
Math 501, Fall 1994

Representations of Finite Groups.

1. Semi-simplicity. If G is a group and F is a field, an FG-module M is a vector space over F with a
linear G-action G×M →M , i.e., one that satisfies

σ(ax+ by) = aσ(x) + bσ(y) , σ ∈ G , x, y ∈M ,a, b ∈ F . (1)

Thus, every σ ∈ G acts on M as a linear transformation ∆(σ). Instead of considering the FG-module
M , we could equivalently speak of the representation ∆, which is a homomorphism G→ AutF (M).

CONVENTION: In this course, the groups G to be represented are tacitly assumed to have finite order,
and all FG-modules, to have finite dimension over F .

THEOREM (Maschke): Suppose that the order |G| is prime to the characteristic of F , and let N ⊆ M
be FG-modules. Then M = N ⊕N ′, where N ′ ⊆M is an FG-module.
Proof. We need a left inverse (“retraction”) p ∈ HomFG(M,N) for the inclusion N ↪→ M . It is easy to
produce such a thing, say f , in HomF (M,N). Take it and define

p(x) =
1
|G|

∑
G

σf(σ−1x). (2)

For x ∈ N , we have f(x) = x and hence p(x) = x, so p is still a left inverse. Moreover, p(τx) = τp(x) for
all τ ∈ G, q.e.d.

By induction, every FG-module M splits into a direct sum L1 ⊕ · · · ⊕ Lt of FG-modules which are
irreducible in the sense that they have no FG-submodules. The uniqueness of the irreducible components
Li, up to isomorphism, follows at once from general theorems (e.g. Jordan-Hölder or Krull-Schmidt), but
we shall soon see it more directly.

Henceforth assume that the characteristic of F is prime to n = |G|.
The group algebra FG consists of all “polynomials” α =

∑
G aσσ, with products αβ defined by the

distributive law and the multiplication in G.

LEMMA 1.1: Let L and N be irreducible FG-modules with L ⊆ FG a left ideal. Then LN = 0 unless L
and N are isomorphic.
Proof. For every x ∈ N , the product Lx is either O or N , since it is an FG-submodule of N . In case
Lx = N , the surjection L→ N by λ 7→ λx is an isomorphism, q.e.d.

COROLLARY: Let FG = L1⊕ · · ·⊕Lt be a complete decomposition of FG as a (left) FG-module. Then
every irreducible FG-module N is isomorphic to a suitable Lj.
Proof. Since (FG)N = N , we must have LjN 6= 0 for some j. Then Lj ' N by the Lemma; q.e.d.

Now collect the aforementioned Lj into isomorphism classes, say I1, . . . , Is, and let Mi be the direct
sum of all the Lj which belong to Ii. Thus

FG = M1 ⊕ · · · ⊕Ms , (3)

with each Mi a sum of (say mi) irreducible components of the same isomorphism type. Note: by the
Lemma, i 6= j implies MiMj = 0.

LEMMA 1.2: If πi : FG→Mi ⊆ FG is the obvious projection, πi(α) = πi(1) · α, for all α ∈ FG.
Proof.

πi(1)α =
∑
j

πi(1)πj(α) = πi(1)πi(α) =
∑
j

πj(1)πi(α) = 1 · πi(α) , q.e.d.

It is customary to abbreviate πi(1) = ei. Since Mi is a left FG-module, it is obvious that πi(α) = αei,
that eiej = δijei (Kronecker’s δ), and that 1 = e1 + · · · + es. The force of the lemma is that the ei are
central . In particular, (αei)(βei) = αβei shows each Mi to be a ring with unity ei.
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2. Characters. In this section, we keep the notation of the preceding one. In particular, I1, . . . , Is are
the available isomorphism classes of irreducible FG-modules, and e1, . . . , es are the corresponding central
idempotents of FG. An irreducible L in Ii is annihilated by all ej , except for ei which acts on it as the
identity. Let us once and for all choose a set L1, . . . , Ls of representatives for I1, . . . , Is.

Let ∆ : G → AutF (M) be the representation associated with an FG-module M . If χ(σ) denotes
the trace of ∆(σ), the map χ : G→ F is called the character of ∆ or of M . We use the same name and
notation for the associated linear functional FG→ F .

LEMMA 2.1: The FG-modules M and M ′ have the same character if they are isomorphic. The converse
holds for F of characteristic 0.
Proof. Any isomorphism T : M → M ′ must satisfy T∆(σ) = ∆′(σ)T , i.e., ∆′(σ) = T∆(σ)T−1, for all
σ ∈ G; hence χ = χ′. In particular, each isomorphism class Ii corresponds to a single character χi.

Now imagine a decomposition M = N1 ⊕ · · · ⊕Nu into irreducibles. Then χ(ei) = µidi, where µi is
the multiplicity with which members of Ii occur among these components. If F has characteristic 0, this
makes χ = χ′ imply µi = µ′i, for all i, so that M is isomorphic to M ′, q.e.d.

The next lemma shows how to compute the central idempotents e1, . . . , es. Remember that Mi =
(FG)ei splits into mi irreducible components, so that its character equals miχi.

LEMMA 2.2:
ei =

mi

n

∑
σ∈G

χi(σ−1)σ . (4)

Proof. Let χ∞ be the character of FG itself. Then χ∞(1) = n, and χ∞(σ) = 0 whenever 1 6= σ ∈ G.
For α =

∑
τ aτ τ , this means that χ∞(σ−1α) = naσ. On the other hand, χ∞ =

∑
jmjχj by (3), whence

naσ =
∑
jmjχj(σ−1α).

For α = ei, this becomes naσ =
∑
jmjχj(σ−1ei) = miχi(σ−1). The last equality is due to the fact

that left multiplication by σ−1ei annihilates Mj , for i 6= j, and acts on Mi like σ−1; q.e.d.

Evaluating χj(ei) in (4), while keeping in mind that ei acts like Idi
on Li and like 0 on all the other

Lj , we obtain the “first orthogonality relations”:

1
n

∑
σ∈G

χi(σ−1)χj(σ) =
{

0 if i 6= j
di/mi if i = j .

(5)

To get a handle on the total number s of irreducible characters, we study the centre Z(FG). Breaking
up G into its conjugacy classes C1, . . . , Cr, we let γν ∈ FG stand for the sum over all σ ∈ Cν . Clearly,
α =

∑
σ aσσ ∈ FG is central if and only if it is fixed under conjugation by all τ ∈ G. This means that

its coefficients aσ must be constant on each Cν , and hence α is linear combination of the γν . It follows
that γ1, . . . , γr is a basis of Z(FG). On the other hand, e1, . . . , es is a linearly independent set in Z(FG):
any relation c1e1 + · · ·+ cses = 0 would yield ciei = 0 when multiplied by ei. Hence

s ≤ r and n = m1d1 + · · ·+msds , (6)

where di denotes the F -dimension of a typical L in Ii. Together, these relations are helpful for tracking
down the possible types of irreducible FG-modules.

Exercise: If F has characteristic 0, show that mi | n. (Hint: The eigenvalues of any ∆(σ) are of the form
ζν , where ζ is a primitive n-th root of 1. Let Vi be the Z-module generated by the elements ζνσei, for
σ ∈ G and ν = 1, . . . , n. Multiplying (4) by (n/mi)ei, obtain a relation which says that (n/mi)Vi ⊆ Vi.
Using determinants, conclude that n/mi is the root of a certain monic polynomial over Z.)
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3. Matrices. This section is in three parts: an abstract examination of matrices, some consequences for
the components Mi of FG in the sum (3), and finally another version of the orthogonality relations (5).

I. Let R be any ring, V a (left) R-module, E = EndR(V ) its ring of endomorphisms. Then the ring
Mm(E) of m×m matrices over E is naturally isomorphic to EndR(W ), where W = V ⊕ · · · ⊕ V has m
components. Indeed, a matrix (aij) with entries in E defines the endomorphism α : W → W mapping
w = (v1, . . . , vm) to the m-tuple whose i-th component is

∑
j aijvj . Conversely, the matrix entry aij ∈ E

can be retrieved by following the obvious j-th injection V → W by a given α : W → W and the i-th
projection W → V . Finally, it can be checked that the composite βα of two endomorphisms corresponds
to the matrix product obtained by summing the composites bikakj over k.

Let Ro the “opposite” of R, i.e., a ring with the same elements as R but with the order of multipli-
cation reversed. Ro is naturally identifiable with the ring of right multiplications in R, and this, in turn,
is canonically isomorphic to EndR(R), the endomorphisms of R as a left R-module.

LEMMA 3.1: Suppose that R, as a left R-module, is isomorphic to the direct sum V ⊕· · ·⊕V of m copies
of some R-module V . Then R is isomorphic to the ring Mm(Eo), where E = EndR(V ).
Proof. By the preceding discussion, Ro 'Mm(E). To finish the proof, we note that the matrix transpose
yields an isomorphism Mm(E)o →Mm(Eo), a verification we leave to the reader, q.e.d.

II. Recall from Section 1, that FG is the Cartesian product of rings M1, . . . ,Ms, each Mi being the direct
sum of mi left ideals all isomorphic to a single Li. Since Li is irreducible, all its non-zero endomorphisms
are invertible (their kernels must be trivial, their images all of Li), and hence EndFG(Li)o is a division
algebra Di over F . Applying Lemma 3.1 to R = Mi, we therefore have a ring isomorphism

Mi 'Mmi(Di) (7)

for every i = 1, . . . , s. Letting δi denote the F -dimension of Di, we conclude moreover that

dimF Mi = m2
i δi , di = dimF Li = miδi , and n = m2

1δ1 + · · ·+m2
sδs . (8)

Since every element of any Di generates a finite field extension of F , we have Di = F and δi = 1 for all
i, whenever F is algebraically closed.

III. The quotient di/mi appearing in the orthogonality relations (5) has thus been unmasked as δi. Since
characters are obviously constant on conjugacy classes we can rewrite these relations in the form

1
nδj

r∑
ν=1

χi(Cν)χj(C∗ν )hν =
{

0 if i 6= j
1 if i = j ,

(9)

with hν = |Cν | and C∗ν = {σ | σ−1 ∈ Cν}. This can be interpreted as saying that the identity matrix Is
is the product of the s× r matrix

(
χi(Cj)

)
and the r × s matrix

(
χj(C∗i )hi/nδj

)
, where i and j always

denote the row and column indices, respectively. If these matrices are square, the product of the factors
can be reversed. In other words,

hi
n

s∑
ν=1

χν(C∗i )χν(Cj)/δν =
{

0 if i 6= j
1 if i = j ,

(10)

provided that s = r. These are the “second orthogonality relations”.

The proviso r = s is always satisfied if F is algebraically closed: in that case, each Mi is a full matrix
ring over F , and Z(FG) = Z(M1)⊕ · · · ⊕ Z(Ms) is the Cartesian product of s copies of F . As a futher
bonus, the δν then disappear from the formula.
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