6. Cyclic and Solvable Extensions. Resolvents.

Let G be group. A G-module is an abelian group A together with a G-action $G \times A \to A$ compatible with the group operation in A (i.e., $\sigma: A \to A$ is an automorphism of A for all $\sigma \in G$). A crossed homomorphism from G to A is a map $f: G \to A$ satisfying $f(\sigma\tau) = \sigma f(\tau) + f(\sigma)$. Crossed homomorphisms fit into a larger scheme called group cohomology, wherefore they are also known as 1-cocycles. Such an f is said to be a coboundary if $f(\sigma) = \sigma \beta - \beta$ for some $\beta \in A$.

If G is finite and A is written additively, the G-trace of an element $\alpha \in A$ is defined as

$$tr_G(\alpha) = \sum_{\sigma \in G} \sigma(\alpha)$$
.

If A is written multiplicatively, it is customary to call this the G-norm and write it as $N_G(\alpha)$.

- **1.** Let $G = \langle \sigma \rangle$ be finite cyclic, A a G-module.
 - (i) Show that any crossed homomorphism $f: G \to A$ is determined by the single value $f(\sigma)$.
 - (ii) Show that there is a bijection between crossed homomorphisms and elements $\alpha \in A$ such that $\operatorname{tr}_G(\alpha) = 0$.
- **2.** Let G be a finite group of automorphisms of a field K.
 - (i) Show that every crossed homomorphism $f: G \to K^{\times}$ is a coboundary. [Hint: imitate Lagrange resolvents.]
 - (ii) Show that every crossed homomorphism $f: G \to K^+$ is a coboundary. [Hint: imitate (i).]
- **3.** Let k be a a field of characteristic p > 0.
 - (i) For $0 \neq a \in k$ let K be a splitting field of the polynomial $X^p X + a$. Show that K/k is cyclic of degree p.
 - (ii) Show that any cyclic extension K/k of degree p has the form $K = k(\alpha)$ with $\alpha^p \alpha \in k$.
- **4.** Let $k = \mathbf{Q}$ and consider the complex numbers $\omega = e^{2\pi i/9}$ and $\theta = \omega + \bar{\omega}$.
 - (i) Find the minimal polynomials over k of ω and θ .
 - (ii) Show that $k(\omega)$ and $k(\theta)$ are cyclic extensions of k.
- **5.** A derivation on a ring R is an additive endomorphism D satisfying D(ab) = aD(b) + D(a)b.
 - (i) Show: for any field F, the ring F[x] of polynomials has a unique F-linear derivation with D(x) = 1.
 - (ii) Let P_0, P_1, \ldots, P_n , with n > 1, be points dividing the semi-circle of radius 1 into n equal parts. If d_k denotes the distance from P_0 to P_k , show that $d_1 d_2 \cdots d_n = 2\sqrt{n}$.
- **6.** For a prime p > 2, let ζ be a primitive p-th root of 1, and $\alpha = 2^{1/p} > 0$ be real.
 - (i) If $F = \mathbf{Q}(\zeta)$, $K = \mathbf{Q}(\alpha)$, and $E = \mathbf{Q}(\alpha, \zeta)$, show that E/F and E/K are cyclic of degree p and p-1, respectively.
 - (ii) Show the E/\mathbf{Q} is Galois and that $\operatorname{Aut}(E)$ is isomorphic to the subgroup $G \subset GL_2(\mathbf{F}_p)$ of matrices having [0,1] for their second row.