Math 501, Fall 1994
Representations of Finite Groups.

1. Semi-simplicity. If G is a group and F' is a field, an FG-module M is a vector space over F' with a
linear G-action G x M — M, i.e., one that satisfies

o(ax + by) = ao(x) + bo(y), ceG,x,ye M,a,be F. (1)

Thus, every o € G acts on M as a linear transformation A(c). Instead of considering the FG-module
M, we could equivalently speak of the representation A, which is a homomorphism G — Autp(M).

CONVENTION: In this course, the groups G to be represented are tacitly assumed to have finite order,
and all F'G-modules, to have finite dimension over F'.

THEOREM (Maschke): Suppose that the order |G| is prime to the characteristic of F, and let N C M
be FG-modules. Then M = N & N', where N' C M is an FG-module.

Proof. We need a left inverse (“retraction”) p € Hompg (M, N) for the inclusion N < M. It is easy to
produce such a thing, say f, in Hompg(M, N). Take it and define

1 -1
pz) = €] %:Uf(a z). (2)

For z € N, we have f(z) = z and hence p(x) = x, so p is still a left inverse. Moreover, p(tz) = Tp(x) for
all T € G, q.e.d.

By induction, every F'G-module M splits into a direct sum L; & --- & Ly of FG-modules which are
irreducible in the sense that they have no FG-submodules. The uniqueness of the irreducible components
L;, up to isomorphism, follows at once from general theorems (e.g. Jordan-Hélder or Krull-Schmidt), but
we shall soon see it more directly.

Henceforth assume that the characteristic of F is prime to n = |G|.

The group algebra FG consists of all “polynomials” o = }_ . a,0, with products af defined by the
distributive law and the multiplication in G.

LEMMA 1.1: Let L and N be irreducible FG-modules with L C FG a left ideal. Then LN = 0 unless L
and N are isomorphic.

Proof. For every x € N, the product Lz is either O or N, since it is an F'G-submodule of N. In case
Lz = N, the surjection L — N by A — Ax is an isomorphism, q.e.d.

COROLLARY: Let FG = L1 ®---® Ly be a complete decomposition of FG as a (left) FG-module. Then
every irreducible FG-module N is isomorphic to a suitable L;.

Proof. Since (FG)N = N, we must have L; N # 0 for some j. Then L; ~ N by the Lemma; q.e.d.

Now collect the aforementioned L; into isomorphism classes, say Z1,...,Z,, and let M; be the direct
sum of all the L; which belong to Z;. Thus
FG=M & - &M,, (3)

with each M; a sum of (say m;) irreducible components of the same isomorphism type. Note: by the
Lemma, i # j implies M;M; = 0.
LEMMA 1.2: If m; : FG — M; C FG is the obvious projection, m;(«) = m;(1) - «u, for all « € FG.
Proof.
mi(Da = Zm(l)ﬂ'j(a) =mi(1)m(a) = Zﬂj(l)m(a) =1-m(a), qed.
J J

It is customary to abbreviate 7;(1) = e;. Since M; is a left FG-module, it is obvious that m;(«) = «e;,
that e;e; = d;;e; (Kronecker’s ¢), and that 1 = e; + --- + e;. The force of the lemma is that the e; are
central. In particular, («e;)(Be;) = afe; shows each M; to be a ring with unity e;.



2. Characters. In this section, we keep the notation of the preceding one. In particular, Z1,...,Z; are
the available isomorphism classes of irreducible F'G-modules, and e, ..., e are the corresponding central
idempotents of F'G. An irreducible L in Z; is annihilated by all e;, except for e; which acts on it as the
identity. Let us once and for all choose a set L1, ..., L of representatives for 71, ..., Z;.

Let A : G — Autp(M) be the representation associated with an FG-module M. If x(o) denotes
the trace of A(c), the map x : G — F is called the character of A or of M. We use the same name and
notation for the associated linear functional FG — F.

LEMMA 2.1: The FG-modules M and M’ have the same character if they are isomorphic. The converse

holds for F of characteristic 0.

Proof. Any isomorphism 7' : M — M’ must satisfy TA(o) = A'(0)T, ie., A'(c) = TA(o)T ™1, for all

o € G; hence x = x’. In particular, each isomorphism class Z; corresponds to a single character ;.
Now imagine a decomposition M = Ny @ - - - & N, into irreducibles. Then x(e;) = u;d;, where p; is

the multiplicity with which members of Z; occur among these components. If F' has characteristic 0, this

makes x = x’ imply u; = i, for all 4, so that M is isomorphic to M’, q.e.d.

The next lemma shows how to compute the central idempotents eq,...,es;. Remember that M; =
(FQ)e; splits into m; irreducible components, so that its character equals m;y;.
LEMMA 2.2: .

e =— xi(o™ho . (4)
" ceG

Proof. Let xo be the character of F'G itself. Then x(1) = n, and xoo(0) = 0 whenever 1 # o € G.
For @ = ) _a,7, this means that o (0~ '@) = na,. On the other hand, xoo = >_;m;X; by (3), whence
na, =3 mjx;(c" o).

For o = e;, this becomes na, = Y-, m;x;(0"e;) = mixi(o~"). The last equality is due to the fact
that left multiplication by o~ 'e; annihilates M;, for i # j, and acts on M; like 071; q.e.d.

Evaluating x;(e;) in (4), while keeping in mind that e; acts like I, on L; and like 0 on all the other
L;, we obtain the “first orthogonality relations”:

%ZXi(U_l)Xj(U):{gi/mi iizi; )

ceG

To get a handle on the total number s of irreducible characters, we study the centre Z(FG). Breaking
up G into its conjugacy classes C1,...,C, we let v, € F'G stand for the sum over all o € C,. Clearly,
a =Y _a,0 € FG is central if and only if it is fixed under conjugation by all 7 € G. This means that
its coefficients a, must be constant on each C), and hence « is linear combination of the ,. It follows
that v1,...,7, is a basis of Z(FG). On the other hand, ey, ..., e is a linearly independent set in Z(F'G):
any relation cie; + - - - + cses = 0 would yield ¢;e; = 0 when multiplied by e;. Hence

s<r and n=myd +---+msds, (6)

where d; denotes the F-dimension of a typical L in Z;. Together, these relations are helpful for tracking
down the possible types of irreducible F'G-modules.

Ezercise: If F has characteristic 0, show that m; | n. (Hint: The eigenvalues of any A(c) are of the form
¢¥, where ( is a primitive n-th root of 1. Let V; be the Z-module generated by the elements (“oe;, for
o€ G and v=1,...,n. Multiplying (4) by (n/m;)e;, obtain a relation which says that (n/m;)V; C V;.
Using determinants, conclude that n/m; is the root of a certain monic polynomial over Z.)



3. Matrices. This section is in three parts: an abstract examination of matrices, some consequences for
the components M; of FG in the sum (3), and finally another version of the orthogonality relations (5).

I. Let R be any ring, V' a (left) R-module, E = Endg(V) its ring of endomorphisms. Then the ring
M, (E) of m x m matrices over E is naturally isomorphic to Endg(W), where W =V @ --- @V has m
components. Indeed, a matrix (a;;) with entries in F defines the endomorphism « : W — W mapping
w = (v1,...,Un) to the m-tuple whose i-th component is Zj ai;vj. Conversely, the matrix entry a;; € &
can be retrieved by following the obvious j-th injection V' — W by a given a : W — W and the i-th
projection W — V. Finally, it can be checked that the composite Sa of two endomorphisms corresponds
to the matrix product obtained by summing the composites b;raz; over k.

Let R° the “opposite” of R, i.e., a ring with the same elements as R but with the order of multipli-
cation reversed. R° is naturally identifiable with the ring of right multiplications in R, and this, in turn,
is canonically isomorphic to Endg(R), the endomorphisms of R as a left R-module.

LEMMA 3.1: Suppose that R, as a left R-module, is isomorphic to the direct sum V®---®V of m copies
of some R-module V. Then R is isomorphic to the ring M., (E°), where E = Endg (V).

Proof. By the preceding discussion, R° ~ M,,(F). To finish the proof, we note that the matrix transpose
yields an isomorphism M,,(E)° — M,,(E°), a verification we leave to the reader, q.e.d.

II. Recall from Section 1, that F'G is the Cartesian product of rings M, ..., My, each M; being the direct
sum of m; left ideals all isomorphic to a single L;. Since L; is irreducible, all its non-zero endomorphisms
are invertible (their kernels must be trivial, their images all of L;), and hence Endpg(L;)° is a division
algebra D; over F'. Applying Lemma 3.1 to R = M;, we therefore have a ring isomorphism

M; ~ M, (D;) (7)
for every i = 1,...,s. Letting ¢; denote the F-dimension of D;, we conclude moreover that
dimF Mi :m?(ﬁ, dl ZdimF Li Zmiéi, and nzm%él + - +m255 (8)

Since every element of any D; generates a finite field extension of F', we have D; = F and é; = 1 for all
i, whenever F' is algebraically closed.

ITI. The quotient d;/m; appearing in the orthogonality relations (5) has thus been unmasked as §;. Since
characters are obviously constant on conjugacy classes we can rewrite these relations in the form

1< oy JO iy
with h, = |C,| and C} = {0 | 0~! € C,}. This can be interpreted as saying that the identity matrix I
is the product of the s x r matrix (Xi(Cj)) and the r X s matrix (Xj(C;‘)hi/néj), where ¢ and j always

denote the row and column indices, respectively. If these matrices are square, the product of the factors
can be reversed. In other words,

hi o . [0 ifij
nz_jlmcnij)/au—{l nz (10)

provided that s = r. These are the “second orthogonality relations”.

The proviso r = s is always satisfied if F' is algebraically closed: in that case, each M; is a full matrix
ring over F, and Z(FG) = Z(My) @ --- @ Z(M,) is the Cartesian product of s copies of F. As a futher
bonus, the §, then disappear from the formula.



