5. Basic Galois Theory.

- 1. Let K/k be a Galois extension with group G.
 - (i) Given subgroups $H_1 \neq H_2$ of G, show that their fixed fields are distinct.
 - (ii) If H_1 and H_2 are as above, but conjugate in G, show that their fixed fields are isomorphic.
- **2.** Let K = k(t) be the field of "rational functions" over the field k.
 - (i) If k has characteristic 0, show that $\tau: f(t) \mapsto f(t+1)$ generates a proper subgroup $G \subset \operatorname{Aut}_k(K)$ whose fixed field is k.
 - (ii) Show that $\operatorname{Aut}_k(K)$ consists of all transformations of the form $f(t) \mapsto f(at+b/ct+d)$ with $ad-bc \neq 0$ and $a,b,c,d \in k$.
- **3.** Let K = k(t) be as above, with $k = \mathbf{F}_3$.
 - (i) Describe the group generated by $\tau: f(t) \mapsto f(t+1)$, and determine its fixed field.
 - (ii) Ditto for the group of all tranfomations of the form $f(t) \mapsto f(at+b)$ with $a \neq 0$ and $a, b \in k$.
- **4.** Let $k = \mathbb{F}_3$, $K = k(\sqrt{2})$, and consider the polynomial $f(x) = x^4 + x^3 + x + 2$ in k[x].
 - (i) Show that K is a splitting field for f(x).
 - (ii) Find a generator π of K^{\times} and determine the roots of f(x) in terms of π .
- **5.** Let $k = \mathbf{Q}$ and consider the polynomial $f(x) = x^4 + 2x^2 5$ in k[x].
 - (i) Show that f(x) is irreducible over k but has exactly 2 real roots $\pm \alpha$.
 - (ii) Show that $K = k(\alpha, \sqrt{-5})$ is a splitting field for f(x).
- **6.** Let K/k and L/k be a field extensions of degree [K:k]=m and [L:k]=n, respectively, with $L=k(\alpha)$.
 - (i) Show that, if m and n are relatively prime, the degree $[K(\alpha):k]$ equals $m\cdot n$.
 - (ii) Show: if $f(x) \in k[x]$ is irreducible with degree relatively prime to m, it remains irreducible in K[x].