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Introduction

Our aim is to construct the reduced canonical formalism for a
nonrelativistic particle moving in R*® with fixed angular momentum .,
where J:Rzn->sv(n)* is the momentum map for the cotangent actien of

S0(n) on the phase space Rzn.. If we set J=1, the admissible states
for such a particle are constrained to 1ie on the level set J-l(l).
When 1#0 this is a manifold and the reduced canonical formalism is
given by the symplectic structure on the Marsden-Weinstein reduced
phase space J”l(l)/so(n). This case, which is well-understoed, is
discussed in [1].

Here, we concentrate on the critical case of zerc angular
momentum. Then J s "singular" in the sense that J'I(O) fails to be
8 manifold, so that the Marsden-Weinstein reduction procedure is no
longer applicable. To construct the reduced canonical formalism it is
fow necessary to use the algebraic reduction technique of Sniatycki and
Weinstein [2]. This yields a "reduced Poisson algebra" of s0(n)-
invariant observables which contains all the essential components of
the reduced canonical formalism.

In this report we compute the reduced Poisson algebra when n=2.
This case is algebraically and topologically much simpler than the
higher-dimensional cases, due to the existence of "magic" coordinates
WﬁiCh effectively trivialize everything. We briefly discuss the cases
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#>2 4in the conclusion. We also correlate our results with the
structure of the orbit space J'I(O)SO(Z) which surprisingly turns out
to be a symplectic ¥-manifold.

2. Structure of the Constraint Set J_l(O)

on R with coordinates (z, . p,,» py) the angular momentum
J is
R Y 2

We first introduce coordinates

1
t={p + ,
> P, z)

which diagonalize J:
J = 32 + t2 - u2 -
Now view RP=c? via

s t+ it >

2 2
la” - {8l
and the standard symplectic form on R4 becomes

Q= ilde ~'dax - d8 ~ dB)

From (2) we see that J'I(O) is a 3-manifold everywhere excEPtﬁ.
at the origin; it is also apparent that J'l(o) is a complex cone. If,
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sz denotes an affine coordinate on CPl, the equation J=0 projects

to |z]=1 which defines a circle on Cpl. Thus, J_l(O) iz a compler
cone over Sl.

We may also describe J_I(O) as follows: Let 53 be given in
2
C by

jol? + fg]? = 2

Since |al=[B8] on J'I(O), J_I(O) ns is determined by the
equations Ja|=r/v2={B| and so

~l(0) 3 2

J N5 =T

These results can be neatly combined by noting that the pullback
of the Hopf fibration s'+5%»cpl to slccp! yields the trivial
bundie

st J'l{o) ng st st

Resolution of the Singularity

We now apply the algebraic reduction procedure of Sniatycki and
Weinstein (for generalities and examples, see [2] and [3]). Let o be
the ideal in the ring cm(R4) generated by J. Our first task is to
construct the quotient cm(R4)/J which — if J”I(O) were a manifold
—would simply be Cm(J'l(O)). Instead, we have the next best thing:

Theorem: dm(R4)/J= Wm(J'l(O)), the smooth functions on J'l(O)
in the sense of Khitney.

Proof: 1t suffices to show that fed iff £l (0)=0. The
obverse is clear; for the converse, the inverse function theorem and
Hadamard's Lemma imply that such an f 1is divisible by J everywhere
except possibly at 0.

Now consider # near the origin. Using (1) and applying the
Mather division theorem with distinguish variable & we have




f(ss t, Us v) = Jg(S, Ty Us v) + Sh(t, Us v) + k(t, Uy v)

It is only necessary to demonstrate that the remainder R is divisible
by J at the origin and for this it suffices [4, p.72] to show that
its formal Taylor series TOR at 0 vanishes. If (%, u, v} 15 such
that t25 u +v2, then s=i/(u2+v2—t2) is well-defined and

(s, ts u, U)Sef—l(o). Since Rls, t. u, v)=0 for both values of s,
a straightforward elimination yields wlt, u, v)=0=k(t, u, v). Hence
the supports of % and k are contained in the conical region tzz
uz-fvz, so that their formal Taylor series vanish when t2<142i-v2.

But this along with continuity forces TgR= 0. Q.E.D.

WW(J—l(O)) is a rather awkward space, so before proceeding with
the reduction we obtain a more tractable Fepresentation of cm(Rq)/J.
This is accomplished by resolving the singularity in the constraint set.
Since J_l(O) is a complex circular cone, we blow it up into a complex

2

circular cylinder via the map ¢:C2-»C given by

dlw, £} = (w, wE) . (4)
Now define K:Czﬁ-R via
Klw, £) = 1 - Jg]?

Then x-1(0)=Cxs® is the blow-up of J71(0). Indeed, J-¢= o}k
so that ¢(K—1(0))=¢I'1(0) and, moreover, if w==¢lK'1(0), then ¥
is a local diffeomorgﬁism away from the equator {0}><Sl which it
coliapses onto the singularity. We replace Vm(J'l(O)) with its more
tractable isomorph ¢*WF(J'1(0)) c Cm(K'l(O)), so that finally

FRY = o) . (5)

4. The Reduced Poisson Algebra

The next step is to identify the subspace F of P CRIR
consisting of S0{2)-invariant elements. These are classes Jjf




satisfying
J({fs J})=0 »

where j'cm(R )+ (R 1/d is the projection hemomorphism and { , }
is the usual Po1sson bracket on R4. F corresponds to the set of

functions in W°(J~ (0)) which are constant along the orbits of 50(2)
-1
on J {0).

Using the representation {5), on K'I(O)
translates into

this invariance condition

wdF/dw ~ WAF/3p = 0 (6)
where F= gy ¢ g (g '1(0)) Referring to {4) we thus have that

Fe w*Wm(J' {0}) s invariant iff p= F(|w| £, [wf s ] E) However, any
Fel (& (0)) of this form, since it satisfies the differential
equation {6), must smooth]y factor through . Thus the requirement
that 7 be in y*u~ (s~ (0)) is superfluous, and we conclude that

¥ = {F e ) = F(lwl2e, Jo]? 0 2E)) (7)

Since J s equ1va]ent the Poisson bracket { , } on ¢ (R4)
descends to a bracket [ , ] on F given by

[3fs dg] = 3((f, gh)

Using (7) and (4), and recalling that |£]=1 on K-I(O), we compute

[7, 6] = {F 65 ¢ g{F,G}w’ £ {8)

-5 where p= f¥ etc., and {r, G} £ denotes the ordinary Poisson bracket

E with respect to the pair @, £ etc. A straightforward check shows that
e L] s fnondegenerate
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The pair (F, [ , ]) {is the reduced Poisson algebra of 50(2}-
invariant observables for our particle with zero angular momentum.
From this structure one may recover the entire reduced canonical
formalism, albeit on the algebraic level {i.e., invariant observables)
rather than that of manifolds (i.e., invariant states).

The V-Symplectic Orbit Space 4~ (0}/50(2)

Despite the fact that J"l(O) is singular, J'1(0)/SO(2) turns
out to be a symplectic V-manifold. In this section we prove this
assertion and in the next we compare the Poisson algebra of the orbit
space J'l(O)/SO(Z) with the reduced Poisson algebra of §4.

(s B) + e (as B)
Consider the map g:C~+ C2 given by
g(x) = (0 )

From (2) we see that ¢ maps into 71(0). Furthermore, for every

so(2)-orbit © c J'l(O) there exists A such that g{A}e0: if

(re*¥, re"")c0, then X=re satisfies

200 = exple & (v + 8))(re™Y, re

18
) )

€0

Note also that g{x) and g{n)} 1lies on the same orbit iff A
From all this it follows that ¢ induces an isomorphism

sloyso@) = Uz,

where C/Z?_ denotes the identification A~ -A. ) :
Now use q to pull the symplectic form (3) on c” back,

g*a = 24dh ~dX
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Since g*2 is invariant under the map A-=-x, it projects to a
singular symplectic structure £ on C/ZZ' If follows that the orbit
space J_I(O)/SO(Z) s actually a symplectic v-manifoid [5].

The singular Poisson algebra of J"l(O)/SO(Z) can be described
as follows: Every fe:Cw(C/ZZ) may be uniquely represented by an even

function fs:c”(c). According to [6, p.144], such a function must be
quadratic in X and Xx. Thus,

CTH0)150(2)) = (5o Q) |5 = £R2, D)) . (10)

Since & 1is represented by ¢*2, the Poisson bracket of two functions
Frg in Cm(C/ZZ) is represented by

Sigh, (1)

Note, however, that CP(J_I(O)/SO(Z)) is not closed under this bracket;
this is a reflection of the fact that O is singular.

6. Comparison of Algebraic and Group-Thearetical Reductions

To compare the singular Poisson algebra of (J'I(O)/SO(Z), &)
with (F, [, 1), we first define

{f e c(C)]
2

f

i

£= 08, 13525 . (12)

Now use 4 to 1ift elements of Cm(Jql(O)/SO(Z)) to 50(2)-invariant
functions on CZ; from {9) we may take

2

2 = gx(af), | 32

12 = g*([al?), 3% = g*as) . (13)

Comparing (12) with (7) via {13) and (4} yields an isomorphism F=zf
given by

Pllol?e,lul?, (0]28) ~ $G2, 2, 22) . (14)




If we equip f with the Poisson bracket (11) it becomes a regular
Poisson algebra. Then computing the Poisson brackets (8) and (11)

while taking into account the functional forms (7) and (12), respectively,
and applying the isomorphism (14), we find that

[F, 6] - %{f, 9%, %

1t follows that the Poisson algebras (f. e/2l » 3 % ) and
(F, [ , 1) are isomorphic.

According to (10), however, Cw(J“l(O), s0(2)) is strietly a
subspace of f, so that (dm(J'l(O)/SO(Z), if2{ , }A b } can be

identified with a singular subalgebra of (F, [, 1). It seems very
likely that the reduced Poisson algebra (F, [, 1) is in fact the
elosure of the singular Poisson algebra (Cm(J'l(O)/SO(Z), /20 }A X)‘

Thus, for a planar particle with zero angular momentum, one may
construct the reduced canonical formalism in either of two ways:
algebraically or group-theoretically, giving nearly isomorphic results.
The group theoretical reduction yields a singular Poisson algebra
(CM(J'l(O)/SO(Z), i/2{ , }A,X }, which the algebraic reduction
procedure apparently "repairs"; by closing it into the regular Poisson
algebra (F, [, ]) of all so(2) invariant observables for our

particle.

7. toncluding Remarks

The n=2 case is relatively easy because J can be diagonalized

In higher dimensions this is no longer possible and- the analysis is
correspondingly more complicated. Regardless, the results for n>-?5
which we now briefly describe, are quite similar to those obtained
above.

For arbitrary n, J"I(O)C " may be viewed as a complex cone
over R et Tl with sl0yns? e (shx st T hyrz,. The
characterization theorem of §3 still holds, but requires entirely ! d
different techniques for its proof. The blow-up of J M0} is the
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puilback of the universal line bundle over cg -1 to RPn"l, with
total space (Cx g’ "1)/22, and is now nomtrivial. The reduced Poisson
algebra (F, [, 1) is calculated along the above Tines and remains
nondegenerate. As in the n=7 case, J'I(O)/SO(n) is V-symplecto-
morphic to (C/ZZ’ ) for all n, anhd we conjecture thét the closure
of its singular Poisson algebra is naturally isomorphic to (F, [, 7).
These results will appear in a forthcoming paper [7].

We would like to thank M, Kummer and A. Weinstein for very helpful
conversations.
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