
1. The Main Fact of Galois Theory.

(following Artin)

If K is a field and X a set, we shall denote by Map(X,K) the K -space of functions from X to K. The
group of automorphisms of K fixing a subfield k ⊂ K will be labeled Autk(K); if k is the prime field, the
subscript will be omitted.

We start with a lemma due to Dedekind.

LEMMA 1.1: Aut(K) is a K-independent subset of Map(K,K).
Proof: Assuming the contrary, consider a shortest (i.e. with the fewest terms) non-trivial linear relation

x1σ1(α) + · · ·+ xrσr(α) = 0, (1)

for all α ∈ K, with σj ∈ Aut(K). Choose β ∈ K such that σ1(β) 6= σr(β), and modify (1) in two ways: first
substitute βα for α, and secondly just multiply by σ1(β). Subtracting the two equations so obtained, we get
a new relation whose coefficients are yj = xj(σj(β)− σ1(β)). Since y1 = 0 and yr 6= 0, it is shorter than (1).

Definitions: If G is a subgroup of Aut(K), the fix -field KG of G is the set of all α ∈ K such that σ(α) = α
for all σ ∈ G. For given G, every α ∈ K has a canonical image in Map(G,K), namely the map σ 7→ σ(α).
The canonical image defines a KG- homomorphism K → Map(G,K)

LEMMA 1.2: If S ⊂ K is KG-independent, then the canonical image of S in Map(G,K) is K-independent.
Proof: Again consider a shortest non-trivial linear relation

x1σ(α1) + · · ·+ xrσ(αr) = 0, (2)

for all σ ∈ G, with αi ∈ S. We may assume that x1 = 1. Moreover, we note that not all xi are in KG,
otherwise we get a contradiction to linear independence, when we set σ = identity in (2). Say, xr /∈ KG.
Now choose τ ∈ G such that τ(xr) 6= xr, and modify (2) in two ways: first substitute τσ for σ, and secondly
apply τ to both sides. Subtracting the two equations so obtained, we get a new relation whose coefficients
are yi = xi − τ(xi). Since y1 = 0 and yr 6= 0, it is shorter than (2).

THEOREM 1.3: Let G ⊂Aut(K) be a subgroup, and put k = KG. Then

dimkK = |G| and G = Autk(K),

unless both dimkK and |G| are infinite.
Proof: Let T = {σ1, . . . , σn} ⊂ G and S = {α1, . . . , αm} ⊂ K be finite subsets. Let AS,T be the m × n
matrix whose i, j-th entry is σj(αi).

If |G| < ∞ take T = G. Then, by Lemma 2, the rows of AS,T are K-independent whenever S is
k-independent. Hence dimkK ≤ n = |G|.

If dimkK < ∞, take S to be a basis of K over k. Then, by Lemma 1, the columns of AS,T are
independent, for any T . Hence |G| ≤ m = dimkK.

The full automorphism group Autk(K) could not be larger than G without driving up dimkK.

REMARK 1.4: For an arbitrary pair of fields K ⊃ k, the theorem says only:

|Autk(K)| ≤ dimkK, (3)

since k may be smaller than the fix-field of Autk(K).
If |Autk(K)| = dimkK, the extension K/k is called a Galois extension, and its automorphism group is

also known as its Galois group. In such a situation, the lock-step agreement between group orders and field
dimensions (given by the theorem) yields an injection H 7→ KH of the set of subgroups of G into the set of
intermediate fields k = KG ⊂ KH ⊂ K = K{1}. Later we shall prove this to be bijective.
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2. Finite Field Extensions.

Fields have two virtues which greatly facilitate the study of their extensions.
Firstly, if E ⊃ K are fields, E is a K-space whose dimension (also called degree) is denoted by [E : K].

If this is <∞ we say that E/K is a finite field extension. We have

F ⊃ E ⊃ K =⇒ [F : K] = [F : E] · [E : K],

because a K-basis of F can be obtained by pairwise multiplication of an E-basis of F with a K-basis of E.
Secondly, the polynomial ring R = K[X] over a field K is a principal domain. This implies that any finite

extension E/K can be built up by adjoining roots of polynomials. Indeed, any (α) ∈ E yields an epimorphism
K[X] → K[α] ⊂ K(α) whose kernel must be prime, hence maximal. Therefore K[α] ∼= K[X]/(p(X)) is a
field, hence = K(α), and [K(α) : K] = deg p(X). The ideal (p) is uniquely determined by α and K; its lone
monic inhabitant is known as the minimal polynomial of α over K. Given another β ∈ E, we can repeat the
process: K[α, β] = K(α)[β] = K(α, β), and inductively

K[α1, . . . , αr] = K(α1, . . . , αr),

for any α1, . . . , αr in E. Since E has a finite basis over K, it must itself be of that form.
If E = K(α1, . . . , αn) where the polynomial f(X) =

∏n
i=1(X − αi) has coefficients in K, then E

is called a splitting field for f(X), and [E : K] ≤ n!. To see this inequality, note that deg f(X) = n
implies [K(α1) : K] ≤ n. In K(α1), however, there is a partial factorization f(X) = (X − α1)g(X), with
deg g(X) = n− 1, and by induction hypothesis [E : K(α1)] ≤ (n− 1)!.

We shall later see that splitting fields are unique up to isomorphism. For the moment, we concentrate
on their existence.

Indeed, if p ∈ R is irreducible, the ideal (p) is maximal, and R/(p) = K[ξ] is a field generated by the
coset ξ = X+(p(X)), with p(ξ) = 0. Therefore, if f(X) ∈ R has degree n, and we use an irreducible factor p
of f to construct L = K[ξ], then [L : K] ≤ n. Since f(X) = (X − ξ)g(X) with g(X) ∈ L[X] of degree n− 1,
induction yields a field F in which g(X), and hence f(X), splits into linear factors, and which is generated
by the roots of f(X). Let us summarize.

THEOREM 2.1: Let E/K be a finite field extension, and put R = K[X]. Then
(a) If α1, . . . , αr ∈ E, then K[α1, . . . , αr] is a field.
(b) For every α ∈ E, the map X 7→ α yields an isomorphism R/(p) → K[α], where p(X) is the minimal

polynomial of α over K.
(c) Every f ∈ R has a splitting field E; if deg f = n, then [E : K] ≤ n!.

REMARK 2.2: Certain algebraic (and geometric) algorithms can be interpreted as the step-wise construc-
tion of a finite field extension. Take the classical ruler-and-compass problems. One is given a set of points
(coordinates) and tries to create more points by intersecting lines and/or circles obtained from the existing
ones. Since one is thus geometrically solving equations which are at most quadratic, the evolving extension
field will have 2-power degree. It is easy to see that doubling the cube or trisecting an angle necessarily
involve extensions of degree 3. Therefore these are unattainable.

Another famous problem, solving polynomial equations by radicals, cannot be decided by degree alone.
Solution by radicals means by an algorithm in which each step involves only rational operations and equations
of the type Xn − s = 0.

Definition: F/K is called a simple radical extension if F = K[α] with αn ∈ K for some n (which need
not be = [F : K]). E/K is said to be constructible by radicals, if it is obtainable by a finite sequence
K = L0 ⊂ L1 ⊂ · · · ⊂ Lm = E of simple radical extensions Li/Li−1.

One of the original aims of Galois theory was to find a criterion for deciding whether the roots (i.e.
splitting field) of a given polynomial were so constructible.
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3. Cyclic Field Extensions.

A field extension K/k is called cyclic of degree n, if it is a Galois extension with Gal(K/k) cyclic of
order n. As an exercise in Galois theory, we shall characterize such extensions for the case of a sufficiently
rich ground field k — by which we mean that k should contain n different roots of Xn−1, the so-called n-th
roots of unity. We start with a lemma about these.

LEMMA 3.1: In any field, the roots of Xn − 1 form a cyclic multiplicative group of order ≤ n.
Proof: The set W of these roots has ≤ n elements. It is a multiplicative group since an = 1 and bn = 1
implies (ab)n = 1. By the theorem on finitely generated Z-modules, W has a subgroup C which is cyclic of
order d, where wd = 1 for all w ∈W . Since Xd − 1 can have only d roots, W must fit into C.

Definition: An n-th root of unity is primitive if its powers form a group of order n.

THEOREM 3.2: Let K ⊃ k be fields, with k containing a primitive nth root of unity.
Then K/k is cyclic of degree n if and only if K = k(θ) with θn ∈ k and no smaller power of θ in k.

Proof: Consider first an arbitrary field F = k(t) such that tn = s ∈ k, with n minimal, and look at the
polynomial

f(X) = Xn − s =
∏

w∈Wn

(X − wt),

where Wn denotes the roots of Xn−1. If p(X) is a prime divisor of f(X) in k[X], say the product of m of the
factors X − wt, its constant term would be ±utm, with some u ∈ Wn ⊂ k, and we would get tm ∈ k. Since
n is minimal, we conclude that f(X) is irreducible, and the obvious ring surjection k[X]/(f(X))→ k[t] = F
is an isomorphism of fields. In particular, the automorphisms of k[X]/(f(X)) given by X 7→ wX, with
w ∈ Wn, translate faithfully into elements of Autk(F ), where they form a cyclic group G of order n. By
Galois theory, [F : FG] = n; but [F : k] = n as well and hence FG = k. Therefore F/k is cyclic of degree n.

Conversely, let K/k be cyclic with group G of order n, and choose an isomorphism ζ : G → Wn. For
any α ∈ K consider the Lagrange resolvent

θ(ζ, α) =
∑
σ∈G

ζ(σ−1)σ(α),

whose purpose in life is to satisfy the marvellous functional equation (for all τ ∈ G)

τ(θ(ζ, α)) =
∑
σ∈G

ζ(σ−1)τσ(α) = ζ(τ)
∑
ρ∈G

ζ(ρ−1)ρ(α) = ζ(τ)θ(ζ, α),

obtained by the change of variable ρ = τσ. By Dedekind’s Lemma, θ(ζ, α) = θ 6= 0, for suitable α. Then
τ(θ)/θ = ζ(τ) for all τ ∈ G, and more generally τ(θm)/θm = ζ(τ)m.This shows that θm is fixed by G, hence
lies in k, if and only if ζ(τ)m = 1 for all τ . Therefore θn ∈ k, and n is minimal. By the first part of this
proof, [k(θ) : k] = n. Therefore K = k(θ), as was to be shown.

Example: For a different kind of cyclic extension, let k denote the rationals, and consider K = k(ε), where
ε = e2πi/p is a complex p-th root of unity, p > 2 a prime. Then ε is a root of f(X) = Xp−1 + · · ·+X + 1 =
(Xp−1)(X−1)−1, which is irreducible over k by Eisenstein’s criterion applied to f(Y +1) = ((Y +1)p−1)Y −1.
Hence, for any non-zero u ∈ Z/(p) , we get a legitimate automorphism σu : ε 7→ εu of K/k, which is the
identity only if u = 1.

Thus u 7→ σu constitutes an injection of the full multiplicative group Up of Z/(p) into Autk(K). By
Lemma 3.1, Up is cyclic of order p− 1. Since [K : k] = p− 1, this means that the fix-field is precisely k, and
K/k is cyclic. However, for p > 3 it is not generated by any (p− 1)-st root of anything.
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4. Solvability.

If K/k is a Galois extension with group G and H ⊂ G is a subgroup with fix-field F = KH , then
obviously K/F is a Galois extension with group H.

But if H is a normal subgroup, F is moreover G- invariant (since h(gx) = gx ⇐⇒ g−1hg(x) = x), and
we get a natural group-homomorphism

resK|F : Autk(K) −→ Autk(F ),

by restriction to F . Conversely, consider any subextension F/k ⊂ K/k invariant under G. Then a restriction
map can be defined as above, and its kernel is the (normal) subgroup H ⊂ G which fixes F . The injection
G/H ↪→ Autk(K) gives the first of the following three inequalities

[G : H] ≤ |Autk(F )| ≤ [F : k] ≤ [KH : k],

whose outer terms are equal, making F = KH , and F/k a Galois extension with Autk(F ) ∼= G/H. Let us
summarize.

LEMMA 4.1: Let K/k a Galois extension with group G, and consider a subextension k ⊂ F ⊂ K.
Then F is G- invariant if and only if F = KH , for some normal subgroup H / G.
In that case, F/k is Galois with group ∼= G/H.

The following result is immediate from this lemma and the theorem on cyclic extensions.

THEOREM 4.2: Let K/k be Galois with group G, and k containing a primitive n-th root of unity.
Then K/k is constructible by radicals if and only if G is solvable.

Proof: If G is solvable, it has a solvable normal subgroup H such that G/H is cyclic. By the Lemma,
KH/k is cyclic, hence radical. K/KH is Galois with group H, hence constructible by radicals according to
the induction hypothesis.

If F = k(θ) is the first link in a chain of radical extensions leading to K, then it is G-invariant, because
σ(θ)θ−1 is an n-th root of unity, hence σ(θ) ∈ F , for all σ ∈ G. By the Lemma, F = KH with H normal,
and G/H ∼= Autk(F ), hence cyclic. The induction hypothesis applied to K/F says that H is solvable.

THEOREM 4.3: Let L = k(t1, . . . , tn) be the field of rational functions in n indeterminates, and K =
k(s1, . . . , sn) the subfield generated by the elementary symmetric functions s1, . . . , sn.
(a) L/K is Galois with group G = Sn.
(b) If k is of characteristic 0, and n ≥ 5, the extension L/K is not constructible by radicals.
Proof: G acts on L by permuting the indeterminates. Obviously K ⊂ LG. But L is a splitting field of the
polynomial

∏
i(X − ti), whose coefficients are the si. Hence [L : K] ≤ n!. On the other hand [L : LG] = n!,

and therefore LG = K.
For (b), we may assume that k contains all kinds of roots of unity. (Otherwise adjoin them to get bigger

fields k′,K ′, L′; if L/K were constructible by radicals, so would L′/K ′ be.)
By Theorem 4.2, G would have to be solvable. But for n ≥ 5, the group An of even permutations is

not solvable. In fact, An (with n ≥ 5) is generated by commutators, which are of course trivialized in any
abelian factor group.

In fact, we can show that any 3-cycle (i.e. permutation with n − 3 fixed points) is a commutator. To
get the 3-cycle (ijk), take 2 further points h, l (here we need n ≥ 5) and define 3-cycles σ, τ involving h, i, j
and j, k, l, respectively; then σ−1τ−1στ fixes everything except possibly i, j, k. Being even, it cannot fix
just one of these; being non-trivial, it cannot fix more. Hence it is either (ijk) or its inverse. Using similar
reasoning, one easily convinces oneself that every non-trivial product of two transpositions is either a 3-cycle
or a product of two. Therefore An is generated by commutators.

This proves what is known as the Insolubility of the Quintic.
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5. Normality.

Since fields have no ideals, all non-trivial ring homomorphisms E → F are injective. They will be
referred to as embeddings. Even if we are ultimately interested in automorphisms, it behooves us to consider
embeddings, because this more general notion is better adapted to inductive constructions.

LEMMA 5.1: Let E/K be a finite extension, σ : K → L an embedding. Then there exists a finite extension
F/L and an embedding τ : E → F compatible with σ.
Proof: Induction on [E : K]. Let α ∈ E be such that K(α) ∼= K[X]/(p(X)) for some irreducible p of
degree > 1; let pσ(X) ∈ L[X] be its σ-image, and q(X) be an irreducible factor of same. Then σ induces an
embedding of fields K(α) ∼= K[X]/(p(X))→ L[X]/(q(X)). Since [E : K(α)] < [E : K], induction does it.

REMARK 5.2: This is easily generalized to a finite set σi : K → L giving rise to extensions τi : E → F ,
with a single F . We apply the lemma once, getting τ1 and F1, then regard the remaining σi as embeddings
into F1, extendable by induction hypothesis.

Definition: A finite field extension E/K is normal if every F/K has at most one subextension isomorphic
to E/K.

THEOREM 5.3: For a finite field extension E/K the following properties are equivalent.
(i) If an irreducible K-polynomial has a root in E, then it splits in E.

(ii) E/K is the splitting field of some K- polynomial.
(iii) E/K is normal.
Proof: (i)⇒ (ii): (i) says that E/K is a union of splitting fields, since every α ∈ E is at once accompanied
all its brothers and sisters. Being of finite degree, it must be a finite union of splitting fields, say of
f1(X), . . . , fs(X) ∈ K[X], but then it is a splitting field for the product of these.

(ii) ⇒ (iii): Let E/K be a splitting field of f(X) ∈ K[X]. If τ : E → F is an embedding, it changes
the splitting of f(X) ∈ E[X] to one of f(X) ∈ F [X]. But the linear factors, say {X − βj}, of the latter do
not depend on τ (unique factoring in F [X]), and the τ -image of E is the field K({βj}) ⊂ F .

(iii) ⇒ (i): Let f(X) be the irreducible polynomial for α ∈ E, and let L be a splitting field for f(X),
say f(X) = (X − β1) · · · (X − βr) in L. Let σi : α 7→ βi be the corresponding embedding of K(α)→ L. By
Remark 1, there exists an F/K admitting extensions τi : E → F . By (iii), there is a unique E′ ⊂ F such
that τi(E) = E′ for all i. Since βi ∈ τi(E) by construction, f(X) splits in E′, hence in E.

REMARK 5.4: (a) If E/K and E′/K are splitting fields of the same f(X), they are isomorphic. Indeed,
Lemma 5.1 extends the inclusion K → E′ to an embedding τ : E → F with F ⊃ E′, but τ(E) = E′ since
both are generated by the roots of f .

(b) Every finite E/K can be embedded in a normal F/K, for instance into the splitting field of a
polynomial that kills all its generators.

(c) If E/K is a normal subextension of a Galois extension L/K, it is invariant under the Galois group (as
σ(E) = E by normality). Hence Lemma 4.1 implies that H 7→ LH is a bijection between normal subgroups
of G and normal subextensions of E/K.

Example: This might be the right place to tell the story of finite fields. In such a field K the subfield
generated by 1 must be k = Z/(p), for some natural prime p. If [K : k] = n, the number of elements
in K is evidently q = pn. By Lemma 4.1, the multiplicative group of K is cyclic of order q − 1; hence
0 6= u ∈ K ⇒ uq−1 = 1. Hence K consists precisely of the q roots of Xq −X, and is the splitting field of
this polynomial.

The Galois theory of finite fields is pleasantly simple. With K as above, let φ : K → K be given by
φ : x 7→ xp. Being a ring endomorphism with trivial kernel, it is an automorphism. Being a permutation of
a finite set, it has finite order, which by Galois matches the degree of K over the fix-field k. Hence K/k is
cyclic, with its Galois group G generated by φ. Intermediate fields k ⊂ F ⊂ K are exactly the fix-fields of
subgroups of G: such F has pm elements, if and only if it satisfies φm(x) = xp

m

= x.
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6. Separability.

A polynomial f(X) over a field K is separable if it has no multiple roots in any extension of K; i.e. if
f(α) = 0 implies f ′(α) 6= 0, where f ′ denotes the derivative. For irreducible f this is equivalent to saying
that f ′(X) 6= 0 — a condition that is sometimes violated at characteristic p (e.g. if f(X) = Xp − a ).
Note that separability of a polynomial is independent of ground- field. An element of an extension E/K is
separable if it is the root of a separable polynomial, and E/K is separable if all its elements are.

The following lemma shows what separability is good for: it allows measuring the degree of an extension
in terms of availability of embeddings.

LEMMA 6.1: Let F/L be normal and σ : K → L an embedding which is extendable to some τ : E → F ,
where [E : K] = n <∞.

Then the number of such extensions is #{τ} ≤ n, with equality if and only if E/K is separable.

Proof: Let α ∈ E and p(X) its minimal polynomial over K. If pσ(X) = (X − β1) · · · (X − βm) in F , the
only possible extensions of σ are given by ρi : α 7→ βi; hence there are ≤ m = [K(α) : K] of them, with
equality if and only if β1, . . . , βm are distinct, i.e. p(X) is separable, i.e. α is separable. By induction,
each of these ρi extends to ≤ [E : K(α)] embeddings E → F , with equality if E/K, and hence E/K(α), is
separable. Therefore the total number is ≤ [K(α) : K] · [E : K(α)] = [E : K], with equality in the separable
case. If α was not separable, the first stage of this count would have created an irreparable short-fall. Thus
the maximality of #{τ} forces every element of E to be separable over K.

REMARK 6.2: The same proof shows: If E = K(α, β), with α separable over K, and β separable over
K(α), then E/K is separable. In particular, the K-separable elements in an extension L/K form a subfield.

Any finite separable E/K can be embedded in a normal one, e.g. a splitting field of the the minimal
polynomials of all its generators. This is important in view of the following result.

THEOREM 6.3: A finite extension E/K is separable and normal, if and only if it is Galois, i.e. |AutK(E)| =
[E : K].
Proof: Most of this is immediate from the Lemma, by taking E/K = F/L and σ = identity. Just note
that self-embeddings, being degree preserving, are the same as automorphisms. To check that abundance of
automorphisms implies normality, let F/K be any extension and τ : E → F be an embedding over K. Then
{τ ◦ ρ}, as ρ ranges over the [E : K] available automorphisms, constitutes the sum total of all embeddings,
and F/K has only one subextension isomorphic to E/K.

REMARK 6.4: This theorem sets the stage for most applications of Galois theory.
(a) If E ⊃ F ⊃ K and E/K is Galois, then so is E/F by our new criterion. Now AutF (E) is by

definition that subgroup H of AutK(E) which fixes F . Comparing degrees, we get F = EH . Conclusion:
H 7→ EH defines a bijection between subgroups of AutK(E) and subextensions of E/K. (see also Remarks
1.4 and 5.4 (c)).

(b) Every finite separable F/K is monogenic; i.e. F = K[θ] . For finite fields, we have seen this already:
their multiplicative groups are cyclic. So we take K to be infinite and show that K[α, β] = K[γ], for any α, β
and suitable γ. Embedding F into some E which is Galois over K, we see that there are only finitely many
fields L such that K ⊂ L ⊂ F (they correspond to subgroups of a finite group). Hence there are distinct
c1, c2 ∈ K such that K[α+ c1β] = K[α+ c2β], and therefore = K[α, β].

(c) Here is an algebraic version of the Fundamental Theorem of Algebra: Let L/K be a quadratic field
extension of characteristic 0 such that (i) L has no quadratic extensions, and (ii) K has no extensions of
odd degree > 1; then L is algebraically closed. Proof: Any finite extension F/L would be embeddable in
a Galois extension E/K, say with Galois group G. Let G1 be a Sylow 2-group and K1 its fix-field. Since
[K1 : K] is odd, (ii) says that K1 = K, and hence G = G1 is a 2-group. Now let H be the Galois group of
E/L. Being a subgroup of G, it too is a 2-group. If it were non-trivial, it would have a subgroup of index
2, corresponding to a quadratic extension of K, contradicting (i). Hence E = L, as was to be shown.
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