Matrix groups and fields.

1. $GL_2(\mathbf{F}_2)$ consists of the following matrices with entries in \mathbf{F}_2 :

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad .$$

Consider the following set of matrices in $GL_2(F)$, for (i) $F = \mathbf{R}$ and (ii) $F = \mathbf{F}_{11}$:

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \quad \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} b & a \\ a & -b \end{bmatrix} \quad \begin{bmatrix} -b & a \\ a & b \end{bmatrix} \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad ,$$

where (i) a = -1/2, $b = \sqrt{3}/2$ in $F = \mathbf{R}$, and (ii) a = 5 and b = 8 in $F = \mathbf{F}_{11}$.

For any field F, the set of "permutation matrices" in $GL_3(F)$ comprises

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad .$$

CHECK: Each of the four sets of matrices is a group. In each of them, one can find elements A and B, such that the other elements are A^2 , AB, BA, and I. The "generators" A and B satisfy the conditions:

$$A^3 = I$$
, $B^2 = I$, $BA = A^2B$.

The next exercise will show that these rules completely determine the multiplication table of each group. Hence the four groups of matrices described above are mutually isomorphic.

2. Let G be a group consisting of exactly six elements e, s, s^2 , t, st, s^2t , with e neutral, and satisfying the rules

$$s^3 = e$$
, $t^2 = e$, $ts = s^{-1}$.

Write out the multiplication table for G.

- **3.** In $GL_2(\mathbf{F}_2)$, find a matrix A such that $A^2 = A + I$. Show that the set of matrices $\{0, I, A, A^2\}$ is closed under addition and forms a field (let us call it \mathbf{F}_4). Show that there are exactly two isomorphism between \mathbf{F}_4^{\times} and the additive group of \mathbf{F}_3 .
- **4.** In $GL_2(\mathbf{F}_3)$, find a matrix J such that $J^2 = -I$. Show that the subset $\{aI + bJ | a, b \in \mathbf{F}_3\}$ is closed under addition and forms a field (let us call it \mathbf{F}_9). Find an element of order 8 in \mathbf{F}_9^{\times} .
- **5.** Let F be a field, and consider matrices

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

with entries in F. If det A = 1 and b + c = 0, show that $BA = A^{-1}B$. If, moreover, tr A = -1, show that $A^3 = I$. Exhibit a subgroup of $GL_2(\mathbf{F}_{13})$ isomorphic to the group G of Exercise 1.

6. Let $E = K[\tau]$ be a quadratic field extension with $\tau^2 = t \in K$. Consider an element $\alpha \in E$ with $\alpha \notin K$, say $\alpha = a + b\tau$. Further, let f(X) be a cubic polynomial with coefficients in K.

- (i) Show that $\alpha^2 + u\alpha + v = 0$ for suitable $u, v \in K$.
- (ii) Show that $f(\alpha) \neq 0$, unless f(c) = 0 for some $c \in K$.
- 7. A field E is constructible over K if there is a finite chain of fields $K = E_0 \subset E_1 \subset \cdots \subset E_m = E$ such that E_i is quadratic over E_{i-1} for $i = 1, \ldots, m$.
 - (i) Using (6), show that a cubic polynomial with coefficients in K, not having a root in K, cannot have a root in any constructible extension of K.
 - (ii) With $\alpha = 2\cos 20^{\circ}$, find a cubic polynomial f(x) with rational coefficients such that $f(\alpha) = 0$, and show that α does not lie in any constructible extension of \mathbf{Q} .
- 8. Let $G \subset GL_3(\mathbf{F}_2)$ be the subgroup consisting of those matrices which have [0,0,1] as their last row. Show that G is a group of order 24, isomorphic to the group S_4 of all permutations of 4 letters, but not isomorphic to $SL_2(\mathbf{F}_3)$.

Linear Algebra and Geometry.

1. Let \mathcal{U} and \mathcal{V} be subspaces of a linear space \mathcal{W} over some field K. Prove:

$$\dim (\mathcal{U} + \mathcal{V}) = \dim \mathcal{U} + \dim \mathcal{V} - \dim (\mathcal{U} \cap \mathcal{V}).$$

- **2.** Let A be an $m \times n$ matrix over a field K. In the following, C, N, R refer to column-, null-, and row-space, respectively.
 - (i) Show that $\dim \mathcal{C}(A) = n \dim \mathcal{N}(A)$.
 - (ii) Show that $\dim \mathcal{C}(A) = \dim \mathcal{R}(A)$.
- **3.** Let K be a field with finitely many elemnts, (F, +) be the cyclic subgroup generated by 1 in the additive group (K, +), and $\{\alpha_1, \dots, \alpha_m\}$ be a minimal set of generators of (K, +).
 - (i) Show that the set F is closed under multiplication and forms a field.
 - (ii) Show that $\{\alpha_1, \dots, \alpha_m\}$ is a basis of K as linear space over F.
 - (iii) Conclude that the number of elements in K is a prime power.
- **4.** Let A be a real $n \times n$ matrix, $\mathcal{V} \subseteq \mathbf{R}^n$ a subspace, and \mathcal{V}^{\perp} the orthocomplement of \mathcal{V} in \mathbf{R}^n (i.e., the set of vectors \perp to \mathcal{V}).
 - (i) Show that $A = A^T$ if and only if $AX \bullet Y = X \bullet AY$ for any pair $X, Y \in \mathbf{R}^n$.
 - (ii) Show: $A = A^T$ and $AV \subseteq V$ implies $AV^{\perp} \subseteq V^{\perp}$.
 - (iii) How does this relate the Corollary of §6 to the Spectral Theorem?
- **5.** A real symmetric $n \times n$ matrix A is called positive definite if $AX \bullet X > 0$ for all $X \in \mathbf{R}^n$.
 - (i) Show that A is positive definite if and only if all its eigenvalues are positive.
 - (ii) If A is a positive definite matrix, show that there another such matrix B such that $B^2 = A$.
- **6.** Let G be a finite subgroup of $GL_n(\mathbf{R})$.
 - (i) Find a positive definite matrix A such that $M^TAM = A$ for all $M \in G$. (Hint: Try sums $\sum N^T N$ for $N \in G$.)
 - (ii) Show that G is similar to a subgroup of O(n), that is: find an invertible B such that BMB^{-1} is orthogonal for all $M \in G$.
- 7. Show: If the real symmetric $n \times n$ matrices A and B commute, they have an orthogonal set V_1, \ldots, V_n of common eigenvectors.
 - (*Hint*: $(A-\lambda I)V = 0$ implies $(A-\lambda I)BV = 0$, so B defines a symmetric tranformation on $\mathcal{N}(A-\lambda I)$ and hence has an eigenvector there.)
- **8.** For any column $V \in \mathbf{R}^3$ with |V| = 1, consider the symmetric matrix $S_V = 2 V V^T I$.
 - (i) Evaluating $S_V V$, as well as $S_V X$ for $X \in V^{\perp}$, deduce that S_V is a rotation. What axis, what angle?
 - (ii) Given two unit-columns V and W, show that $V^{\perp} \cap W^{\perp}$ is an eigenspace for $R = S_V S_W$. What is the eigenvalue? What kind of transformation is R?
 - (iii) If $V \bullet W = \cos \theta$, find the angle between W and RW. Under what condition is $S_V S_W = S_U$ for suitable U?