4. Elementary Group Theory.

- **1.** Let G be a group.
 - (i) Given normal subgroups H and K of G, define a group homomorphism $G \to G/H \times G/K$ with kernel $H \cap K$.
 - (ii) Can G have exactly two subgroups of index 2? Prove your answer.
- **2.** Let H be a cyclic normal subgroup of order p in a group G.
 - (i) Define a homomorphism $G \to \mathbf{F}_p^{\times}$ whose kernel is the centralizer of H.
 - (ii) If (p-1) is relatively prime to the index [G:H] show that H is in the center of G.
- **3.** Let $H \subset G$ be finite groups, and $K = N_G(H) \neq G$ be the normalizer of H.
 - (i) If J denotes the intersection of all conjugates of K, show that $J \cap H$ is a normal subgroup of K.
 - (ii) If H is the only (non-trivial) normal subgroup of K, show that G acts faithfully on the set of all conjugates of H.
- **4.** Let A_n denote the alternating group on n > 2 letters.
 - (i) Show that A_n is generated by 3-cycles [Hint: $(ij)(kl) = (ij)(jk)^2(kl)$].
 - (ii) Conclude that A_n is in the kernel of any homomorphism $S_n \to S_2$, and hence is the only subgroup of index 2 in S_n .
- **5.** Let G be a group of order 24 having no normal subgroup of order 3.
 - (i) Show that G has 4 subgroups of order 6.
 - (ii) Show that the subgroups of order 6 in $G = SL_2(\mathbf{F}_3)$ are not isomorphic to those in $G = S_4$.
- **6.** Let p be any prime, and put $G = SL_2(\mathbf{F}_p)$.
 - (i) Show that the matrix $A = I + E_{12}$ generates a Sylow subgroup of G.
 - (ii) Concluding that all elements of order p in G have trace = 2, show that their number is $\le p^2 1$, and hence determine the number of Sylow p-subgroups of G.

$Light\ Entertainment.$

- For any prime p > 2, show that every non-cyclic group of order 2p is dihedral.
- Show that a group of order 56 (or 312) cannot be simple.
- Show that all elements of order 4 in $GL_2(\mathbf{F}_3)$ are conjugate to one another.
- Prove or disprove: any group of order > 2 has a non-trivial automorphism.
- Show: no finite group can be the *union* of conjugates of a proper subgroup.
- Show that SO_3 is the union of conjugates of a proper subgroup.