is this (# + 1)-dimen-
sional array of unphysical vacua which contributes to the
pathology in J ~'(0)/R and prevents the latter from being
construed as the space of all gauge-invariant states.

On the other hand, a physical observable should be un-
able to distinguish between these spurious vacua. The topol-
ogy of the reduced space indicates that this will be the case:
sinceJ ~!(0)/R fails to be Hausdorffalong thisR"” * ', contin-
uous functions cannot separate these states. This observa-
tion is substantiated by our analysis above, and here is where
both gauge invariance and the compatibility conditions en-
ter. For n = 1, (3.2) guarantees that a physical observable is
constant on S. Similarly, for n > 1, the form (4.6) of a gauge
invariant function ensures that it is constant along the equa-
tor ¢ (S ) and hence also cannot differentiate between these
states. Consequently, the generalized reduction process
“corrects” the flaws in both the original description of the
system and the reduced phase space, at least to the extent
that it guarantees that the gauge invariant observables “de-
tect” but a single vacuum state, as required.

Our analysis of the n + 1 photon thus demonstrates the
utility of the Poisson algebra approach: even though a sys-
tem may be singular, one can still construct the essential
components of the reduced canonical formalism. Moreover,
subsequent quantization yields results in exact correspond-
ence with those obtained by standard methods. We hope that
this example will encourage further study of the structure of
singular constrained systems. Techniques for resolving sin-
gularities and, in particular, the work of Bierstone and Mil-
man'? on composite differentiable functions (of which Pro-
position 4.2 is a special case) should prove to be quite
valuable in this regard.
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