
1. Basic Matrix Algebra.

Much of linear algebra over a field K can be deduced from the following basic lemma in which, for
brevity, a matrix will be called strongly regular if it is a product of addition or permutation type elementary
matrices. In particular, such a matrix is square and has an explicit left and right inverse. On the other hand,
a matrix A will be called singular if it has a non-zero kernel N (A). Obviously these two properties exclude
one another.

LEMMA 1.1: Let A be an m×n matrix over K. Then there exist strongly regular matrices M and N such
that

MAN =

D 0

0 0

 where D =

 d1 0
. . .

0 dr

 with di 6= 0.

Proof: Let α(M,N) stand for the entry in the first row and first column of MAN . If α(M,N) = 0 for all
M,N , then obviously A = 0, and we are finished. Otherwise there is a pair M1, N1 such that

M1AN1 =

 d1 X

Y A′

 ,
where A′ is an (m − 1) × (n − 1)-matrix, and d1 6= 0. Multiplying on the left by addition-type elementary
matrices, we make Y = 0. Similarly, operating from the right, we modify N1 to get X = 0. The proof is
finished by induction.

THEOREM 1.2: Let A be an m× n matrix with m ≤ n. Then A is non-singular if and only if it is square
and invertible.
Proof: For invertible M,N it is easy to see that A is non-singular if and only if MAN is. If the latter is as
above, non-singularity clearly means r = m = n. But then MAN = D is an invertible diagonal matrix, and
A = M−1DN−1 is invertible.

COROLLARY 1.3: An independent subset of the span of r vectors cannot have more than r elements.
Proof: Suppose W1, . . . ,Ws are in the span of V1, . . . , Vr; say Wj = a1jV1 + · · · + arjVr, for j = 1, . . . , s.
Consider the linear combination

x1W1 + · · ·+ xsWs = (a11x1 + · · ·+ a1sxs)V1 + · · ·+ (ar1x1 + · · ·+ arsxs)Vs.

If s > r, our theorem guarantees the existence of a non-trivial s-tuple x1, . . . , xs such that all this is zero,
because the matrix (aij) involved here has more columns than rows, hence must be singular.

Note: Let V be a subspace of Kn. By the Corollary, any two bases of V have the same cardinality dimV.
Moreover, any independent {W1, · · · ,Ws} ⊂ V is contained in a basis of V.

To see this, start with W1, . . . ,Ws and keep adjoining more vectors Ws+1,Ws+2, . . . ∈ V (if you can),
while maintaining the independence of your collection. By the Corollary, this process cannot go beyond a
total of n vectors. At some point, therefore, your set {W1, . . . ,Ws+p} must stop being enlargeable; i.e. any
additional vector V ∈ V must be a linear combination of the ones you already have.

This result also shows that dimV is a meaningful measure of the ”size” of V. More precisely, if V
contains a smaller subspace V ′, we can enlarge a basis of V ′ to one of V, thus proving that dimV ′ < dimV.

To test your understanding of dimension, try to prove the following identities:

n− dimN (A) = dim C(A) = dimR(A),

where C and R denote the spans of the columns and of the rows, respectively. For the first, take a basis
{W1, . . . ,Wk} of N (A) and extend it to one {W1, . . . ,Wn} of Kn; then show that {AWk+1, . . . , AWn} is a
basis of C(A). For the second, note that both dimensions are invariant under elementary row and column
operations, hence equal to those of C(MAN) and R(MAN).
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2. Singular Values of Matrices.

It does not seem to be widely appreciated that one of the most central theorems on real (or complex)
matrices is also one of the easiest to prove. Its geometric version says that any linear transformation has the
effect of mapping some orthonormal basis of the domain onto an orthogonal subset of the range. Here is a
simple proof of the matrix version.

THEOREM 2.1: Let A be an m×n real matrix. Then there exist orthogonal matrices M and N such that

MAN =

D 0

0 0

 where D =

 d1 0
. . .

0 dr

 with di ≥ di+1 > 0.

Proof: Let O(n) be the set of all n × n orthogonal matrices. For M ∈ O(m) and N ∈ O(n), let α(M,N)
stand for the entry in the first row and first column of MAN . Let d1 the greatest possible value occurring
among these.

Since O(m)×O(n) is closed and bounded, there is a pair M1, N1 for which this value is actually attained.
That is, we can obtain that

M1AN1 =

 d1 X

Y A′

 ,
where A′ is an (m− 1)× (n− 1)-matrix. Now we claim that X = 0 and Y = 0 are zero rows and columns.
Indeed, if X were non-trivial, the first row ρ1 of M1AN1 would have length d > d1. Then we could multiply
on the right by the reflection H which takes ρ1 into [d, 0, . . . , 0] and create a value α(M,N) = d > d1.
Similarly Y = 0. Obviously, none of the entries of A′ can exceed d1 in absolute value (otherwise it could be
permuted to the upper left), and this is true for all the possible forms of A′. We are finished by induction.

The real numbers d1 ≥, . . . ,≥ dr > 0 are known as the singular values of A.

UNIQUENESS: The n × n matrix B = ATA has a very simple effect on the columns u1, · · · , un of N ,
namely, Bui = µiui, where µi = d2

i for i ≤ r and 0 beyond. Indeed, NTBN = (MAN)TMAN = ∆ is a
diagonal matrix with diagonal entries µi as described. Now the identity BN = N∆ establishes our claim.

To prove uniqueness of the singular values di it clearly suffices to characterize the µi as being the only
numbers such that (B − µI)u = 0 for some u 6= 0. But for u =

∑
aiui, we get (B − µI)u =

∑
ai(µi − µ)ui,

which is never 0, unless µ is one of the µi.
More geometrically, the di can also be retrieved from the image under A of the appropriate unit sphere.

THEOREM 2.2: Every symmetric n× n matrix A has an invariant one-dimensional subspace.
Proof: Let u 6= 0 be one of the columns of N , so that A2u = ATAu = µu, as above. Put µ = λ2. Then u
is annihilated by A2 − µI = (A+ λI)(A− λI). If (A− λI)u = v 6= 0, then v generates such a line; if v = 0
then u does.

For symmetric A it is trivial to show that the orthocomplement of any invariant subspace is itself
invariant. Hence, by induction, Theorem 2 provides a set of n mutually orthogonal invariant lines (Spectral
Theorem). Moreover, if B is symmetric and commutes with A, it can be restricted to ker(A − λI) 6= 0;
therefore the two matrices have a common invariant line, hence — by induction — a complete orthogonal
set of such.

All arguments on this page go through without a hitch for complex matrices if one changes ”orthogonal”
and ”symmetric” to ”unitary” and ”hermitian”, respectively, and replaces the transpose AT by its complex
conjugate A∗ (adjoint). Writing a complex matrix as C = A + iB with A,B hermitian, we again get a
spectral theorem for C if A,B commute, i.e. if C is normal.

It should be noted that neither polynomials nor derivatives are involved in these proofs, not even
indirectly.
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3. Elementary Divisors.

An integral domain R is principal if all its ideals are principal. In particular, given x, y ∈ R, there is a
g ∈ R such that (x, y) = (g); one easily checks that g is a greatest common divisor of x and y. For suitable
α, β ∈ R, we have g = αx+ βy. Putting γ = −y/g and δ = x/g, we have αδ − βγ = 1, andα β

γ δ

x
y

 =

 g
0

 .
This little observation can be generalized as follows.

LEMMA 3.1: Let A be an m × n-matrix over a principal domain R. Then there exist invertible (over R)
matrices M and N such that

MAN =

D 0

0 0

 where D =

 d1 0
. . .

0 dr

 with 0 6= di| di+1.

Proof: Let S be the set of all non-zero entries of MAN as M and N range over all invertible matrices of
the appropriate sizes. Take d1 ∈ S with (d1) maximal. By definition, we then have

M1AN1 =

 d1 X

Y A′

 ,
where X is a row, Y is a column, and A′ is an (m − 1) × (n − 1)-matrix. We claim that X,Y ≡ 0 modulo
d1. Indeed, if y is any non-zero entry of Y , we may assume that it is in the second row. We then multiply
on the left by an invertible m×m-matrix whose top left corner is the 2× 2-matrix of our preamble — with
d1 playing the role of x. As a result of this move, the g.c.d. of d1 and y pops into our matrix, contradicting
the maximality of (d1), unless (d1, y) = (d1) as claimed. Hence we can make Y = 0 by elementary row
operations, and similarly (using transposes) X = 0. Assuming this done, we can conclude that all entries
of A′ are divisible by d1, because any one of them can be made to appear in the first column by a suitable
addition of columns, thus playing the role of the y above. The proof is finished by induction.

NOTE 3.2: The following general observations apply to any commutative ring R.
(a) Let C(A) be the submodule of Rm generated by the columns of the matrix A. If M,N are invertible

matrices over R, then C(A) = C(AN) ∼= C(MAN), the isomorphism being induced by left multiplication
by M .

(b) If V,W are Noetherian R-modules (i.e., every submodule finitely generated), then so is V ⊕W . To
see this, let U ⊂ V ⊕W be a submodule, and consider the modules V ′ = {v ∈ V | (v, 0) ∈ U} and
W ′ = {w ∈ W | (v, w) ∈ U for some v ∈ V }. Generators of these can be dragged into U in an obvious
way; there they generate everything.

Back to the principal domain R. Since every ideal is principal, repeated application of (b) shows that every
submodule V ⊂ Rm is finitely generated. Letting its generators form the columns of a matrix A, we get
V = C(A) ∼= C(MAN), as in (a). Choosing M,N as in the Lemma we arrive at the following conclusion.

LEMMA 3.3: Every submodule of Rm is isomorphic to Rr with r ≤ m.

THEOREM 3.4: Every finitely generated R-module is isomorphic to R/(d1) ⊕ · · · ⊕ R/(dr) ⊕ Rs, with
0 6= di| di+1.
Proof: The fact that the module W in question is finitely generated means that there is an epimorphism
S : Rm → W , and hence W ∼= Rm/V with V = ker(S). As in the discussion preceding the proposition,
let V = C(A). Then, with M,N as in the lemma, (a) says that M induces an isomorphism Rm/V ∼=
Rm/C(MAN), which has the desired form (s = m− r).
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4. Uniqueness.

The finite descending chain of ideals (di) occurring in Theorem 3.4 turns out to be uniquely determined
by the isomorphism class of the module

W = R/(d1)⊕ · · · ⊕R/(dr)⊕Rs. (1)

Therefore it is also uniquely associated with any matrix A for which Rm/C(A) ∼= W . It is called the set
of elementary divisors of A. The idea of the uniqueness proof is simple: split W (uniquely) into primary
components, then prove the uniqueness of the ”cyclic” decomposition for these, and finally reassemble the
primary pieces, using the chain property to force uniqueness. The details of this program can create a
notational nightmare, so (for once) let us indicate how to wade through them. To start with, we note that
the first r terms of (1) constitute a well-defined submodule Wt = {w ∈ W | aw = 0 for some 0 6= a ∈ R},
called the torsion submodule, and that (dr) = {a ∈ R| aWt = 0} gives an intrinsic definition of (dr).

Since every ideal of R is principal, every ideal generated by an irreducible element p ∈ R is maximal.
Hence, for any d ∈ R, either d ∈ (p) or (d, p) = 1. In particular, K(p) = R/(p) is a field, and p is prime; i.e.
p| ab ⇒ p| a or p| b. A standard argument shows that, for 0 6= x ∈ R, there is a unique set of non-negative
integers vp(x), almost all zero, such that x = ε

∏
pvp(x), where ε is a unit, and (p) runs over all prime ideals.

Before going all out, we shall prove a weak uniqueness result, which is still strong enough for many
applications.

PROPOSITION 4.1: Let pt denote the multiplication Wt → Wt by the prime p ∈ R. Then pt is an
isomorphism if (p, dr) = 1, and has a non-zero kernel iff p| dr.
Proof: Indeed, 1 = px + dry makes w = pxw, for any w ∈ Wt. On the other hand, suppose dr = pb, and
let w be the image of b under R→ R/(dr)→W . Then w 6= 0, but pw = 0.

The next lemma will serve as the main tool for proving the uniqueness of the decomposition (1).

LEMMA 4.2: If V = R/(d), then, for every prime p ∈ R and every integer k ≥ 0,

pkV/pk+1V ∼=
{
K(p), if d ∈ (pk+1);
0, otherwise.

Proof: Since V is a cyclic R-module, pkV/pk+1V is a cyclic K(p)-module, hence either 0 or ∼= K(p).
It is 0 if and only if pkV = pk+1V , which is equivalent to saying that pk ∈ (pk+1, d), i.e. that pk =

pk+1a + db for suitable a, b ∈ R. If d ∈ (pk+1), this is impossible, since the expression on the right is then
divisible by pk+1. If d = plq with (p, q) = 1 and l < k+1, however, we can multiply the equation 1 = pα+qβ
by pk to obtain pk = pk+1α+ dβpk−l.

We apply this lemma to the components of (1) by noting that they contribute 1 to the K(p)-dimension
of pkW/pk+1W whenever k < vp(d) or d = 0, and nothing otherwise. Thus we obtain the formula

dimK(p) p
kW/pk+1W = #{i| k < vp(di)}+ s. (2)

Now the uniqueness of the chain (d1) ⊇ · · · ⊇ (dr) results from that of the sequences vp(d1) ≤ · · · ≤ vp(dr),
which in turn follows from (2) with the help of a little combinatorial fact, to wit:

A finite non-decreasing sequence ν1 ≤ · · · ≤ νr of non-negative integers can always be retrieved from
the (infinite) sequence µ0 ≥ · · · ≥ µk ≥ · · ·, where µk = #{i| k < νi}. Note that the torsion-free rank s of
W can be determined first, by using large values of k in (2).
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5. Minimal Polynomial.

An n× n matrix A over a field K obviously generates an algebra K[A] of finite dimension, say m. The
ring-homomorphism K[X] → K[A] taking the indeterminate X to A has a non-trivial kernel consisting of
all multiples of a certain polynomial µA(X) = Xm +am−1X

m−1 + · · ·+a0 known as the minimal polynomial
of A. To apply the theory developed on pp. 3-4, put R = K[X] and let W denote the R-module Kn on
which X acts like A. Since µAW = 0, we have W = Wt and — in the notation of p.3 — dr = µA. Since
K[A] ∼= R/(dr) is a direct summand of W , we get
(1) deg µA ≤ n.
If p(X) ∈ K[X] is irreducible, Proposition 4.1 says that
(2) ker p(A) 6= 0 if and only if p(X)| µA(X).
In particular, A− λI is singular if and only if µA(λ) = 0. Such λ are called eigenvalues of A.

For our last result we need another general fact about principal ideal domains R, namely that the
obvious injection R/(ab) → R/(a) ⊕ R/(b) is an isomorphism if (a, b) = 1. Indeed, 1 = ax + by makes
rby + sax ≡ r mod a and ≡ s mod b, with r and s given arbitrarily.

Now suppose that the module W is indecomposable over R. Then by 3.4, W must be cyclic, say
∼= R/(d). By what we have just seen, we cannot have d = plq with q relatively prime to p, unless q
is a unit. Hence W ∼= R/(pl), with p irreducible. If p(x) = X − λ, then W has a basis of the form
w, (a−λI)w, · · · , (A−λI)l−1w, and (A−λI)l = 0. Therefore A−λI is similar to the l× l matrix N with 1’s
just below the diagonal and 0’s elsewhere. A matrix of the form λI +N , with such an N , is called a Jordan
block.
(3) If all the roots of µA(X) lie in K, then A is similar to a direct sum of Jordan blocks.

Comments.

The preceding pages contain the main theorems of of strictly linear (as opposed to multi-linear) algebra.
The apparent ommissions can be easily filled in from what is there.

Lemma 3.1 could be obtained more simply if R is a Euclidean ring: one would substitute the division
algorithm for the prefatory 2 × 2 result. This would still cover the major applications, namely R = Z and
R = K[X].

It is worth noting that the matrices M and N in 3.1 may be assumed to have determinants ±1.
The uniqueness proof sketched on page 2 is the trickiest of these topics. Instead of wanting to know

the uniqueness of the cyclic components of the decomposition (1), one is usually content with that of the
elementary divisors of a given A. These can be also be obtained via determinants of submatrices — but of
that later.

5



6. Determinants.
(following Lang following Artin)

Let R be a commutative ring and consider a map D :Mn×n(R) → R defined on n × n matrices, such
that
(i) D is n-linear with respect to the matrix columns,

(ii) D(A) = 0 if any two adjacent columns of A are equal.
It easily follows that D changes sign whenever two adjacent columns are switched. Hence D(A) = 0 also
when non-adjacent columns are equal. The reason for formulating (ii) so modestly will be apparent in the
existence proof below.

THEOREM: There is exactly one function D with (i) and (ii) and such that D(In) = 1, namely

D(A) =
∑

i1,...,in

ε(i1, . . . , in)ai11 · · · ainn, (1)

where i1, . . . , in runs over all permutations of {1, . . . , n}, and ε = ±1 depending on whether the permutation
at hand requires an even or odd number of switches.
Proof: We proceed by induction, the case n = 1 being trivial. Given an n × n matrix A = (aij), let Aij

denote the submatrix obtained by deleting row i and column j. Fixing a row index i, put

∆(A) =
∑

j

(−1)i+jaijD(Aij). (2)

The D appearing on the right is the unique function with the desired properties for (n−1)×(n−1) matrices,
which exists by induction hypothesis. The ∆ on the left — which so far depends on i — will be seen to
satisfy (i) and (ii). As to (i), we note that each term aijD(Aij) is n-linear in the columns of A, because each
column (in truncated form) occurs exactly once in it.

Now suppose that columns k and k + 1 are equal. For j 6= k, k + 1 both these columns are present in
Aij , and hence D(Aij) = 0. Therefore the expression (2) boils down to

∆(A) = (−1)i+kaikD(Aik) + (−1)i+k+1ai,k+1D(Ai,k+1).

This is 0 because aik = ai,k+1 and Aik = Ai,k+1, see?
Finally, if A = In, then Aii = In−1, and (2) says that ∆(In) = D(In−1), which is 1 by induction.
To prepare for the proof of uniqueness, let B be an n × n matrix with columns B1, . . . , Bn, and ∆ be

any old function satisfying (i),(ii), and ∆(In) = 1. By multilinearity, we have

∆(BA) = ∆(
∑

i

ai1B
i, . . . ,

∑
i

ainB
i) =

∑
i1,...,in

ai11 · · · ainn∆(Bi1 , . . . , Bin),

where i1, . . . , in ranges over all n-tuples of indices. However, ∆(Bi1 , . . . , Bin) = 0 if the n-tuple contains
repeats; hence we need only consider permutations, and for these we can reshuffle the columns of B into
their original order, at the price of the factor ε. Altogether,

∆(BA) = D(A)∆(B), (3)

with D(A) as in (1). Setting B = In shows ∆ = D and proves the desired uniqueness.

REMARK: Two more basic facts need to be recorded. A hard look at (1) reveals that

D(AT ) = D(A). (4)

Finally, forming the matrix Ã by setting ãij = (−1)i+jD(Aij), we obtain from (2) that

AÃ = D(A)In. (5)
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