
Math 501, Fall 1994, Exercises.

Matrix groups and fields.

1. GL2(F2) consists of the following matrices with entries in F2: 1 1

1 0

  0 1

1 1

  1 0

1 1

  1 0

0 1

  1 1

0 1

  0 1

1 0

 .

Consider the following set of matrices in GL2(F ), for (i) F = R and (ii) F = F11: a −b

b a

  a b

−b a

  1 0

0 1

  b a

a −b

 −b a

a b

  0 1

1 0

 ,

where (i) a = −1/2, b =
√

3/2 in F = R, and (ii) a = 5 and b = 8 in F = F11.

For any field F , the set of “permutation matrices” in GL3(F ) comprises 0 0 1
1 0 0
0 1 0

  0 1 0
0 0 1
1 0 0

  1 0 0
0 1 0
0 0 1

  0 1 0
1 0 0
0 0 1

  1 0 0
0 0 1
0 1 0

  0 0 1
0 1 0
1 0 0

 .

CHECK: Each of the four sets of matrices is a group. In each of them, one can find elements A and B, such
that the other elements are A2, AB, BA, and I. The “generators” A and B satisfy the conditions:

A3 = I, B2 = I, BA = A2B .

The next exercise will show that these rules completely determine the multiplication table of each group.
Hence the four groups of matrices described above are mutually isomorphic.

2. Let G be a group consisting of exactly six elements e, s, s2, t, st, s2t, with e neutral, and satisfying the
rules

s3 = e, t2 = e, ts = s−1 .

Write out the multiplication table for G.

3. In GL2(F2), find a matrix A such that A2 = A+ I. Show that the set of matrices {0, I, A,A2} is closed
under addition and forms a field (let us call it F4). Show that there are exactly two isomorphism between
F×4 and the additive group of F3.

4. In GL2(F3), find a matrix J such that J2 = −I. Show that the subset {aI+ bJ |a, b ∈ F3} is closed under
addition and forms a field (let us call it F9). Find an element of order 8 in F×9 .

5. Let F be a field, and consider matrices

A =

 a b

c d

 and B =

 0 1

1 0


with entries in F . If detA = 1 and b + c = 0, show that BA = A−1B. If, moreover, trA = −1, show that
A3 = I. Exhibit a subgroup of GL2(F13) isomorphic to the the group G of Exercise 1.

6. Let E = K[τ ] be a quadratic field extension with τ2 = t ∈ K. Consider an element α ∈ E with α 6∈ K,
say α = a+ bτ . Further, let f(X) be a cubic polynomial with coefficients in K.



(i) Show that α2 + uα+ v = 0 for suitable u, v ∈ K.
(ii) Show that f(α) 6= 0, unless f(c) = 0 for some c ∈ K.

7. A field E is constructible over K if there is a finite chain of fields K = E0 ⊂ E1 ⊂ · · · ⊂ Em = E such
that Ei is quadratic over Ei−1 for i = 1, . . . ,m.

(i) Using (6), show that a cubic polynomial with coefficients in K, not having a root in K, cannot
have a root in any constructible extension of K.

(ii) With α = 2 cos 20◦, find a cubic polynomial f(x) with rational coefficients such that f(α) = 0, and
show that α does not lie in any constructible extension of Q.

8. Let G ⊂ GL3(F2) be the subgroup consisting of those matrices which have [0, 0, 1] as their last row. Show
that G is a group of order 24, isomorphic to the group S4 of all permutations of 4 letters, but not isomorphic
to SL2(F3).

Linear Algebra and Geometry.

1. Let U and V be subspaces of a linear space W over some field K. Prove:

dim
(
U + V

)
= dimU + dimV − dim

(
U ∩ V

)
.

2. Let A be an m×n matrix over a field K. In the following, C, N , R refer to column-, null-, and row-space,
respectively.

(i) Show that dim C(A) = n− dimN (A).
(ii) Show that dim C(A) = dimR(A).

3. Let K be a field with finitely many elemnts, (F,+) be the cyclic subgroup generated by 1 in the additive
group (K,+), and {α1, · · · , αm} be a minimal set of genrators of (K,+).

(i) Show that the set F is closed under multiplication and forms a field.
(ii) Show that {α1, · · · , αm} is a basis of K as linear space over F .

(iii) Conclude that the number of elements in K is a prime power.

4. Let A be a real n× n matrix, V ⊆ Rn a subspace, and V⊥ the orthocomplement of V in Rn (i.e., the set
of vectors ⊥ to V).

(i) Show that A = AT if and only if AX • Y = X •AY for any pair X,Y ∈ Rn.
(ii) Show: A = AT and AV ⊆ V implies AV⊥ ⊆ V⊥.

(iii) How does this relate the Corollary of §6 to the Spectral Theorem ?

5. A real symmetric n× n matrix A is called positive definite if AX •X > 0 for all X ∈ Rn.
(i) Show that A is positive definite if and only if all its eigenvalues are positive.
(ii) If A is a positive definite matrix, show that there another such matrix B such that B2 = A.

6. Let G be a finite subgroup of GLn(R).
(i) Find a positive definite matrix A such that MTAM = A for all M ∈ G.

(Hint: Try sums
∑
NTN for N ∈ G.)

(ii) Show that G is similar to a subgroup of O(n), that is: find an invertible B such that BMB−1 is
orthogonal for all M ∈ G.

7. Show: If the real symmetric n×n matrices A and B commute, they have an orthogonal set V1, . . . , Vn of
common eigenvectors.

( Hint: (A−λI)V = 0 implies (A−λI)BV = 0, so B defines a symmetric tranformation on N (A−λI)
and hence has an eigenvector there.)

8. For any column V ∈ R3 with |V | = 1, consider the symmetric matrix SV = 2V V T − I.
(i) Evaluating SV V , as well as SV X for X ∈ V ⊥, deduce that SV is a rotation. What axis, what

angle ?
(ii) Given two unit-columns V and W , show that V ⊥ ∩W⊥ is an eigenspace for R = SV SW . What is

the eigenvalue? What kind of transformation is R ?
(iii) If V •W = cos θ, find the angle between W and RW . Under what condition is SV SW = SU for

suitable U ?


