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Abstract. A class of compact 4-dimensional symplectic manifolds which admit no 
polarizations whatsoever is presented. These spaces also provide examples of 
nonparallelizable manifolds which are symplectic but have no complex, and hence no 
K/ihler, structures. 

I. Introduction. The mos t  impor tan t  element in the geometric 
quantizat ion of  a symplectic manifold is the choice of polarization [9]. 
Al though  polarizations usually abound  in practice, relatively little is 
known regarding their existence in general. What  hard data  one has 
typically concerns either specific types of  polarizations or those which 
satisfy certain regularity conditions. 

For  instance, VAISMAN [7] has derived topological  obstructions to 
the existence of  "nice" polarizations with non-zero real indices. A 
nontrivial  example is the symplectic product  manifold S 2 x S 2 which 
appears in the Kepler problem: SIMMS [6] has shown that  it has no 
such polarizations. On the other hand,  a symplectic manifold carries 
totally complex (resp. K/ihler) polarizations iff it admits compatible 
complex (resp. K/ihler) structures [8]. Thus the bundles E 4 o f  [2] with 
bl (E 4) = 2 or 3 have no K/ihler polarizations. It should be re- 
marked  that  almost  all symplectic manifolds carry totally complex 
polarizations. It was not  until just  recently that  examples which admit  
no polarizations of this type were discovered (these are the bundles E 4 
with bl (E  4) = 2). 

Despite these negative results, all these symplectic manifolds seem 
to have at least one polarization. In particular, S 2 • S 2 obviously has a 
K/ihler polarization, and it is not  hard to see that  the E 4 often have real 
polarizations. (Actually, those E 4 with bl ( E  4) : 3 sometimes have 
totally complex polarizations as well, cf. [2].) Regardless, I know of  no 
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example in the literature of a symplectic manifold which cannot be 
polarized in some fashion. 

Here I present a class o f  compact 4-dimensional symplectic 
manifolds ~4 which do not admit polarizations o f  any type whatsoever. 
These spaces are obtained by repeatedly blowing up the bundles E 4 

with bl (E 4) = 2. Note that no regularity conditions are imposed. 
Furthermore, t h e / ~  are apparently the first known examples of non- 
parallelizable manifolds which are symplectic but have no complex, 
and hence no Kfihler, structures. 

These results have significant implications for conventional geo- 
metric quantization theory, since the/~4 would represent (in principle) 
the phase spaces of classical systems which have no quantum 
analogues. Clearly the concept of polarization needs to be broadened 
to cover such cases. 

II. Polarizations [8, 9]. Let (X, ~o) be a 2n-dimensional symplectic 
manifold. A polarization of (X, o~) is a Nirenberg integrable subbundle 
P of the complexified tangent bundle TCx which is Lagrangian with 
respect to w e. This means that: 

(i) P is an involutive rank n complex subbundle of TCX; 

(ii) o~ c[ (p x P) = 0; 

(iii) the involutive real distribution L defined by L c -- P c~ P has 
constant dimension; and 

(iv) the real distribution K defined by K c -- P + /5  is involutive. 

The dimension l of L is the real index of P. 

I now collect a few facts about particular polarizations which will 
be useful later. 

When l = n ,  P = P  then P is said to be real. In this case 
L = K = P c~ TX.  Now, the symplectic structure on X determines a 
homotopy class of almost complex structures [3] on X. Using any 
J~  [J], WEINSTEIN [8, w 2] shows that there is a Lagrangian splitting 

T X  = L @ J L  

so that (TX,  J), viewed as a complex vector bundle, may be identified 
with the complexification of L. It follows that the odd real Chern 
classes of (TX,  J) vanish. 
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At the other extreme, a polarization for which l = 0 is called 
totally complex. Then P c~/5 = {0} and K = TX. Such a P determines 
an almost complex structure J on X satisfying ~ (J u, J v) = o~ (u, v) for 
all tangent vectors u and v (again see [8, w 2]). Since P is Nirenberg 
integrable this Jis  actually a complex structure on X. Together m and J 
define a J-hermitian metric ( , )  on X according to 

(u, v) = (u, J r ) .  

If:(, ) is positive definite then (X, J, ( , ) )  is a Kfihler manifold, and P is 
said to be Kiihler. 

Ill .  The Spaces/~ [2]. I first recall some facts about the manifolds 
E 4 o f  [2] with bl (E 4) = 2. These spaces are nontrivial circle bundles 
over nontrivial circle bundles over a 2-torus. They are compact 
symplectic 4-manifolds. Moreover they are parallelizable, whence 
b2 (E 4) = 2, and have signature zero. The key feature of these spaces is 
that they all have non-vanishing Massey products. 

Now blow up these E 4 at k distinct points using the technique of 
Gromov and McDuff  (cf. [5]). The resulting spaces /~4 are then 

compact 4-manifolds diffeomorphic to E47~ k{ ]P  2, where C P 2 
denotes C p2 with the reversed orientation. T h e / ~  thus have signa- 
ture a ( / ~ 4 ) = - k  and Betti numbers b1(/24) = 2 and b2(E 4) = 2 + k ,  
so their Euler characteristics are z (/~4) = k. 

Proposition. The manifolds ~4 have symplectic structures but no 
complex structures. 

Proof. That the/~4 are symplectic follows from Proposition 3.7 of 
[5]. Now, since the E 4 have non-vanishing Massey products, the/~4 do 
also. Thus the minimal models of t h e / ~  are not formal, and the main 
result of [1] then implies that the / ~  cannot be Kfihlerian. Now 
suppose the/~4 had complex structures. Since their first Betti numbers 
are even, Theorem 25 of[3] would imply that each/2~ is a deformation 
of, and hence diffeomorphic to, an algebraic surface. But t h e / ~  would 
then be K/ihlerian, which is impossible. [] 

IV. Nonexistence of Polarizations. Here is the main result: 

Theorem. The symplectic manifolds ~4 Ek, k > 0, cannot be polarized. 

Proof There are three cases to consider, depending upon the value 
of the real index l, 0 ~< l ~< 2. 
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1 = 0: The / ~  canno t  carry  any  total ly  complex polar izat ions 
because, according to the proposi t ion,  they  have no complex struc- 

tures (cf. Section II). 

l = 1 : In this case L would  define a field o f  line elements o n / ~ .  But  

this is impossible since Z (/~4) va 0. 

l = 2: When  P is real the first real Chern  class o f  (T/~ 4 , J) mus t  

vanish, as no ted  in Section II. But  by the E h r e s m a n n - W u  theorem (cf. 

[4]), cl ( T / ~ ,  J)  mus t  satisfy 

c~ ( T E 4 , J )  = 3r  4) + 2Z(/~ 4) = - k  

which is a contradic t ion.  []  

Remark. A similar analysis a long with the facts tha t  a (S 2 • S 2) = 0 
and  z ( $2 x S 2) = 4 shows tha t  S 2 x S 2 canno t  admi t  any polar izat ions 

wi th  l r 0, nice or not .  
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