8. Group Representations.

Throughout these exercises, F is a field, and G is a group whose (finite) order is prime to the characteristic of F. In Exercises 1 – 4, the group G is generated by two elements ρ and τ such that

$$\rho^4 = 1, \qquad \tau^2 = \rho^k, \quad \text{and} \quad \tau \rho = \rho^{-1} \tau,$$
 (*)

where either k = 0 (hence $G = D_8$) or k = 2 (hence $G = Q_8$). In either case, let us label the elements of G as

$$1, \rho, \rho^2, \rho^3, \tau, \rho\tau, \rho^2\tau, \rho^3\tau.$$
 (**)

- **1.** Let $F = \mathbf{Q}$ and $G = D_8$.
 - (i) Show that there are 4 inequivalent FG-modules of dimension 1. For each of them, determine the (scalar) action of ρ and τ .
 - (ii) Find non-commuting matrices $\Delta(\rho)$, $\Delta(\tau)$ defining an irreducible FG-representation Δ . Prove the irreducibility of Δ , as well as its uniqueness (up to isomorphism).
- **2.** Repeat Exercise 1 with $G = Q_8$.
- **3.** Let $F = \mathbf{Q}(\sqrt{-1})$.
 - (i) For $G = D_8$, show that the matrices $\Delta(\rho)$ and $\Delta(\tau)$ from Exercise 1 still define an irreducible representation.
 - (ii) For $G = Q_8$, show that the matrices $\Delta(\rho)$ and $\Delta(\tau)$ from Exercise 2 no longer define an irreducible representation, and find (irreducible) replacements.
- **4.** Let $G = Q_8$, and Δ be the irreducible representation of FG.
 - (i) For $F = \mathbf{Q}(\sqrt{-1})$, describe the ring $\Delta(FG)$.
 - (ii) Repeat (i) for $F = \mathbf{Q}$.
- 5. Let M and M' be FG-modules corresponding to the representations Δ and Δ' .
 - (i) Show that $\operatorname{Hom}_{FG}(M, M') \neq 0$ if and only if M and M' have FG-submodules L and L' which are isomorphic.
 - (ii) Let $E \supset F$ be a larger field, and M_E , M'_E the EG-mdules obtained by extension of scalars. Show that $\operatorname{Hom}_{FG}(M,M') \neq 0 \iff \operatorname{Hom}_{EG}(M_E,M'_E) \neq 0$. (Hint: think in terms of Δ and Δ' .)
- **6.** Suppose V is a finitely generated **Z**-module contained in a **Q**-space W.
 - (i) If $q \in \mathbf{Q}$ is such that $qV \subseteq V$, show that $q \in \mathbf{Z}$. (Hint: if v_1, \ldots, v_m generate V, the equations $qv_i = \sum_i a_{ij}v_j$ force q to be a root of a certain characteristic polynomial.)
 - (ii) In the notation of Section 2, show that $m_k \mid n$, if F contains Q.